
6.854 Final Project

Routing in Control Layer of Microfluidic Chips

Nada Amin
namin@mit.edu

December 12, 2007

1 Introduction

Programmable microfluidic chips are “lab-on-a-chip” systems, that can auto-
mate biological computations or experiments by integrating a diverse set of
biological sensors and by manipulating fluids at the picoliter scale [7]. For my
final project, I investigate the problem of routing in the control layer of mi-
crofluidic chips. We identified this novel problem after detailed conversations
with microfluidic researchers at MIT, who often spend hours at a time designing
the control layers for their chips. Concretely, the control layer is composed of
v valves and p punches, with v ≤ p, and each valve needs to be connected to a
punch. A valve is the fundamental design primitive (analogous to a gate), while
a punch is the external control port (analogous to a pin). The routing needs
to respect minimum distances between connection lines, between a valve and
another connection line, and between a punch and another connection line. In
addition, the routing must avoid some obstacles and minimize crossings of flow
lines. In the final routing, we would like to minimize the total length of the
connection lines, and also the number of corners, where a corner is defined as a
point where a line changes direction (from vertical to horizontal, or horizontal
to vertical, assuming a manhattan routing). We minimize corners primarily for
aesthetic purposes, as microfluidic designers have shown hesitancy to accept a
tool that produces unduly complex layouts. Minimizing the number of corners
may also improve the robustness of chip operations.

Outline In section 2, I formulate the routing problem as a min-cost max-flow
problem. This formulation doesn’t minimize the number of corners, but only
the total length of the connection lines. In section 3, I show how to itera-
tively improve the min-cost max-flow solution to greedily minimize the number
of corners. However, this iterative improvement doesn’t provide any provable
guarantees on the minimization of corners. In section 4, I formulate the rout-
ing problem as an integer linear program, with one variable for each acceptable

1



Nada Amin (6.854 Final Project) (12/12/07) 2

Figure 1: Layout of a microfluidic chip. The flow layer is in blue and the control
layer is in red. The valves are rectangles and the punches are pluses.

route between a valve and a punch, and I solve it using the technique of ran-
domized rounding. I explore various formulations of the integer program, which
allow me to simultaneously minimize edge capacity, wire length and number of
corners. I prove that my solution obtained via randomized rounding will be
close to optimum with high probability. In section 5, I formulate the routing
problem as a different integer linear program, based on multi-commodity flow,
which frees the integer linear program of the dependence between number of
variables and possible routes. This formulation allows me to minimize the total
wire length and total number of corners at once. Like before, I use the technique
of randomized rounding, selecting the final routes using random walks in the
network. Again, I prove that my solution will be close to optimum with high
probability. Finally, in section 6, I conclude by summarizing and contrasting
my results.

2 Min-Cost Max-Flow Formulation

Let me first ignore the issue of minimizing corners. I can represent the problem
of routing each valve to a punch, while minimizing total wire length, as a min-
cost max-flow problem as follows [8]. I impose on my chip a manhattan grid
with resolution equal to the minimum distance between any two connection
lines. A grid point is a node, with double directed edges to its upper, lower, left



Nada Amin (6.854 Final Project) (12/12/07) 3

and right neighbors. Each edge has capacity 1 and a cost of 1. We also want
each node to have capacity 1, so, as seen in class, I duplicate each node into
two nodes, an incoming node, which will take the links to all incoming edges,
and an outgoing node, which will take the links to all outgoing edges, and I
link the incoming node to the outcoming node with an edge of capacity 1 and
cost 0. Then, I create a source node which has edges of capacity 1 and cost 0
to all valves and a sink node which has edges of capacity 1 and cost 0 from all
punches. I then simply look for the min-cost max-flow from the source to the
sink. The value of the flow is equal to the number of valves connected and the
cost of the flow is equal to the total wiring length.

