
6.854 Problem Set 2

Nada Amin
namin@mit.edu

September 19, 2007

1

Nada Amin (6.854 Problem 2-1) (09/19/07) 2

Problem 1

The successor takes as input a pointer to the root of a tree and restructures
the tree so that the successor of the root becomes the root. The operation does
not change the tree if the root is already the rightmost element of the tree. The
new root is returned.

Using the splay operation as a subroutine, I implement the successor
operation by traversing the tree, going right once from the root, and then left
until a node with no left child is reached. This node is the successor, so I splay
it to the root, returning the new root.

Part (a)

The access lemma states that the amortized time to splay a tree with root t
at a node x is O(log(s(t)/s(x))), where s(x) is the sum of the weights of the
descendants of node x. If I choose the weight 1

n for each node, it follows that
the amortized time to splay a tree is O(log(n)). The initial traversing of the
tree doesn’t cost more than the splaying, so successor has an amortized cost
of O(log(n)).

Part (b)

The scanning theorem states that given an aribitrary n-node splay tree, the total
time to splay once at each of the nodes, in symmetric order, is O(n). When
the successor function is applied repeatedly until it finds the rightmost node,
it is as if we’re splaying a tree of m nodes, the nodes on the right side of the
root, in symmetric order. So, by the scanning theorem, the repeated application
of successor is O(m) where m is the number of nodes initially on the right
side of the root. Since we repeatedly apply successor m times, the amortized
running time of one successor operation is O(1).

Nada Amin (6.854 Problem 2-2) (09/19/07) 3

Problem 2

I show that for n ≥ 4, it is possible to restructure any binary tree on n nodes
into any other binary tree on n nodes by a sequence of splay operations.

The proof is by induction.
For the base case, n = 4, I turn the tree into a left path by splaying the

nodes in order. From this left path, I can get to any other 4-nodes binary
tree configuration. There are 14 such configurations. I leave the details of the
enumeration out for brevity.

For the inductive case, it suffices to show that I can make a leaf out of any
node of a tree with n ≥ 4 nodes. If this node is a leaf in the final configuration,
then I can inductively restructure the other n − 1 nodes by splaying without
affecting this leaf and without the leaf affecting the rest of the splaying (this is
obvious from the way splaying operates). This inductive process will result in the
desired tree because no tree differs just in the position of one leaf node. Indeed,
if this were the case, it would mean that the path to this leaf was different in
the two trees: so, in one tree, I would turn right at a node, when in the other, I
would turn left. But that would mean, that the leaf were simultaneously smaller
and greater than another node, which would be a contradiction.

It remains to show that I can make a leaf out of any node of a tree with
n ≥ 4 nodes. If the node we want to turn into a leaf is the smallest, we can
make it a leaf by splaying on it first and then its successors in order. If it is the
largest, we do the opposite: splay on the predecessors, from smallest to largest,
and finally on the node to be a leaf. If the node is the second smallest, we splay
the successor of its successor, its successor, the node itself, its predecessor, and
the successor of its successor again. Otherwise, we splay the nodes in order
(from smallest to largest), and then on the predecessor of its predecessor once
more.

Nada Amin (6.854 Problem 2-3) (09/19/07) 4

Problem 3

Part (a)

I argue that along a given search path, there can be at most O(log n) balanced
triples. Indeed, if a triple is balanced, that means that any node below x must
have < 9

10d nodes below it, where d is the number of descendants of z (the
grand-father of x). At the start, d = n − 1, so there must be < 9

10 (n − 1)
nodes below the first balanced triple in the search path. Similarly, after the kth

balanced triple, there must be < (9
10)kn nodes:

9
10

(· · · 9
10

(
9
10

(n− 1)− 1) · · · − 1)

= (
9
10

)kn−
k∑

i=1

(
9
10

)i ≤ (
9
10

)kn

We’re looking for the largest possible number of balanced triples in a given
search path, that is, the largest possible k. So we solve:

(
9
10

)kn ≤ 1

k log(
9
10

) + log(n) ≤ 0

k ≤ log(n)
log(10

9)
= O(log n)

Hence, along a given search path, there can be at most O(log n) balanced triples.

