
Nada Amin (6.854 Problem Set 4) (10/03/07) 1

Problem 1

Part (a)

I argue that the running time of Dial’s algorithm is O(m + D), where D is the
maximum distance, and that the algorithm still works if some edges have length
0.

Dial’s algorithm keeps a pointer to the min element in the array, starting at
index 0. This pointer only advances. Once the last node has been processed and
its (shortest path) distance calculated, the algorithm can stop. This happens
when the pointer is at index D. Therefore, the pointer to the min only advances
D indices. As Dial’s algorithm processes each edge once, its running time is
O(m + D).

Dial’s algorithm still works with some edges having length 0. An edge from
v to w of length 0 will be processed when v is processed, that is when v is the
current min (at index dv). If w has not yet been processed (so dw ≥ dv), dw is
reduced to dv and placed in the array at the index of the current min. So once
v is processed, w (and any other elements sitting at the min) will be processed.
Basically, an edge of length 0 might just decreases the key of an element to the
current min, but not below it, and so doesn’t disturb the invariant of Dial’s
algorithm that the min pointer only increases.

Part (b)

I show that the reduced edge lengths ldvw defined by the rule ldvw = lvw + dv − dw

are all nonnegative integers. For any edge from v to w, I can form a path from
the source s to w by going from s to v and then through that edge from v to w.
Therefore, lvw + dv ≥ dw, so ldvw = lvw + dv − dw ≥ 0. Hence, all ldvw ≥ 0.

Part (c)

By telescoping, the length of a path P from s to t under the reduced length
function is: ∑

(v,w)∈P

ldvw =
∑

(v,w)∈P

lvw + ds − dt =
∑

(v,w)∈P

lvw − dt

If the length of the path P under ld is 0, then
∑

(v,w)∈P lvw = dt, so this
path is a shortest path under l.

If the length of the path P under ld is greater than 0, then
∑

(v,w)∈P lvw > dt,
so this path is not a shortest path under l.

Therefore, the shortest paths under the reduced length function have length
0 and are the same as those under the original length function.

Part (d)

I devise a scaling algorithm for shortest paths.

Nada Amin (6.854 Problem 4-1) (10/03/07) 2

I start with dv = 0,∀v. Then, I repeat until no bits are left:

• Shift next higher-order bit into lvw.

• Left shift (i.e. double) dv,∀v.

• Calculate all ldvw using the lvw’s shifted so far and the dv’s.

• Run Dial’s algorithm, collecting new d′v,∀v.

• Update dv ← dv + d′v,∀v.

The algorithm is correct, because our analysis from parts (b) and (c) hold
as the distance function d satisfies lvw + dv ≥ dw at all time since it is just an
under-estimate of the actual distances.

Each iteration of the algorithm takes O(m+n) = O(m), since the maximum
distance D is ≤ n, as, by bit-scaling, each edge along a path might contribute
at most 1 to the distance. Overall, I have blog Cc+ 1 iterations. Therefore, the
running time is O(m log C).

Part (e)

Suppose I use base-b scaling. Then, at each iteration the algorithm takes O(m+
n(b − 1)) because the maximum distance D is ≤ n(b − 1) as each edge along
a path might contribute at most b − 1 to the distance. By solving for b in
m = n(b − 1), I get b = n+m

n = 1 + m
n . Therefore, I can achieve the slightly

better running time of O(m log(2+bm
n c) C) by scaling with the base 2 + bm

n c.

Nada Amin (6.854 Problem 4-2) (10/03/07) 3

Problem 2

Let d be the distance between the source and the sink. Let li be the number of
nodes in the ith layer in the admissible graph (the number of nodes in source
layer being l0 and the number of nodes in the sink layer, ld+1). Then,

∑d
i=1 li +

li+1 ≤ 2n. Indeed, each node is counted at most twice. Since we have d numbers
that sum to less than 2n, one of these numbers must be ≤ 2n

d . So there exist an
i, such that li + li+1 ≤ 2n

d . In the best case for max flow, li has n
d vertices and

li+1 has n
d vertices, and the number of edges between the two layers is ≤ n2

d2 .
Therefore, the maximum flow is at most n2/d2.

After k blocking flows, the distance between the source and the sink is at
least k, in which case the maximum remaining flow is at most n2/k2. As each
blocking flow finds at least a unit of flow, O(k + n2

k2) blocking flows suffice to
find a maximum flow. Let k = n

2
3 . Then n2

k2 = n2

n
4
3

= n2 · n− 4
3 = n

2
3 . Therefore

O(n
2
3) blocking flows suffice to find a maximum flow.

Nada Amin (6.854 Problem 4-3) (10/03/07) 4

Problem 3

I transform to the standard maximum flow problem the network problem in
which, in addition to arc capacities, each node i other than the source and the
sink, might have an upper bound, say w(i) on the amount of that can pass
through it.

I create a standard maximum flow network G′ from G as follows:

• For each vertex i in G: if i has some w(i), in G′, add vertices ini and outi

and add an edge from ini to outi with capacity w(i). If i doesn’t have a
w(i), simply add a vertex i to G′.