I can easily extend this model to minimize flow lines crossing and support
obstacles. In order to minimize crossing of flow lines, I add a certain cost to
the edges between incoming and outgoing nodes, for all grid points that are on
top of a flow line. In order to avoid obstacles, I simply omit the neighbor edges
where one of the grid point involved is on top of an obstacle.

However, it is not so straightforward to extend this model to also minimize
number of corners. In [8], the number of corners is minimized by using a 2-grid
instead of a simple grid. The idea is to split each grid point into a vertical
grid point, which takes the edges to the upper and lower neighbors, and a
horizontal grid point, which takes the edges to the left and right neighbors, and,
then, to add a more costly edge between each pair of vertical and horizontal
grid points. So, this extension uses two layers: one for vertical lines, one for
horizontal lines. In microfluidic chips, we cannot afford to have two layers for
just the control. In particular, this model allows a horizontal connection line to
intersect with a vertical line, because each pair of vertical and horizontal grid
points have separate capacities of 1 each. Therefore, this extension as it stands
is unsuitable for our purpose. In section 5, we will use it as a starting point for
an integer linear program, adding constraints to restrict the flow coming into a
grid point pair.

Figure 2: Example of a 2-grid with a vertical line (in purple) and a horizontal
line (in green) intersecting.



Nada Amin (6.854 Final Project) (12/12/07) 4

3 Greedy Corner Minimization

In this section, I describe an ad-hoc method that I devised to iteratively improve
the min-cost max-flow solution by greedily avoiding corners.

The basic operation, “rip and redo”, is to rip a connection line and, while
maintaing all the other connection lines as obstacles, redo the ripped connection
using Lee’s algorithm [2], and avoiding corners while tracing back. Lee’s algo-
rithm is straightforward: I maintain a matrix, with one entry per grid point,
and a queue of grid points. I start by setting the matrix entry for the valve grid
point to 0 and putting that grid point in the queue. While the queue is not
empty, I pop the next grid point out of the queue, and explore the neighbors of
this grid point when they are not on obstacles. For each neighbor, if it hasn’t
been explored yet, I set its matrix entry to the matrix entry of the popped grid
point plus 1, and add it to the queue. Once I reach the punch, I am done. The
matrix entry of the punch gives me the length of the connection line. I can
use the matrix to trace back the actual connection line. I can choose to start
the tracing back vertically or horizontally. Then, I maintain the same direction
if possible, so as to greedily minimize changes in the directions, which corre-
spond to corners. I choose the tracing back starting vertically or horizontally
depending on which gives me the least number of corners.

It is straightforward to take minimization of flow lines crossing into account
when doing rip and redo. I simply use a priority queue instead of a FIFO queue,
and, when I set a matrix entry, I use a penalty increment if the grid point is on
a flow line.

So the strategy to greedily minimize corners is to rip and redo each con-
nection line, many times (ideally, until all the connection lines stop changing –
the strategy eventually must reach a fixed point, as the connection lines only
changes if they are improved).

Let n be the number of grid points in the grid. Let v be the number of valves.
Let k be the number of iterations of ripping and redoing each connection. Then,
the running time of the rip and redo phase is O(kvn log n) (using the priority
queue to also minimize flow line crossing). Given that the min-cost max-flow
algorithm [1] runs in O(n3), the running time of the rip and redo phase is
acceptable.

In practice, this iterative algorithm performs rather well: I implemented this
algorithm as an extension to AutoCAD and evaluated the result on half a dozen
real microfluidic designs. However, the corner minimization is only local: it
is possible, that even for this particular assignment of valves to punches and
this particular wiring length, there exist a solution that has less corners, if only
because the connection lines are ripped and redone separately. Indeed, choosing
a particular connection line for one pair of valve and punch might block another
connection line from realizing a smaller number of corners. So there could be
many stable situations that are far from optimum.



Nada Amin (6.854 Final Project) (12/12/07) 5

Figure 3: Chips where the connection lines in the control layer were routed by
the iterative algorithm.

Figure 4: Two stable set of routes, which could conceivably be chosen by the
iterative algorithm. Yet, (a) has 3 corners while (b) has 2 corners.