Part (b)

I argue that when a biased triple is rotated, the potential decreases by a constant
paying for the rotation.

ZIG-ZIG

|A|, |B|, |C|, |D| refer to the subtrees shown in Figure 1.
For a biased triple, we know that

9
10

(|A|+ |B|+ |C|+ |D|+ 2) ≤ |A|+ |B|

1
10

(|A|+ |B|+ |C|+ |D|+ 2) > |C|+ |D|

Nada Amin (6.854 Problem 2-3) (09/19/07) 5

Figure 1: ZIG-ZIG

s(x) is the size of the subtree rooted at node x before the ZIG-ZIG, and
s′(x) after the ZIG-ZIG. r(x) = log(s(x)) and r′(x) = log(s′(x)).

s(x) = |A|+ |B|+ 1
s′(x) = |A|+ |B|+ |C|+ |D|+ 3

s′(x) = s(x) + 2 + |C|+ |D|

s′(x) < s(x) + 2 +
1
10

(|A|+ |B|+ |C|+ |D|+ 2)

s′(x) < s(x) + 2 +
1
10

s′(x)

9
10

s′(x) < s(x) + 2

r′(x)− r(x) < log 10− log 9

Thus, the rank of x increases by at most log 10− log 9.
s(y) is the size of the subtree rooted at node y before the ZIG-ZIG, and s′(y)

after the ZIG-ZIG. r(y) = log(s(y)) and r′(y) = log(s′(y)).

s(y) = 2 + |A|+ |B|+ |C|
s′(y) = 2 + |B|+ |C|+ |D|

s′(y)− s(y) = |D| − |A|

Thus, the worst-case for y happens when |D| is maximum (that is, |C| = 0) and
|A| = 0. But then,

s′(y)− s(y) <
1
10

(|A|+ |B|+ |C|+ |D|+ 2)

s′(y)− s(y) <
1
10

(|B|+ |C|+ |D|+ 2)

s′(y)− s(y) <
1
10

s′(y)

9
10

s′(y) < s(y)

r′(y)− r(y) < log 10− log 9

Nada Amin (6.854 Problem 2-3) (09/19/07) 6

Figure 2: ZIG-ZAG

Thus, the rank of y increases by at most log 10− log 9.
s(z) is the size of the subtree rooted at node z before the ZIG-ZIG, and s′(z)

after the ZIG-ZIG. r(z) = log(s(z)) and r′(z) = log(s′(z)).

s(z) = |A|+ |B|+ |C|+ |D|+ 3
s′(z) = |C|+ |D|+ 1

s′(z)− 1 <
1
10

(s(z)− 1)

r′(z)− r(z) < log 1− log 10

Thus, the rank of z decreases by at least log 1− log 10.
Putting all this togeter, I conclude that the potential decreases when rotating

a biased triple using a ZIG-ZIG:

r′(x)− r(x) + r′(y)− r(y) + r′(z)− r(z)
= log 10− log 9 + log 10− log 9 + log 1− log 10

= log 10− 2 log 9 = log 10− log 18 < 0

ZIG-ZAG

|A|, |B|, |C|, |D| refer to the subtrees shown in Figure 2.
For a biased triple, we know that

9
10

(|A|+ |B|+ |C|+ |D|+ 2) ≤ |B|+ |C|

1
10

(|A|+ |B|+ |C|+ |D|+ 2) > |A|+ |D|

I use the same reasoning as for the ZIG-ZIG to conclude that the rank of x
increases by at most log 10− log 9.

Nada Amin (6.854 Problem 2-3) (09/19/07) 7

For y,

s(y) = |A|+ |B|+ |C|+ 2
s′(y) = |A|+ |B|+ 1

s(y)− s′(y) = |C|+ 2

The rank of y decreases. The smallest decrease happens when |C| = 0, in which
case the rank stays about the same.

For z,

s(z) = |A|+ |B|+ |C|+ |D|+ 3
s′(z) = |C|+ |D|+ 1

s(z)− s′(z) = |A|+ |B|+ 2

The rank of z decreases. The smallest decrease happens when |A| = |B| = 0, in
which case the rank stays about the same.

However, because of the constraints on a biased triple, we cannot have |B| =
0 and |C| = 0 simultaneously. So the rank of either y or z will have to decrease
significantly as a result.