• For each edge from v to w with capacity c in G: add an edge from outv

(or just v) to inw (or just w) in G′.

Now, in order to solve the network problem with node capacities, I simply
look for the maximum flow from s to t in G′.

From the perspective of work-case complexity, the maximum flow problem
with node capacities is not more difficult to solve than the standard flow prob-
lem. Indeed, let m and n be the number of edges and nodes in G. In the
worse-case, G′ will have m′ = m + n = O(m) edges and n′ = 2n = O(n) nodes.
Using Fold-Fulkerson, the running time is O(m|f |) in both cases (and |f | can
only get smaller by adding more constraints).

Nada Amin (6.854 Problem 4-4) (10/03/07) 5

Problem 4

Part (a)

To solve the minimum flow problem, I first find a feasible flow on the graph G
and then convert it to a minimum flow.

To find a feasible flow on the graph G, I use an auxiliary graph G′, which I
construct as follows:

• For each vertex v in G: add a vertex v in G′.

• Add a super-source s′ and a super-sink t′.

• Add an edge of infinite capacity from t to s.

• For each edge from i to j with capacity uij and lower bound lij : add an
edge from i to j with capacity uij − lij , add an edge from i to t′ with
capacity lij , add an edge from s′ to j with capacity lij .

Now, I run a maximum flow algorithm on G′ from s′ to t′. If all the edges from
s′ and all edges to t′ are saturated, then I have a feasible flow. I convert this
feasible flow f ′ in G′ to a feasible flow f in G by letting the gross flow between
i and j be fij = f ′ij + lij .

To convert this feasible flow f into a minimum flow, I construct a residual
graph G′′ by having an edge from i to j with capacity uij − fij + fji − lji if
there is an edge from i to j or an edge from j to i in G. Now, I run a maximum
flow algorithm on G′′ from t to s obtaining a flow f ′′. I decompose f ′′ into
f ′′ij = gij + hij , where 0 ≤ gij ≤ uij − fij and 0 ≤ hij ≤ fji − lji. I get the
minimum flow fm by fm

ij = fij + gij − hji.
fm is still a feasible flow, because fm

ij ≤ uij and fm
ij ≥ lij:

gij ≤ uij − fij

fij + gij ≤ uij

fm
ij = fij + gij − hji ≤ uij − hji ≤ uij

−hji ≥ lij − fij

fij − hji ≥ lij

fm
ij = fij + gij − hji ≥ lij

In addition, fm must be a minimum flow, because, otherwise, the flow could
be reduced further by finding some path from t to s in G, which corresponds to
finding some augmenting path in G′′ from t to s, which would mean that the
flow f ′′ isn’t maximum. Since the flow f ′′ is maximum, the flow fm is minimum.

Nada Amin (6.854 Problem 4-4) (10/03/07) 6

Part (b)

I show that the minimum value of all feasible flows from node s to node t equals
to the maximum lower bound on cut capacity of all s-t cuts.

Let L(S) =
∑

(i,j)∈S×T lij −
∑

(i,j)∈T×S uij be the lower bound on the cut
capacity of an s-t cut S.

I show that minf |f | = maxS L(S) by showing that minf |f | ≥ maxS L(S)
and minf |f | ≤ maxS L(S).

I show that minf |f | ≥ maxS L(S), by showing that |f | ≥ L(S),∀f,∀S.
Indeed, suppose we have a feasible flow f and an s-t cut S. Since the flow f
is feasible, it must satisfy the minimum capacities, so the flow from S to T is
at least

∑
(i,j)∈S×T lij . Since the flow f is legal, it must satisfy the maximum

capacities, so the flow from T to S is at most
∑

(i,j)∈T×S uij . Therefore, the
flow across the cut is |f | ≥

∑
(i,j)∈S×T lij −

∑
(i,j)∈T×S uij = L(S).

I show that minf |f | ≤ maxS L(S) by contradiction. Suppose that we have
a minimum flow f and that, for the sake of contradiction, f > maxS L(S).
Then, for all cuts f > L(S) =

∑
(i,j)∈S×T lij −

∑
(i,j)∈T×S uij , so that, for all

cuts, either we are sending more than the minimum flow from S to T or we
are not sending the maximum amount back from T to S. This means that in
the residual graph from part (a), there is extra capacity available from T to S
on all cuts, which means, by the max-flow min-cut theorem, that there is an
augmenting path in the residual graph from t to s, so f is not a minimum flow.
Contradiction.

Part (c)

I develop a flow-based algorithm for identifying the minimum number of students
needed to cover all the lectures. Construct a minimum flow network G as follows
(all edge capacities are ∞):

• For each lecture i: add 2 vertices, ini and outi, and add an edge from ini

to outi with a lower bound of 1.

• For each pair of lectures i and j such that bi + rij ≤ aj : add an edge
between outi and inj .

• Add a source s and, ∀i, edges from s to ini.

