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Abstract

The context of an image encapsulates rich information about how natural scenes and objects are related to each other. Such

contextual information has the potential to enable a coherent understanding of natural scenes and images. However, context models

have been evaluated mostly based on the improvement of object recognition performance even though it is only one of many ways

to exploit contextual information. In this paper, we present a new scene understanding problem for evaluating and applying context

models. We are interested in finding scenes and objects that are “out-of-context”. Detecting “out-of-context” objects and scenes is

challenging because context violations can be detected only if the relationships between objects are carefully and precisely modeled.

To address this problem, we evaluate different sources of context information, and present a graphical model that combines these

sources. We show that physical support relationships between objects can provide useful contextual information for both object

recognition and out-of-context detection.
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1. Introduction

The context encapsulates rich information about how nat-

ural scenes and objects are related to each other, whether it

be relative positions of objects with respect to a scene or co-

occurrence of objects within a scene. Using such contextual

information to improve object recognition has recently become

popular [1, 2, 3, 4, 5, 6, 7, 8, 9] because contextual informa-

tion can enforce a coherent scene interpretation, and eliminate

false positives. Based on this success, context models have been

evaluated on how much the context model improves the object

recognition performance. However, comparing context models

solely based on object recognition can be misleading because

object recognition is only one of many ways to exploit the con-

text information, and object recognition cannot adequately eval-

uate some of the dimensions in which the context model can be

useful.

For example, context information can help predict the pres-

ence of occluded objects, which can be useful for robotics ap-

plications in which a robot can move to view occluded objects.

Context information can also help predict the absence of impor-

tant objects such as a TV missing in a living room. We can also

use contextual information to suggest places to store objects,

which can be useful when a robot tries to decide where to place

a TV in a living room. We cannot evaluate the effectiveness of

different context models in these scenarios just by evaluating

the context models on object recognition tasks.

In this work, we are interested in finding scenes and objects

that are “out-of-context”. This application can be amenable to

evaluating dimensions of context models not adequately eval-

uated by object recognition tasks. Fig.1 shows several out-of-

context images with objects in unexpected scenes or in unex-

pected locations. Detecting out-of-context images is different

from detecting changes in surveillance applications because the

 

 

Figure 1: Examples of objects out of context (violations of support, probability,

position, or size).

goal in surveillance is to identify the presence or absence of

certain objects in a known scene, most likely with video data.

In our problem setting, the task is detecting an object that is

unusual for a given scene in a single image, even if the scene

has not been observed before. Therefore, we need contextual

relationships between objects to solve this problem. Detecting

out-of-context objects can be challenging because contextual

violations can be detected only if the relationships between ob-

jects are carefully and precisely modeled. For example, in the

second image in Fig.1, many elements are in correct locations,

but because a road sign appears next to an airplane, the airplane

is out of context.

In addition to providing a new application of context models,
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we analyze different sources of contextual information and pro-

pose a graphical model that integrates them. We evaluate this

context model in object recognition tasks on a SUN dataset [10]

and analyze how much each contextual information contributes

to the improved performance. We also test our context model

in detecting out-of-context objects using (1) ground-truth labels

and (2) noisy detector outputs, and show performance improve-

ments compared to other context models.

2. Sources of Contextual Information

Biederman [11] provides five features that are important for

human vision: support (objects should not be floating), inter-

position (objects should occupy different volumes), probability

(objects should or should not appear in certain scenes), posi-

tion (objects should appear in typical locations), and size (ob-

ject have typical relative sizes). We analyze potential sources

of contextual information that encode some of these features.

2.1. Global Context Models

The knowledge of scene category can help recognize indi-

vidual objects in a scene, but identifying individual objects in

a scene can also help estimate the scene category. One way to

incorporate this idea in object recognition is to learn how likely

each object appears in a specific scene category. The gist de-

scriptor [12], which captures coarse texture and spatial layout

of a scene, can be used to this end. For example, Murphy et

al. [13] train gist using 15 pre-specified scene categories and

use the gist regressor to adjust the likelihood of each detected

object. Using the scene category information can greatly en-

hance object recognition performance, but hand-selected scene

boundaries can be artificial, and sharing parameters among sim-

ilar types of scenes, such as a street and a city, can be challeng-

ing.