4 Integer Programming Formulation

Now, I would like to explore solutions to the routing problem that provide some
guarantee as to how close to optimum they are. In this section and the next, I
will formulate the routing problem as an integer linear program, solve the linear
program relaxation and use some form of randomized rounding [6, 5, 4, 3] to
obtain an integer solution that is provably close to the optimum of the linear
relaxation.

In this section, I explore integer linear programs, in which each 0, 1 variable
corresponds to a possible route connecting a valve to a punch. To keep things
simple to start with, the first program simply attempts to find a feasible solu-
tion among all the possible routes (without optimizing wire length or number
of corners further). So let’s start by assuming that we find the possible routes



Nada Amin (6.854 Final Project) (12/12/07) 6

by running the min-cost max-flow algorithm of section 2: this gives us an as-
signment of valves to punches, then, for each valve, we consider all routes going
to its punch that are of the same length and have less than a fixed number of
corners.

Each valve v has possible routes T j
v for 1 ≤ j ≤ Iv. Let xv,j be the indicator

variable that denotes whether valve v is connected using route T j
v . Then, the

traffic on an edge is U(x, e) =
∑

(v,j)|e∈T j
v

xv,j . Let xL be the max load of any
edge (if we have a feasible solution, then xL = 1). The integer linear program
that finds a feasible set of routes is:

minimize xL

subject to
xv,j ∈ {0, 1},∀ valves v,∀j, 1 ≤ j ≤ Iv

Iv∑
j=1

xv,j = 1,∀ valves v

U(e) ≤ xL,∀e ∈ E

This ILP has v + m constraints (where v is the number of valves and m
the number of edges), and one variable per possible route, in addition to the
variable xL.

Now, I solve the linear relaxation of this ILP, requiring xL ≥ 0 and all other
variables to come from the interval [0, 1]. Call the solution of the resulting LP
α. I use randomized rounding to find a solution x to the ILP from the LP with
solution α as follows. For each valve v, I have to set one of xv,j to 1 and all the
others to 0. Notice the LP constraint

∑Iv

j=1 xv,j = 1. This means that, for each
valve v, I can roll a Iv-sided die, where side j has probability αv,j , allowing me
to pick which xv,j wins in a way such that E[xv,j ] = αv,j . Suppose I attempt
the randomized rounding k times.

First, recall the Chernoff bound.

Chernoff Bound Let the function Ψ =
∑n

i=1 ciXi be the weighted sum of
n independent Bernouilli trials. Here, ci ∈ [0, 1],∀i = 1, . . . , n. Let αi be the
probability that trial Xi turns up 1. Assume that χ = E [Ψ]. Let δ > 0. Then

P [Ψ > (1 + δ)χ] <

(
eδ

(1 + δ)(1+δ)

)χ

Let’s call the event, that the value of Ψ exceeds the expected value χ by
more than a factor of (1 + δ) a δ-failure. The Chernoff bound allows us to
compute the probability of a δ-failure given the deviation δ. When we analyze
an approximation algorithm, we want the opposite: given a probability ε, we
want to find some small deviation δ = δ(χ, ε), such that the probability of a δ-
failure is smaller than ε. Let B(χ, δ) denote the right-hand side of the Chernoff



Nada Amin (6.854 Final Project) (12/12/07) 7

Bound, i.e. B(χ, δ) =
(

eδ

(1+δ)(1+δ)

)χ

. We define δ(χ, ε) formally by the equation

B(χ, δ(χ, ε)) = ε

Now, we can reverse the Chernoff Bound.

Reverse Chernoff Bound Assume that χ > ln(1/ε). Then,

δ(χ, ε) ≤ (e− 1)

√
ln(1/ε)

χ

Assume that χ ≤ ln(1/ε). Then,

δ(χ, ε) ≤ e ln(1/ε)

χ ln e ln(1/ε)
χ

I will use the Reverse Chernoff Bound to analyze the integer solution ob-
tained by randomized rounding.

