
6.854 Problem Set 1

Nada Amin
namin@mit.edu

September 12, 2007

Collaborators

• Thomas Belulovich (thobel@mit.edu)

• Thomas Mildorf (tmildorf@mit.edu)

Problem 1

For each n, I exhibit a sequence of Fibonacci heap operations on n items that
produce a heap ordered tree of depth ≥ n− 3 = Ω(n).

For n ≤ 3, the solution is trivial as the required lower-bound on the depth
is ≤ 0.

For n ≥ 4, below is a sequence of operations on n items with keys from 1
to n (each item will be noted by its key) that produce a heap-ordered tree of
depth n − 3, specifically either the tree 3 → 4 if n = 4 or, if n > 4, the tree
2→ . . .→ n− 3→ n− 1→ n, i.e. the tree with item 2 as a root and with each
greater item except item n− 2 present as the only child of the previous smaller
item present.

Make-Tree(n)
1 insert(n)
2 insert(n− 1)
3 insert(n− 2)
4 delete-min()
5 for k ← 4 to n− 1
6 do insert(n− 2)
7 insert(n− k + 1)
8 insert(n− k)
9 delete-min()

10 � to delete(n− 2):
11 decrease-key(n− 2,−∞)
12 delete-min()

1



Nada Amin (6.854 Problem Set 1) (09/12/07) 2

Problem 2

I show that modifying Fibonacci heaps so that a node is cut only after losing k
children improves the amortized cost of decrease-key (to a better constant)
at the cost of a worse cost for delete-min (by a constant factor).

decrease-key

I analyze the amortized cost of decrease-key, when a node is cut only afer
losing k children (i.e. having k marks). I choose the potential function:

Φ =
2

k − 1
(number of marks) + (number of roots)

so that the cost of a cascading cut is 0:

1 (for cutting the node)
+ 1 (for adding a root)
− (k − 1)2/(k − 1) (for removing the k − 1 marks on this node)

0 (total)

Hence, the amortized cost of decrease-key is 2 + 2/(k − 1):

1 (for cutting the node)
+ 1 (for adding a root)
+ 2/(k − 1) (for adding a mark)
+ 0 (for cascading cuts)

2 + 2/(k − 1) (total)

As k > 2, the constant cost of decrease-key decreases.

delete-min

For delete-min, I show that the trees are exponential in degree, so that adding
the children of the min as roots result in O(log(n)) new roots.

By the union-by-rank procedure, the ith added child will have degree ≥ i−k.
Indeed, by virtue of being the ith child added, it must have been in the (i−1)th

bucket, so it must have started with i− 1 children. Since it losts at most k − 1
children, it still has at least i− k children. Now, let

Sk = the number of descendants of a tree with k children



Nada Amin (6.854 Problem Set 1) (09/12/07) 3

S0 =1
S1 =2

Sn ≥
n−k∑
i=0

Si

Sn ≥Sn−1 + Sn−k

Sn =Ω(Ck)

Hence, delete-min will add O(logC(n)) roots. When k = 2, C = Φ (the
golden number). Clearly, for k > 2, C < Φ, so logC(n) < logΦ(n). Therefore,
as k > 2, the performance of delete-min will be worse by a constant factor
(precisely logC(Φ)).

Problem 3

Part (a)

I show how to use a priority queue P that performs insert, delete-min and
merge in O(log(n)) time and make-heap in O(n) time to construct a priority
queue Q that performs insert in O(1) amortized time while still performing
delete-min and merge in O(log(n)) amortized time.

For my new priority queue Q, I maintain two structures, a list m and the
priority queue p. On insert, I simply add the new element to the list m. On
delete-min and merge, I make a priority queue out of the list m and merge it
with the priority queue p, before calling the delete-min or merge procedure
of p.

Q:make-heap(l)
1 m← ()
2 p← P:make-heap(l)

Q:insert(i)
1 m.add(i)

Q:delete-min(i)
1 p2← P:make-heap(m)
2 m← ()
3 p.merge(p2)
4 return p.delete-min()

Q:merge(p2)
1 p3← P:make-heap(m)
2 m← ()
3 p.merge(p3)
4 p.merge(p2)



Nada Amin (6.854 Problem Set 1) (09/12/07) 4

Amortized Analysis

Let Φ(Q) = number of elements in the list m. Then:
The amortized cost of insert is O(1):

real cost : 1
∆Φ : 1

amortized cost: 2

The amortized cost of delete-min is O(log(n)):

real cost : Φ + O(log(n))
∆Φ : −Φ

amortized cost: O(log(n))

Similarly, the amortized cost of merge is O(log(n)).

Part (b)

I show how even binary heaps can be modified to support insert in O(1) amor-
tized time while maintaining an O(log(n)) time bound for delete-min.

As in part (a), on insert, I add the new element to a list m, which I make
into a binary heap during delete-min. However, instead of merging, I add the
new heap in a heap of heaps, a “super” heap.