Instead of first predicting the scene category and then esti-

mating the presence of an object, we could use gist directly

to predict the presence of an object. It is especially effective in

predicting the presence of large objects with texture such as sky,

sea, and mountain (commonly called stuff ). The gist descriptor

is also known to work well in predicting the expected vertical

location of such objects in an image [14].

2.2. Object Co-occurrences

Some objects co-occur often, and some objects rarely appear

together. Object co-occurrence statistics provide strong contex-

tual information and have been widely used in context models

[15, 4, 16, 10, 17]. A common framework for incorporating

the co-occurrence statistics is conditional random field (CRF).

An image is segmented into coherent regions or super pixels,

and each region or super pixel becomes a node in a CRF. For

example, Rabinovich et al. [15] first predict the labels of each

node using local features, and adjust the predicted labels using

pair-wise co-occurrence relationships. In Ladicky et al. [4],

global potentials are defined to encode co-occurrence statistics

and to encourage parsimonious interpretation of an image. Tor-

ralba et al. [16] combine boosting and CRFs to first detect easy

objects (e.g., a monitor) and use contextual information to de-

tect difficult objects that co-occur frequently with the detected

objects (e.g., a keyboard). If the number of object categories is

large, a compact representation of object co-occurrences can

avoid over-fitting and enable efficient inference and learning

algorithms. Choi et al. [10] learn a tree-structured graphical

model to capture co-occurrence statistics of more than 100 ob-

ject categories.

Due to computational complexity, most work focus on cap-

turing pairwise co-occurrence statistics. However, some rela-

tionships require richer representation. For example, toilet and

sink co-occur often, but a triplet (toilet, sink, refrigerator) can

be unusual. Felzenszwalb et al. [17] addresses this issue using

a support vector machine, which re-scores each detection using

the maximum score of all other object categories detected in the

same image.

2.3. Geometric Context

Knowing where objects are likely to appear is helpful for ob-

ject localization. This information can be captured using geo-

metric context. Geometric context arises because (1) most ob-

jects are supported by other objects, e.g., cars are supported by

road, and people are supported by floor or sidewalk; (2) objects

that have a common function tend to appear nearby and have

a certain spatial configuration, e.g., a computer screen appears

above a keyboard, and a mouse is located on the left or right

of the keyboard; and (3) humans tend to take photographs with

a common layout, e.g., floor is typically at the lower half of an

image, and sky is in the upper half. Torralba et al. [12] note that

the vertical locations of an object (either absolute or relative to

other objects) is often more informative than its horizontal lo-

cation. Hoiem et al. [18] introduce an explicit representation

of the 3D geometry of the scene (i.e., the horizon line and the

distinction between horizontal and vertical surfaces) .

Quantitative geometric models. One way to incorporate ge-

ometric information is by using Gaussian variables to model

likely relative positions and scales of objects [10]. It is also

common to represent an object location in a non-parametric

way by dividing an image into a finite number of regions.

Gould et al. [3] construct a non-parametric probability map

by learning quantized representations for relative locations be-

tween pairs of object categories. Yao and Fei-fei [5] use bin-

ning function to represent location relationships between hu-

man body parts and a Gaussian distribution to represent relative

scales.

Qualitative geometric models. In the real world, qualitative re-

lationship among object locations is as important as quantita-

tive relationships. Cars should be supported by a ground or

road, and it is unlikely that a car is floating above a road, even

if the distance between the two is small. In Galleguillos et

al. [2], spatial relationships between pairs of segmented re-

gions are quantized to four prototypical relationships - above,

below, inside, around. A similar set of spatial relation-

ships is used in Desai et al. [1] with the addition of far to cap-

ture non-local spatial relationships. Russell and Torralba [19]
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use attachment (a wheel is a part of a car) and supported-by

(a car is supported by a road) to represent spatial relationships

between overlapping polygons of object boundaries, and use

those relationships to reconstruct a 3D scene from user annota-

tions.