Consider the constraint for an edge e:

U(e) =
∑

(v,j)|e∈T j
v

xv,j ≤ xL

The left-hand side is a sum of the indepedent Bernouilli trials: for each valve
v, the probability that we use edge e is the sum of the αv,j that occur on the left-
hand side. By the constraint of the LP, E [U(e)] ≤ αL. In terms of the Chernoff
Bound, Ψ = U(e) and E [U(e)] = χ. Let δ denote δ(αL, ε1/k/m), where m is
the number of edges. Let us call the event that the randomized rounding tried
k times computes a value for xL that is no greater than (1 + δ)αL a success,
and the opposite event a failure. We will show that the probability of a failure
does not exceed ε. Since the k tries are independent, we need to show that
the probability that one randomized rounding attempt fails is ≤ ε1/k. Since
there are m edges, by the union bound, we need to show that the probability of
failure at each edge ≤ ε1/k/m. Failure at edge e means that the outcome of the
Bernouilli trials for this edge yields a sum that exceeds (1 + δ)αL. If χe = αL,
then, by definition of δ, this means that the failure happens with a probability
smaller than ε1/k/m. If χe < αL, then, certainly, the failure happens with an
even smaller probability. Thus, expanding the Reverse Chernoff Bound:

Analysis Result Let αL > ln(m/ε1/k). Then, the randomized rounding al-
gorithm obtains a solution whose cost does not exceed

αL + (e− 1)
√

αL ln(m/ε1/k)

with probability greater than 1− ε.



Nada Amin (6.854 Final Project) (12/12/07) 8

Let αL ≤ ln(m/ε1/k). Then, the randomized rounding algorithm obtains a
solution whose cost does not exceed

αL +
e ln(m/ε1/k)

ln e ln(m/ε1/k)
αL

with probability greater than 1− ε.
I can extend the algorithm and the analysis to also minimize the total wire

length and the total number of corners. These extensions will allow us to include
more possible routes as part of the program, and, in particular, use the ILP to
also find the assignment of valves to punches. Let xW be the total wire length
of used routes and xC be the total number of corners of used routes. Let W j

v

be the length and Cj
v be the number of corners of route T j

v . Then, xW and xC

can be computed by extending the integer linear program with:

∑
v

Iv∑
j=1

W j
v xj

v ≤ xW

∑
v

Iv∑
j=1

Cj
vxj

v ≤ xC

We also change the objective of the integer linear program to first minimize xL,
then xW , then xC (by order of priority). In practice, we can maintain this order
of priority by weighting xW on an upper bound on the value of xC and weighting
xL on an upper bound on the value of xW (including its weight) and xC , or we
could just run the linear program to first minimize xL, add this requirements
for this minimization as constraints, then minimize xW , etc.

Like before, we solve the LP relaxation of this ILP and use the same tech-
nique of randomized rounding, with k attemps. We analyze independently the
probability of meeting each objective (xL, xW , xC). For xW and xC , the anal-
ysis is similar to the previous one for xL, except that we must scale the values
so that the coefficients ci for the Chernoff Bound are between 0 and 1. So let
W = maxW j

v and C = maxCj
v . We simply divide the constraints equations

for xW and xC by W and C respectively. Here, the independent Bernouilli
trials correspond to the (proportioned) wire length and (proportioned) number
of corners, respectively, for the route used for each valve. As another difference
with the xL case, we don’t use the union bound because we only have one set
of independent Bernouilli trials to consider. Therefore, we get:

Analysis Result for Total Length Let αW > W ln(1/ε1/k). Then, the
randomized rounding algorithm obtains a solution in which the total wire length
does not exceed

αW + W (e− 1)
√

αW ln(1/ε1/k)

with probability greater than 1− ε.