• Add a sink t and, ∀i, edges from outi to t.

To solve the problem, simply search for a minimum flow between s and t. The
value of the flow corresponds to the minimum number of students needed to
cover all lectures.

Nada Amin (6.854 Problem 4-5) (10/03/07) 7

Problem 5

Part (a)

I construct a bipartite matching graph with n professors and n students. There
is a source s, with an edge from s to each professor, and a sink t, with an edge
from each student. Each professor has d outgoing edges to different students
and each student has d incoming edges from different professors. All edges have
unit capacity.

I show that the minimum cut of this graph is n, indicating that there are
n pairs of professor/student, so one can schedule a single slot in which every
professor is meeting with a different student.

I show that the minimum cut has value at ≤ n, by demonstrating a cut of
value n: the cut where S consists of only the source. Indeed, this cut has value
n because there are links from the source s to each of the n professors in T , and
no other links across the cut.

I show that, in general, the value of a cut is ≥ n. Suppose a cut where S
has the source, i professors and j students. The value of this cut is (n− i) [for
the links between s and the professors in T] plus j [for the links between the
students in S and t] plus the number of cross links (i.e. links between professors
in S and students in T and professors in T and students in S). If j ≤ i, in the
best case (smallest number of cross links), all j students in S are connected with
professors within S and all n − i professors in T are connected with students
within T and the remaining i − j professors in S have links to the remaining
i − j students in T , so the number of cross links is ≥ d(i − j). Therefore, the
cut value is ≥ (n− i) + j + d(i− j) ≥ n + (d− 1)(i− j) ≥ n (since j ≤ i). The
case where i ≤ j is symmetric.

Since the value of the minimum cut is simultaneously ≤ n and ≥ n, it is
exactly n. Therefore, one can schedule a single slot in which every professor is
meeting with a different student.

Part (b)

It is possible to schedule all the meetings to take place in d time slots. I start
with the graph with the n professors and n students, each professors with links
to d students, and each student with links to d professors. I find n matching
pairs of professors and students for the first time slot, and delete those n edges
from the graph. Since each professor and each student loses an edge (because
each one is matched), each professor now links to d−1 students and each student
to d− 1 professor. Now, I can find matches for the second time slot. After the
dth time slot, each professor links to 0 student, and so all the meetings will have
been scheduled in d time slots.

Nada Amin (6.854 Problem 4-5) (10/03/07) 8

Part (c)

I consider an arbitrary set of desired meetings. Let s be the number of links of
the professor or student with the most number of links. I show that it is possible
to arrange all meetings in no more than s time slots by transforming this problem
into the problem of part (b) by adding “dummy” nodes and “dummy” edges.

I add as many “dummy” nodes as necessary to make the number of students
and the number of professors equal. I also want d = s, so I go through each
professor and, if it has less than s nodes, I add as many “dummy” edges to
students, each time choosing a student with less than s connections. By this
process (I allow multiple edges between the same pair of professor / student,
only one of which might be not “dummy”), when there will be ns connections
between professors and students, each professor will have s links to students
and each student will have s links to professors.

Now, I ran my algorithm of part (b), except that when a match involves a
“dummy” node or a “dummy” edge, I schedule no meeting.

Part (d)

We saw in class that we can perform bipartite matching using blocking flows in
O(m

√
n) time. Here, we’re performing s bipartite matching sequentially, so we

can achieve a running time of O(sm
√

n).

Nada Amin (6.854 Problem 4-6) (10/03/07) 9

Problem 6

I develop an efficient algorithm for deciding if a team can still win the league
pennant. I construct a maximum flow problem with node capacities. Of course,
as seen in Problem 3, this problem can easily be transformed into a standard
maximum flow algorithm, but I will leave it in the form of a problem with node
capacities for the sake of clarity.

Suppose that I am interested in knowing whether team x can still win the
league pennant. I calculate the maximum total number of games that team x
can win: W = wx +

∑
i qix +

∑
j qxj . For each team i other than x, I calculate

w′
i = W − wi − 1. If any w′

i < 0, then team x cannot still win the pennant.
Otherwise, I construct a graph G with node capacities as follows (all edges have
infinite capacities):

• Add a source s and a sink t.

• For each team i other than x: add a node i with upper bound w′
i and add

an edge from i to t.

• For each qij > 0 where i 6= x and j 6= x: add a node vij with upper bound
qij and add edges from s to vij , from vij to i and from vij to j.

Now, I look for the maximum flow f in G between s and t. If the value of
this flow |f | =

∑
i 6=x,j 6=x qij , then team x can still win the pennant. On the

other hand, if |f | <
∑

i 6=x,j 6=x qij , then that means that all the games cannot
be played while still satisfying the w′

i’s constraints, so team x cannot win the
pennant no matter what.

Analysis

Let there be k teams. Then, the number of nodes in the graph is n = O(k2)
and the number of edges in the graph is m = O(k2). By using dynamic trees,
maximum flow can achieve a running time of O(mn log n). So this algorithm
can run in O(k4 log k).