3. Support context model

We integrate different sources of contextual information

mentioned in the previous section using a graphical model. Our

context model takes the gist descriptor, local detector scores and

bounding box locations as inputs, and computes the probability

of each object’s presence and the likelihood of each detection

being correct. Our model consists of two tree-structured graph-

ical models: the first part relates object categories using co-

occurrence statistics, and the second part relates detector out-

puts using support relationships.

3.1. Latent tree model for co-occurrences

For each object category i, we associate a binary variable xi
to represent whether it is present or not in an image. Choi et al.

[10] uses a tree-structured graphical model with these binary

variables to capture co-occurrence probabilities between object

categories. They note that just learning a tree structure results in

a natural hierarchy of objects in which a representative object

(e.g., sink) is placed at the root of a subtree of objects that

commonly appear in the same scene (e.g., kitchen).

In this work, we add latent binary variables to a co-

occurrence tree model to capture the dependencies of object

categories due to scenes. Our co-occurrence latent tree model

consists of observed binary variables representing each object

category and latent binary variables representing some unspec-

ified scenes or meta-objects. These latent variables are learned

from a set of training images using the method we describe in

Section 4. The additional latent variables allows a richer repre-

sentation of object relationships. For example, a toilet is more

likely to be present if a sink is present, but not if it is in a kitchen

scene. Fig.2a shows an example of a small co-occurrence latent

tree for 6 object categories.

3.2. Gist for global context

The co-occurrence latent tree model implicitly infers the con-

text of an image by collecting measurements from all object

categories. However, if there are false detector outputs with

strong confidence, it is possible that those false detections con-

fuse the co-occurrence tree to infer a wrong context. Thus, we

use gist in addition to local detectors to enhance the context-

inferring power of our co-occurrence tree model. Since a gist

descriptor is especially effective in classifying scenes and meta-

objects, we use gist as a measurement of each latent variable in

the co-occurrence tree.

3.3. Support tree for quantitative geometric context

We use a binary detector variable cik to denote whether a de-

tection k of object category i is correct or false. Each detec-

tor variable has an associated score sik and the location of the

bounding box yik. By using relative locations of detector bound-

ing boxes, we can prune out false positives with support viola-

tions. For example, if we have a strong detection of a floor and

multiple detections of tables, then it is more likely that those

supported by the floor detection are correct.

Given an image, we infer support relationships among detec-

tor outputs and construct a support tree model. Fig. 2b shows an

example image with detector outputs and the its estimated sup-

port tree. The edge potentials of the support tree conditioned

on presence variables p(cik |xi, c jl) encode that a detection k of

object i is more likely to be correct if it is supported by a correct

detection l of object j.

3.4. Expected locations and scales of bounding boxes

We use simple binning functions to represent the location and

the size of a bounding box relative to the image height. The

probability p(yik |cik) encodes the frequency that the bottom of

a bounding box belongs to bottom, middle, or top part of an

image, and the frequency that the height of the bounding box is

less than a quarter, less than a half, or larger than a half of the

image height. Together with the support tree, our context model

captures relationships between object categories qualitatively

and expected location and scale of correctly detected bounding

boxes quantitatively.

4. Model Learning

Given a set of fully-labeled training images, we learn the

structure and parameters of the co-occurrence latent tree model,

the measurement model for gist, detector scores, and bounding

box locations, and finally the parameters for inferring support

trees in new images.

4.1. Co-occurrence latent tree

We assume that only the labels of object categories are given,

and the scene information is unknown in the training image.

Thus, it is necessary to learn the number of latent variables and

how they are connected to object variables just from the sam-

ples of object presence variables. We use a recent approach in-

troduced in [20] to efficiently learn a latent tree graphical model

from samples of observed variables. Our tree model relating

107 object categories learned from SUN 09 training set [10] in-

cludes 26 hidden variables, many of which can be interpreted

as corresponding to scene categories such as indoor, bedroom,

or street. Fig. 3 shows the structure of a latent tree learned

from co-occurrence statistics of 107 object categories. Many

hidden variables in the latent tree can be interpreted as scene

categories. For example, h4 corresponds to an outdoor scene,

and is negatively correlated with wall, floor, and h5, which

corresponds to an indoor scene. In addition, h6, h15, and h13 can

be interpreted as a kitchen, a living room, and a street, respec-

tively.

