
Nada Amin (6.854 Problem Set 3) (09/26/07) 1

Problem 1

I discuss how the runtimes of the operations Insert, Decrease-Key, Delete-Min
changes in an implementation of multi-level-bucket heaps where I keep the set
of a block’s nonempty buckets in a standard binary heap instead of maintaining
it in an array.

Let k be the depth of the tree and ∆ the branching factor, such that ∆k = C.

Insert took O(k) time in the array implementation. In the binary heap imple-
mentation, it takes O(k) time to find the right binary heap and O(log ∆)
to insert into it, so the total running time is O(k + log ∆).

Decrease-Key took O(k) time in the array implementation. In the binary
heap implementation, it takes O(k + log ∆) time: it takes O(log ∆) to
delete the item from the binary heap where it used to be (simply decrease
its key to−∞ and delete it as the min), then, like for the Insert operation,
it takes O(k) to find the new binary heap for the item and O(log ∆) to
insert into it.

Delete-min took O(k∆) time in the array implementation (plus an overall
O(n∆)). In the binary heap implementation, it takes O(log ∆) time to
delete the min thanks to the cheap Delete-Min operation of the binary
heap. However, if the heap becomes empty, the change might need to
get cascaded to the top, which costs at most O(k) in additional time.
Therefore, in the binary heap implementation, the total running time
might reach O(k + log ∆).

To balance the running time of O(k + log ∆) of the operations in the binary
heap implementation, I pick k = log ∆. Recalling that ∆k = C or log ∆ =
(log C)/k, I get k =

√
log C. Thus, by setting k = log ∆, I get a runtime of

O(
√

log C) for each Insert, Decrease-Key and Delete-Min.
Since Dijkstra’s shortest path algorithm makes m calls to Decerease-Key,

n calls to Insert and n calls to Delete-Min, its running time using this binary
heap implementation of multi-level-bucket heaps is O((m + n)

√
log C).

Nada Amin (6.854 Problem 3-2) (09/26/07) 2

Problem 2

I show that for the single-source shortest paths problem on a graph with n nodes
and range of edge lengths {1, 2, . . . , C}, I can obtain O(log log C) time per queue
operation.

Even though the range of values is {1, 2, . . . , nC}, the trick is to notice that,
in Dijkstra’s algorithm, only values between x and x + C are active at once.
Indeed, if x is the minimum, I will only add values as great at x + C when I
process x, as C is the max value of an edge. So before processing x, by a similar
argument, I must have only added values ≤ x + C. Then, after processing x,
the range of values remain in an interval ≤ C. In addition, decrease-key will
only reduce values within the active range.

I maintain two van Emde Boas priority queues, Q1 and Q2 which only stores
values modulo C. Each queue has an extra field indicating the quotient of the
“actual” values stored modulo C in the queue. I start with Q1 and Q2 empty,
representing the quotients 0 and 1, respectively. When Q1 becomes empty, I
increase its quotient by 2, and switch Q1 and Q2. By the trick explained in the
previous paragraph, I guarantee that the active range of values can fit in Q1

and Q2 at any time.
When inserting an element, I put it in the queue corresponding to its quotient

with its value modulo C. When decreasing the key of an element, I either just
decrease its key directly in the queue in which it is (if the quotient doesn’t
change) or (if its quotient decreases) I delete it from Q2 (necessarily) and insert
it in Q1 with the new key value modulo C. Deleting the min is as simple as
deleting the min of Q1 (and switching the queues as explained in the previous
paragraph if Q1 becomes empty).

Since they only have values in the range {0, . . . , C − 1}, my two van Emde
Boas priority queues perform each queue operation in O(log log C) time. Thus,
I achieve the bound of O(log log C) per queue operation.

Nada Amin (6.854 Problem 3-3) (09/26/07) 3

Problem 3

I augment the van Emde Boas priority queue presented in class (which performed
the insert and successor queries) to support the following operations on integers
in the range {0, 1, 2, . . . , u − 1} in O(log log u) worse-case time each and O(u)
space total:

Find(x, Q): Report whether the element x is stored in the structure.

Find(x,Q)
1 if x < Q.min or x > Q.max
2 then return False
3 if x = Q.min or x = Q.max
4 then return True
5 return Find(low(x), Q[high(x)])

Predecessor(x, Q): Return x’s predecessor, the element of largest value less
than x, or null if x is the minimum element.

Predecessor(x, Q)
1 if x ≤ Q.min
2 then return null
3 � x is at position low(x) in Q[high(x)]
4 if low(x) > Q[high(x)].min
5 then return high(x).

√
|Q|+ Predecessor(low(x), Q[high(x)])

6 else � low(x) = Q[high(x)].min
7 i← Predecessor(high(x), Q.summary)
8 if i is not null
9 then return i.

√
|Q|+ Q[i].max

10 else return Q.min

Delete(x,Q): Delete x from the queue while preserving the structure of the
priority queue.