Therefore, for my new priority queue Q, I maintain two structures: a list m
and a heap of heaps s. The super-heap is keyed by the smallest element in each
inner heap. On delete-min, I make a new inner heap out of the list m and
add it to the super-heap. I find the min inner heap in the super-heap, perform
delete-min on the min inner heap, and then min-heapify the super-heap to
maintain the (super-)heap order (or delete the inner heap from the super-heap
if it’s empty).

Q:make-heap(l)
1 m← ()
2 s← P:make-heap(P:make-heap(l))

Q:insert(i)
1 m.add(i)



Nada Amin (6.854 Problem Set 1) (09/12/07) 5

Q:delete-min(i)
1 s.insert(P:make-heap(m))
2 m← ()
3 h← s.min()
4 x← h.delete-min()
5 if h.empty()
6 then s.delete(h)
7 else s.min-heapify()
8 return x

Amortized Analysis

The amortized analysis in similar to part (a). In delete-min, deleting the min
from the min inner heap and maintaining the heap order of the super-heap each
takes O(log(n). Indeed, an inner heap has at most n elements while the super-
heap has at most n inner heaps (with 1 element each). Therefore, as in part
(a), the amortized cost of delete-min is O(log(n)):

real cost : Φ + O(log(n))
∆Φ : −Φ

amortized cost: O(log(n))

Problem 4

I show how to use the techniques of persistent data structures to preprocess a
tree in O(n log(n)) time so as to allow LCA queries to be answered in O(log(n))
time.

The time axis consists of the nodes of the tree in postorder. For each node, I
maintain a timestamped pointer to its parent, a pointer to a binary search tree
of timestamped names and an ephemeral rank for the union-by-rank heuristic.

Initially, at time t = 0, each node is isolated, having a null parent pointer
and an empty tree of names and a rank of 0.

I support 3 operations:

union-with-name(a, b) increments time, union node a with node b and set
the name of the representative to b.

find-at-time(a, t) finds the representative of node a at time t.

name-at-time(r, t) finds the name associated with the representative r at time t.



Nada Amin (6.854 Problem Set 1) (09/12/07) 6

union-with-name(a, b)
1 t← t + 1
2 ra ← find-at-time(a, t)
3 rb ← find-at-time(b, t)
4 � apply the union-by-rank heuristic
5 if rank(ra) = rank(rb)
6 then set parent pointer of rb to ra and timestamp it
7 r ← ra

8 rank(ra)← rank(ra) + 1
9 elseif rank(ra) < rank(rb)

10 then set parent pointer of ra to rb and timestamp it
11 r ← rb

12 else � rank(rb) < rank(ra)
13 set parent pointer of rb to ra and timestamp it
14 r ← ra

15 add the name b at time t to the binary search tree of names of r

find-at-time(a, t)
1 if parent(a) is null or timestamp-parent(a) > t
2 then return a
3 else return find-at-time(parent(a), t)

name-at-time(r, t)
1 return the name at time t in the binary search tree of names of r

During pre-processing, I simply call union-with-name(node,parent) for
each node in postorder.

During a query for the pair (a, b), I proceed as follows. Assuming, with-
out loss of generality that node a occurs before node b in postorder, I let
t be the time just before b was processed. The query call is then simply
name-at-time(find-at-time(a, t), t).

Analysis

Thanks to the union-by-rank heuristic, I assure the union-find has only trees of
depth O(log(n)). Therefore, find-at-time is O(log(n)). union-with-name is
therefore O(log(n) + log(t)) and name-at-time is O(log(t)). Since t ≤ n, all
operations are O(log(n)). Therefore pre-processing is O(n log(n)) and querying
is O(log(n)).

Problem 5

I show that the expected behavior of markless Fibonacci heaps (where, each
time I do a cut, I flip an unbiased coint to decide whether to cascade the cut to



Nada Amin (6.854 Problem Set 1) (09/12/07) 7

the parent) is like that of the standard ones. Indeed, the expected number of
children cut before a node is cut, Ecut, is 2:

Ecut =
1
2

+2 · 1
4

+3 · 1
8

+ . . .

= (
1
2

+
1
4

+
1
8

+ . . .) +(
1
4

+
1
8

+ . . .) +(
1
8

+ . . .) + . . .

= 1 +
1
2

+
1
4

+ . . .

=
∞∑

i=0

1
2i

= 2

It is possible to bias the coint so that a cascade is more than 50% likely to
achieve the effect of cascading after (say) one and a half children are cut. Let p
be the probability of cascading a cut, i.e. the bias of the coin. Then:

Ecut = p + 2 · p2 + 3p3 + . . .

=
∞∑

i=0

pi

=
1
p

So in order to have Ecut = 1.5 = 3
2 , we need a bias of p = 2

3 .
This can be used to improve the expected amortized time for delete-min

at the cost of increasing the expected amortized time for decrease-key. The
analysis is similar to Problem 2, with k = 1.5 < 2: decrease-key is more
costly because the expected number of cascading cuts is higher, delete-min is
less costly because the expected exponent in the exponential-in-degree trees is
greater.