After learning the tree structure, the parameters of the tree

model is estimated using the EM algorithm, which is efficient

for a tree graphical model with binary variables.
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Figure 2: An illustrative example of our support context model for 6 object categories. White nodes are hidden, solid nodes are observed, and grey nodes are

observed only during training. (a) Co-occurrence latent tree with the gist descriptor g to infer hidden variables. (b) An example image with a few detector outputs

and its inferred support tree. The tree is drawn upside down to emphasize that a parent variable is physically supporting its child variables. (c) The connection

between a presence variable xi and its detector variable cik is drawn separately here to simplify the figures. Each detector variable has an associated score sik and

the location of the bounding box yik.
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Figure 4: Distribution of support-chains in the SUN 09 training set.

Measurement models for gist, local detector scores, and bound-

ing box locations. After learning the structure and parameters

of a co-occurrence latent tree, we estimate the values of hid-

den variables for each training image. Using these estimated

samples, we train the likelihood of gist conditioned on hidden

variables [13]. The probability of correct detection conditioned

on a detector score p(cik |sik) is trained using logistic regres-

sion. The probabilities of correct detection given presence vari-

able p(cik |xi), and the quantized heights and bottom locations of

bounding boxes relative to image heights p(yik |cik) are trained

by counting in the training set.

4.2. Parameters for support trees

A majority of object categories such as cars, buildings, and

people are always supported by other objects such as roads,

sidewalks, and floors. Russell and Torralba [19] construct a

support tree in an image annotated by humans using the follow-

ing approach:

Training For each pair of object categories i and j, count

N1(i, j), the number of times that an instance of i and an

instance of j appear together in an image in the training

set, and N2(i, j), the number of times that the bottom point

of the instance of i is inside the instance of j. For each ob-

ject i, and for a given threshold θ1, obtain a list of possible

supporting objects S θ1(i) := { j s.t. N2(i, j)/N1(i, j) > θ1}.

In all our experiments, we use θ1 = 0.25.

Constructing a support tree in an image Let (i, k) be the k-th

object instance of object category i. For each (i, k) in the

image, choose a supporting object instance ( j, l) such that

N2(i, j)

N1(i, j)
e−αdik; jl (1)

is maximized, where dik, jl is the distance from ( j, l) to the

bottom point of (i, k). The exponential function is used

to only allow instances that are adjacent or a few pixels

apart due to annotation errors to be considered as poten-

tial supporting pairs. If the maximum of (1) is less than a

threshold θ2, then (i, k) is not supported by any other ob-

ject. We use α = 0.1 and θ2 = 0.1. Since each object

instance chooses at most one supporting object, the result-

ing support relationships form a tree structure.

In a support tree, we can consider a chain of support relation-

ships from the top to the ground objects. For example, (a plate

supported by a table supported by a floor) is a length-3 support

chain. Fig.4 shows the number of total and unique chains, and

the two most common chains with lengths 2, 3, and 4 in the

SUN 09 training set. Note that a majority of support chains

have length 2 or 3. The number of unique chains is signifi-

cantly less than the number of total chains, which implies that

the support relationships are consistent across images.

We extend the above approach to infer support relationships

among detector outputs and to construct a support tree for a

new image. Let N3(i, j) be the number of times that j is sup-

porting i in support trees in the training set. Let psup(i; j) =

N3(i, j)/N1(i, j). Intuitively, if psup(i; j) is high, then it is more

likely that i is supported by j whenever both objects appear to-

gether. We define psup(i; 0) := ( Number of instances that i

appears without a support / Number of instances of i). Ground

objects such as a road and a floor have psup(i; 0) = 1. For other

objects, psup(i; 0) can be high if a supporting object of i is typ-

ically occluded (e.g., ground supporting a building is often oc-

cluded) or not on the list of our 107 object categories (e.g., a

person can be supported by a sidewalk, which is not on our

list).
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A bounding box B1 is supported by another bounding box B2

if the bottom side of B1 lies entirely within B2. We construct a

support tree using detector outputs by selecting a bounding box

( j, l) that maximizes

psup(i, j)p(c jl = 1) (2)

among all bounding boxes that support (i, k). This encourages a

more confident detection to be selected as a supporting object.