If I let |B| = 0, then the rank of y will decrease by at least − log 10:

s(y)− s′(y) ≥ 9
10

(|A|+ |B|+ |C|+ |D|+ 2)

s(y)− s′(y) ≥ 9
10

(|A|+ |B|+ |C|+ 2)

s(y)− s′(y) ≥ 9
10

s(y)

1
10

s(y) ≥ s′(y)

r(y)− r′(y) ≥ log 10− log 1

Similarly, if I let |C| = 0 and |A| = 0, then the rank of z will decrease by at
least − log 10.

Thefore, in either case, I can conclude that the potential decreases by rotat-
ing a biased triple using a ZIG-ZAG, since

log 10− log 9− log 10 = log 9 < 0

I have thus shown that both ZIG-ZIG and ZIG-ZAG rotations on biased
triples decrease the potential.

Part (c)

I argue that when a balanced triple is rotated, the potential increases by at most
2(r(z)− r(x)).

Nada Amin (6.854 Problem 2-3) (09/19/07) 8

ZIG-ZIG

r′(x) + r′(y) + r′(z)− r(x)− r(y)− r(z) since r′(x) = r(z)
= r′(y) + r′(z)− r(x)− r(y) since r′(x) ≥ r′(y) and r(y) ≥ r(x)

≤ r′(x) + r′(z)− 2r(x) since r′(x) = r(z) and r′(z) < r(z)
≤ 2(r(z)− r(x))

ZIG-ZAG

r′(x) + r′(y) + r′(z)− r(x)− r(y)− r(z) since r′(x) = r(z) and r(x) ≤ r(y)
≤ r′(y) + r′(z)− 2r(x) since r′(y) < r(z) and r′(z) < r(z)

≤ 2(r(z)− r(x))

Part (d)

From part (b), I conclude that enough potential falls out of the system to pay
for all the biased rotations.

In part (c), I showed that a balanced rotation costs ≤ 2(r(z) − r(x)) ≤
2 log s(z)

s(x) . From part (a), I know that s(x) ≤ 9
10s(z) for a balanced triple. Let’s

consider the two extreme cases:

if s(x) = 9
10s(z) , then the potential increases by a constant 2 log 10

9 , but there
can be O(log n) such increases.

if s(x) = 1 and s(z) = n , then the potential increases by O(log n) but there
can only be 1 such increase.

So the size of s(x) limits either the number of possible balanced triples if small
or the increase in potential if large. Therefore, rotating the balanced triples
costs at most O(log n).

Therefore, the real work and amount of potential introduced by the balanced
rotation is O(log n), which thus bounds the amortized cost.

Part (e)

I prefer the analysis presented in class, because it is more elegant and more gen-
eral, since the access lemma allowed us to make a series of interesting conclusions
about splay trees.

Nada Amin (6.854 Problem 2-4) (09/19/07) 9

Problem 4

Part (a)

Supposing a random function is used to map each item to buckets, I give a good
upper bound on the expected number of collisions.

Before the kth item is inserted, at most k−1
n1.5 buckets are used. Hence, the

probability that the bucket where we will insert the kth item is used in each
array is ≤ (k−1

n1.5)2.
By linearity of expectations, the expected number of collisions is bounded

by
n∑

k=1

(
k − 1
n1.5

)2 =
n−1∑
k=0

(
k

n1.5
)2 =

(n− 1)(n)(2n− 1)
6n3

≤ 1
3

Part (b)

My reasoning of part (a) requires only that the hash function be pairwise-
independent, and that the hash functions be independent (in the case where
each array uses a different function). So I can use two independent 2-universal
hashing functions, one for each random function mapping each item to buckets.

Part (c)

The algorithm is simple: randomly generate a pair of 2-universal hashing func-
tions until finding one which produces no collisions on the set of n items.

Since I determined in part (a) that the expected number of collisions is ≤ 1
3 ,

I expect to find a perfect pair of functions after 3 attemps. So the expected total
running time is O(n) as it takes O(n) to check whether a pair of hash functions
is perfect.

The resulting description is small: it consists of 4 numbers: the a’s and b’s
of the two 2-universal hash functions.