Nada Amin (6.854 Final Project) (12/12/07) 9

Let αW ≤ W ln(1/ε1/k). Then, the randomized rounding algorithm obtains
a solution in which the total wire length not exceed

αW + W
e ln(1/ε1/k)

ln e ln(1/ε1/k)
αW

with probability greater than 1− ε.
The result for number of corners is similar, replacing all W ’s with C’s.

Analysis Result for Total Number of Corners Let αC > C ln(1/ε1/k).
Then, the randomized rounding algorithm obtains a solution in which the total
number of corners not exceed

αC + C(e− 1)
√

αC ln(1/ε1/k)

with probability greater than 1− ε.
Let αC ≤ C ln(1/ε1/k). Then, the randomized rounding algorithm obtains a

solution in which the total number of corners does not exceed

αC + C
e ln(1/ε1/k)

ln e ln(1/ε1/k)
αC

with probability greater than 1− ε.
One issue with all these integer linear program is that the number of variables

depend on the number of routes, which grows exponentially with the number of
corners. Let n be the number of grid points. Then, even if we fix an assignment
of valves to punches, if we allow k corners per route, the possible number of
routes for each valve is O(nk−1). The next section solves this issue by considering
routes implicitly as opposed to explicitly.

5 Integer Programming Formulation based on
Multi-Commodity Flow

I now propose a different formulation of the routing problem as an integer
linear program, which will avoid this exponential increase in variables. My
starting point is the 2-grid presented in section 2. I use the min-cost max-
flow formualtion, except that I don’t need the source anymore, and instead
ask to transport v commodities of flow 1 each from each valve to the sink.
It is straightforward to translate this multi-commodity min-cost flow into an
integer linear program. In order to prevent vertical lines and horizontal lines
intersecting, I add the following constraints to the linear program: the total
flow coming into each pair of vertical and horizontal nodes must be ≤ 1 (by
flow conservation, the total flow coming out of the pair will also be ≤ 1). By
minimizing the cost of this modified multi-commodity flow ILP, I automatically



Nada Amin (6.854 Final Project) (12/12/07) 10

minimize the total wiring length including corners (included as more expensive
wires).

Like before, I solve the LP relaxation of this ILP. Call the solution to the
LP relaxation, α. Now, I use randomized rounding to convert the fractional
flow for valve v into a route. For each valve, I perform a random walk from the
valve to the sink. The random walks for different valves are probabilistically
independent.

Consider a valve v. I convert the routing graph into a directed graph by
deleting all edges that have zero flow for this valve viewed as a commodity, then
by directing all remaining edges in the direction of positive flow. I perform a
random walk on the resulting network. I start at the valve v, the source node.
In general, if I am currently at a node ω, I choose an edge e out of ω with
probability

αv(e)∑
e′∈Eω→

αv(e′)

where αv(e) denotes the flow of valve v viewed as a commodity along edges e
in the optimal solution α.

For the analysis, note that, even though the choices of edges along the same
random walks are dependent, the different random walks are independent so the
requirements of the Chernoff Bound are met: the Bernouilli trials contribution
to the same edge constraint are independent. Edge e is on the random walk for
valve v with probability that does not exceed αv(e) (this can easily be shown
by induction). Therefore, the expected value of the sum of all Bernoulli trials
contribution to the same edge constraint never exceeds αL, and so the same
result as that of section 4 applies.

Analysis Result for Max Edge Load Let αL > ln(m/ε1/k). Then, the
randomized rounding algorithm obtains a solution whose max edge load does
not exceed

αL + (e− 1)
√

αL ln(m/ε1/k)

with probability greater than 1− ε.
Let αL ≤ ln(m/ε1/k). Then, the randomized rounding algorithm obtains a

solution whose max edge load does not exceed

αL +
e ln(m/ε1/k)

ln e ln(m/ε1/k)
αL

with probability greater than 1− ε.
Using scaling as in section 4, I can also prove that the total wiring length (in-

cluding corners penalty) will be close to optimum with high probability, though
the result is not very tight because the scaling factor is rather large (here, I
have to scale by an upper bound on the length, including corner penalties, of
any route). More specifically, let αW be the total wiring length used by the
connection and W an upper bound on the length (including corner penalties)
of any route. Then,