Nada Amin (6.854 Problem 3-3) (09/26/07) 4

Delete(x, Q)
1 if Q.min is null or x < Q.min:
2 then return
3 if Q.min = x
4 then i← Q.summary.min
5 if i is null
6 then Q.min← null
7 Q.max← null
8 return
9 else x← i.

√
|Q|+ Q[i].min � overwriting x

10 Q.min← x
11
12 Delete(low(x), Q[high(x)])
13 if Q[high(x)].min is null
14 then Delete(high(x), Q.summary)
15 � Update the max if necessary
16 if Q.max = x
17 then if Q[high(x)].max is null
18 then i← Q.summary.max
19 else i← high(x)
20 if i is null
21 then Q.max← null
22 else Q.max← i.

√
|Q|+ Q[i].max

23

Analysis

Find, Predecessor and Delete do at most 1 costly recursive call of size√
u. Delete might do two recursive calls, but, when it does, the first call is

cheap: it takes Θ(1) time as it simply nulls the minimum (and unique) element
of Q[high(x)]. Therefore, the running time of each operation is T (u) = T (

√
u)+

Θ(1) = O(log log u). The total space remains O(u) with these added operations
as they don’t change the structure in any way.

Nada Amin (6.854 Problem 3-4) (09/26/07) 5

Problem 4

Nada Amin (6.854 Problem 3-4) (09/26/07) 6

Nada Amin (6.854 Problem 3-4) (09/26/07) 7

Nada Amin (6.854 Problem 3-5) (09/26/07) 8

Problem 5

I suppose I have already computed the maximum flow in a network with m
edges and integral capacities using an augmenting-paths algorithm.

Part (a)

I show how to update the maximum flow in O(m) time after increasing a spec-
ified capacity by 1.

I construct the residual graph of the old maximum flow and find an aug-
menting path. Since only a specified capacity was increased by 1, if there is an
augmenting path, it must involve this increased capacity (as the flow used to be
maximum) and once the augmentation is performed, there cannot be any other
augmenting paths (as the increased capacity must now be completely used).

The residual graph takes O(m) time to construct. Using a Breath First
Search, I can find the augmenting path in O(m) time. Since the path has ≤ n
edges (as each node can only appear once), the augmentation can be done in
O(n) time. Therefore, the running time of the update is O(m).

Part (b)

I show how to update the maximum flow in O(m) time after decreasing a spec-
ified (positive) capacity by 1.

If the old maximum flow did not saturate the decreased capacity, then it can
be decreased by 1 without affecting the maximum flow.

Otherwise, I choose a flow path of value 1 that uses this capacity, and sub-
stract it from the old maximum flow. This modified flow has a value decreased
by 1 compared to the old maximum flow. I construct the residual graph of this
modified flow and find an augmenting path. If there is an augmenting path, once
the augmentation is performed, there cannot be any other augmenting paths be-
cause otherwise the new maximum flow would have a greater value than the old
maximum flow, a contradiction since the network is more constrained.

Using a Breath First Search, I can find a flow path of value 1 and substract
it in O(m). Like in part (a), finding an augmenting path using a Breath First
Search takes O(m) and the augmentation takes O(n). Therefore, the running
time of the update is O(m).

Nada Amin (6.854 Problem 3-6) (09/26/07) 9

Problem 6

Part (a)

Supposing all people are initially in a single room s, and that the building has
a single exit t, I show how to use maximum flow to find a fastest way to get
everyone out of the building.

For time i, I construct an auxiliary graph G′
i as explained below. The value

of maximum flow of G′
i from s0 to ti tells me how many people I can get out

of the building in time i. So I try time i = 1, i = 2, . . . until I reach a time
imin where the value of the maximum flow is greater than the number of people
initially in s. The maximum flow in the graph G′

imin
tells the fastest way to get

everyone out of the building.
The auxiliary graph G′

i for time i is constructed as follow.

• For each vertex v in G, add vertices v0, . . . , vi in G′
i and edges v0 →

v1, . . . , vi−1 → vi with capacity ∞.

• For each edge (v, w) with capacity c in G, add edges v0 → w1, . . . , vi−1 →
wi with capacity c in G′

i.

Part (b)

I show that the same technique can be used when people are initially in multiple
locations and there are multiple exists.

I construct the auxiliary graph G′
i for time i as before, except that I add a

super-source s and a super-sink t in G′
i. For each location v in which x people

are initially, I add an edge s → v0 with capacity x. For each exit v, I add an
edge vi → t with capacity ∞. Now, when I look for the maximum flow in G′

i,
the source is s and the sink t.

Part (c)

I generalize the approach to where different corridors have different (integral)
transit times.

When I construct the auxiliary graph G′
i, I take edges of G into account as

follows:

• For each edge (v, w) with capacity c in G and transit time k, add edges
va → wa+k with capacity c, ∀a such that 0 ≤ a ≤ i− k.