If the maximum is less than θ2, then (i, k) is not supported by

any other object. Fig.5 shows examples of support trees inferred

from detector outputs. The edge potentials p(cik |xi, c jl) on the

support tree can be trained by counting the parent-child pairs of

correct detections in the training set.

5. Using support-context for object recognition

Given local detector outputs in a new image, we infer the

presence and detector variables using the following step: (1)

For each detection, estimate the probability of correct detec-

tion cik using detector scores sik and bounding box locations

yik. (2) Infer xi’s using the co-occurrence latent tree with gist

of the image g as additional measurements. This step im-

plicitly infers the global context of the image and encourage

objects that are semantically coherent to be present. (3) Re-

estimate p(cik = 1) using the marginal probabilities of the pres-

ence variables xi, and construct a support tree. The edge po-

tentials of the support tree are approximately computed using

p(cik |c jl) ≈
∑

xi
p(cik |xi, c jl)p(xi), which results in better esti-

mates than sampling xi’s and conditioning on their values. (4)

Update the probabilities of correct detection p(cik = 1) using

the support tree with the edge potentials computed in the pre-

vious step. This encourages a detection supported by a strong

detection of its typical supporting object to be correct.

We iterate between steps (2)-(4), which generally converges

in a couple of iterations. Note that each of the step corresponds

to passing messages in our graphical model, and the message-

passing schedules are designed to best utilize the part-tree struc-

tures in the context model. Each step in our inference algorithm

corresponds to passing messages in a binary tree, so it is effi-

cient even with more than a hundred object categories.

6. Context models for out-of-context detection

In this section, we describe algorithms for out-of-context de-

tection using context models. In [10], a tree-structured co-

occurrence tree with binary presence variables and Gaussian

location variables has been proposed. It has been demonstrated

that given ground-truth labels of an image, the model detects

co-occurrence violations accurately, but not position or support

violations. This is because a Gaussian distribution is in general

poor at enforcing strong constraints, which makes it inappro-

priate in modeling support relationships.

Let oik be a binary variable indicating whether (i, k), a detec-

tion k of object i, is out of its normal context. We are interested

not only in detecting out-of-context objects but also in predict-

ing whether the violation is in co-occurrences or support. Thus,

we consider additional binary variables oci and osik to repre-

sent out-of-context due to co-occurrences (which does not de-

pend on k) and support, respectively. We assume that an object

is out-of-context if it violates either co-occurrence or support

constraints, and compute the probability of out-of-context as

p(oik = 1) = max(p(oci = 1), p(osik = 1)). (3)

For an out-of-context object, we assume that it has a support

violation if p(oci = 1) < p(osik = 1), and a co-occurrence

violation otherwise.

Using Ground-truth Labels. Let us first consider the case when

ground-truth labels are available. To detect co-occurrence vio-

lations, we use a similar approach as in [10] and assume that

if oci = 1, the presence variable xi is independent of all other

presence variables, thus independent of the context imposed by

other objects. Fig.6a shows a graphical model with presence

variables and the corresponding out-of-context variables. Con-

ditioned on ground-truth labels of presence variables x, out-of-

context variables {oci} and latent scene variables {hi} form a tree

structure, so the marginal probability p(oci = 1|x) can be com-

puted efficiently.

Recall from Section 4.2 that given the ground-truth labels

of an image, we choose a supporting instance of (i, k) by find-

ing an instance ( j, l) that maximizes psup(i, j)e
−αdik; jl . Since this

value lies in the range [0, 1], we can consider the quantity as

the probability that the instance (i, k) is “in-context” with re-

gard to the support relationships. Thus, the probability of (i, k)

out-of-context due to support violations can be computed as

p(osik = 1) = 1 − psup(i, j)e
−αdik; jl (4)

where ( j, l) is the supporting object instance of (i, k). If an in-

stance (i, k) does not have a supporting object instance, then

p(osik = 1) = 1 − psup(i, 0). (5)

Using Detector Outputs. Detecting objects out-of-context us-

ing noisy detector outputs is a challenging task. If there are

strong false alarms, it may distort the contextual information

of the entire image, and if the actual out-of-context object is

weakly detected, it is hard to differentiate it from many other

false positives. In some of the images, out-of-context objects

have distorted appearances (e.g., a car in the swimming pool in

Fig.1), making it more difficult for local detectors to confidently

detect the objects. Unlike in normal images, we cannot use con-

text models to improve the scores of such detections, since it is

likely that context models further lower the confidence of out-

of-context detections.