Nada Amin (6.854 Final Project) (12/12/07) 11

Analysis Result for Total Length Let αW > W ln(1/ε1/k). Then, the
randomized rounding algorithm obtains a solution in which the total wiring
length does not exceed

αW + W (e− 1)
√

αW ln(1/ε1/k)

with probability greater than 1− ε.
Let αW ≤ W ln(1/ε1/k). Then, the randomized rounding algorithm obtains

a solution in which the total wiring length does not exceed

αW + W
e ln(1/ε1/k)

ln e ln(1/ε1/k)
αW

with probability greater than 1− ε.

6 Conclusion

In this paper, I explore the routing problem for the control layer of microfluidic
chips. I have found an algorihtm that works well in practice, optimizing the
total wiring lenght while using a heuristic approach to minimize number of
corners. Since the practical algorithm didn’t have any guarantees regarding
the corner minimization, it was interesting for me to explore more theoretical
solutions, with provably good results. The theoretical algorithms guarantee
that the wiring length and number of corners will be close to optimum with
high probability.

The algorithm in section 5 is interesting because, while incorporating the
minimization of corners, it remains polynomial, and yet, is provably close to
optimal with high probability. Though I will probably not use it in practice,
it is very satisfying to have been able to adapt the intuitive 2-grid model of
section 2 to obtain this theoretical result.

Through this project, I learned a lot about the technique of randomized
rounding. It is a powerful technique, because it can prove that its result will
be close to optimum with high probability. In addition, for certain problems
including those presented in this paper, it is possible to de-randomize the algo-
rithm so as to deterministically find a good solution. The trick is to construct
a probabilistic tree of the rounding options using the solution to the LP to
estimate the probability of ending up in a “good” leaf. By using pessimistic
estimates, we can guarantee ending up in a “good” leaf. This method, called
method of conditional probabilities, is detailed in [5, 4, 3].

Finally, I want to mention that we have produced an AutoCAD plugin,
developed iteratively with microfluidic researchers over the last year, to provide
a robust framework for deploying these results. We have publicly released the
tool, available at http://cag.csail.mit.edu/biostream/cad/, and it is being used
in the daily design of microfluidic chips.



Nada Amin (6.854 Final Project) (12/12/07) 12

7 Acknowledgments

I thank Prof. David Karger for pointing out the technique of randomized round-
ing and Bill Thies for discussing this project with me and giving me feedback.

References

[1] R. K. Ahuja, A. V. Goldberg, J. B. Orlin, and R. E. Tarjan. Finding
minimum-cost flows by double scaling. Math. Program., 53(3):243–266, 1992.

[2] C. Lee. An algorithm for path connections and its applications. IRE Trans-
actions on Electronic Computers, EC-10(2):364–265, 1961.

[3] T. Lengauer. Combinatorial algorithms for integrated circuit layout. John
Wiley & Sons, Inc., New York, NY, USA, 1990.

[4] R. Motwani and P. Raghavan. Randomized algorithms. Cambridge Univer-
sity Press, New York, NY, USA, 1995.

[5] P. Raghavan. Randomized rounding and discrete ham-sandwich theorems:
provably good algorithms for routing and packing problems (integer program-
ming). PhD thesis, University of California at Berkeley, 1986.

[6] P. Raghavan and C. D. Thompson. Randomized rounding: A technique for
provably good algorithms and algorithmic proofs. Combinatorica, 7(4):365–
374, 1987.

[7] J. Urbanksi, W. Thies, C. Rhodes, S. Amarasinghe, and T. Thorsen. Digital
microfluidics using soft litography. Lab on a Chip, 6(1):96–104, 2006.

[8] H. Xiang, X. Tang, and D. F. Wong. Min-cost flow-based algorithm for
simultaneous pin assignment and routing. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 22(7):870–878, July 2003.