The probability of an object instance out-of-context can be

computed as follows:1

p(oik = 1) = p(oik = 1|cik = 1)p(cik = 1) + p(cik = 0). (6)

1Here, our goal is to detect an out-of-context object present in an image,

so if an object is not present, it is not considered as out of context. It is also

possible to consider the problem of detecting a missing object (e.g., a living

room without a sofa).
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The first term, the probability of ik out of context assuming

that it is a correct detection, can be computed similarly to the

case when ground-truth labels are available. For co-occurrence

violations, we generate samples of presence variables using de-

tector scores, and compute p(oci = 1|xi = 1) by averaging over

samples.

In order to consider the probability of support violations, we

first infer a support tree using detector outputs. For each in-

stance (i, k) and its supporting instance ( j, l), we assume that

(i, k) does not violate support constraints if (1) ( j, l) is a cor-

rect detection and i is typically supported by j or (2) ( j, l) is not

a correct detection but i can appear without a support. There-

fore, the probability of a support violation can be computed as

follows:

p(osik = 1|cik = 1)

= 1 −
(

psup(i; j)p(c jl = 1) + psup(i; 0)p(c jl = 0)
)

(7)

Fig.6b shows a support tree with two detector variales and

the corresponding out-of-context variables representing support

violations.

Out-of-context Detection Using Other Context Models. Out-

of-context object detections for general context models can be

performed by comparing the confidence before and after ap-

plying the context model. For example, for the SVM-context

model in [17], we set p(oik = 1|cik = 1) := sik/(s̄ik + sik), where

s̄ik is the score adjusted by SVM using the scores of all other ob-

ject categories. Note that such methods do not provide answers

for whether the violation is due to co-occurrence or support.

7. Experiments

In this section, we show experimental results of (1) detect-

ing objects in normal images and (2) identifying out-of-context

objects. We use the discriminative part-based models in [17] as

baseline local detectors, and compare object recognition and

out-of-context object detection performances with two other

context models - tree-based context models with Gaussian lo-

cation variables in [10] and SVM re-score method in [17].

7.1. Recognition Performance

We use the SUN 09 dataset introduced in [10] for object

recognition evaluation of 107 object categories, which contains

4,367 training images and 4,317 testing images [10]. Table

1 shows the average precision-recalls (APRs) of object local-

ization for selected object categories, and the mean APR av-

eraged over all 107 object categories. For our support con-

text model, we show the results using each component alone

and the full context model with all contextual information com-

bined together. The support model without co-occurrence tree

has limited performance since there are many false positives

of floor or road in almost all images, but when combined with

other components, it increases performances especially for in-

door objects. Despite the differences in encoding contextual

information, all context models have similar performances.

Category Baseline Support Location Co-occurr
Gist +

Co-occur
Full context

SVM-

Context

Gauss-

Context

bookcase 2.32 5.42 2.39 3.95 3.8 5.21 2.95 4.71

bowl 0.90 0.80 0.83 1.47 3.11 3.13 0.69 2.45

floor 31.34 36.64 31.33 39.85 40.99 43.48 44.85 43.22

mountain 17.23 16.65 17.62 17.16 17.49 17.90 20.12 18.38

oven 8.07 8.07 8.04 11.56 14.74 14.34 6.62 10.27

sky 55.34 55.34 55.78 56.68 57.64 58.57 61.05 60.48

sofa 11.47 11.74 11.86 11.67 13.65 14.34 12.34 15.30

tree 10.88 13.29 12.16 11.35 12.41 12.70 13.65 12.69

AVERAGE 7.06 7.09 7.40 7.44 8.02 8.37 8.34 8.37

Table 1: Average precision-recall for localization and presence prediction.

Baseline) baseline detector without contextual information [17]; Full context)

Support context model; SVM-Context) Context rescoring method in [17]; Tree-

context) Co-occurrence tree with Gaussian model for spatial relationships [10]

Fig.7 shows example images with six most confident detec-

tions using the baseline local detectors (first row) and our sup-

port context model (second row). Note that the context model

effectively removes semantically-incorrect false positives (e.g.,

a floating refrigerator in the first image), and increases the prob-

abilities of correct detections that satisfy co-occurrences (e.g.,

streetlight on the street) and support (e.g., sink supported by

countertop, armchair supported by floor). Note that in some

cases, the confident detections by context models can be se-

mantically coherent but incorrect, as shown in the last image.

7.2. Detecting Objects out-of-context

We extended the out-of-context dataset first introduced in

[10], and collected 209 out-of-context images. Among these,

we select 161 images that have at least one out-of-context object

corresponding to one of the 107 object categories in our model.

Fig.8 shows examples of detecting objects out-of-context us-

ing our support context model. Segments highlighted in red

are chosen as out-of-context due to co-occurrence violations

and segments in yellow are chosen as objects with support vi-

olations. Note that for the last two images, we need a deeper

understanding of the scene which may not be captured by co-

occurrences and support relationships alone. In the last image,

it appears as if truck is supported by a car due to occlusion, and

the car squeezed by two buses is not considered out-of-context.

Even with such challenging images included in the dataset,

our context model performs well as shown in Fig.10(a). The

plot shows the number of images in which at least one out-of-

context object is included in the top N most unexpected ob-

jects estimated by our context model. Both our support and

co-occurrence models, even when used separately, outperform

the tree-context with Gaussian location variables [10], and our

combined model selects the correct out-of-context object in-

stance as the most unexpected object in 118 out of 161 images.

In Fig.9, we show success and failure cases of detecting out-

of-context objects using our context model based on detector

outputs. In each image pair, the first image shows six most con-

fident detections using local detectors, and the second image

shows three most confident out-of-context objects estimated by

our context model (red for co-occurrences and yellow for sup-

port). In the last row, we show failure cases due to noise in

detector outputs: in the first image, the false positive of a win-

dow has a higher detector score and is also out-of-context, and
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Figure 8: Example images of detecting out-of-context objects using ground-

truth labels. For each image, objects with the probability of being out-of-

context greater than 0.9, or one object with the highest probability is shown.

For the full support context model, objects in yellow have been selected due to

the support tree, and in red due to the co-occurrence latent tree.

in the second image, none of the car detections have a strong

confidence score. More example images are presented in [21].

Fig.10(b) shows the number of images in which top N unex-

pected object category includes at least one true out-of-context

object. Although context models perform better than a random

guess, most models except our support model do not outper-

form the baseline of sorting objects by their strongest detec-

tion scores. One reason for this is a photographer bias - some

photographs in the dataset have been taken with a strong focus

on out-of-context objects, which tend to make their detections

highly confident. In other types of images in which out-of-

context objects are not detected well, it is difficult to differenti-

ate them from other false positives as illustrated in Fig.9. It is

interesting to note that our support model significantly outper-

forms all other context models (the performance of the full con-

text model combining co-occurrence and support drops slightly

due to mistakes made by the co-occurrence part). This implies

that physical support relationships do provide useful contextual

information.

8. Conclusion

We analyze different sources of contextual information, and

present a new context model that incorporates global contex-

tual information, object co-occurrence statistics, and geometric

context. An interesting component of our context model is a

physical support relationship between object instances, which

provides a useful contextual information in scene understand-

ing. We demonstrate the performance of our context model for

both object recognition and out-of-context object detection.
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Figure 9: Examples of detecting out-of-context objects using detector outputs. On the left, six most confident detections (using only local detector scores) are shown,
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Figure 10: The number of images in which at least one out-of-context object is included in the set of N most unexpected objects estimated by our context model.

(a) Using ground-truth labels and segmentations. (b) Using local detector outputs.
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