
Nada Amin (6.854 Problem 5-1) (10/10/07) 1

Problem 1



Nada Amin (6.854 Problem 5-1) (10/10/07) 2



Nada Amin (6.854 Problem 5-1) (10/10/07) 3



Nada Amin (6.854 Problem 5-2) (10/10/07) 4

Problem 2



Nada Amin (6.854 Problem 5-3) (10/10/07) 5

Problem 3

Part (a)

Supposing I have an optimal solution to some minimum-cost circulation prob-
lem, I show how I can re-optimize the solution after changing one edge cost by
one unit.

Before the change, from the optimal solution, I can calculate a set of fea-
sible prices and residual reduced edge costs, which are all non-negative. After
changing one edge cost by one unit, I have at most one negative reduced edge
cost of −1 in the residual network. Suppose that the negative residual reduced
edge cost is between vertex v and w and has capacity u. If this edge is involved
in a negative reduced cycle, all the other edges in the cycle must have a residual
reduced cost of 0. I push as much flow from v to w as I can (but ≤ u) around
the cycle, through the path from w to v with edges of residual reduced cost 0.
I do this as follows. I create a graph with only edges of residual reduced cost
0, add a source s′ and an edge of capacity u from s′ to w, add a sink t′ and an
edge of capacity u from v to t′. I look for the max flow between s′ and t′ in the
created graph. I match this max flow with flow from v to w and add it all to
the total flow, causing its cost to decrease.

Notice that I haven’t introduced any new negative residual reduced edge
costs by pushing along the edges with residual reduced cost of 0. Now, if the
edge from v to w is saturated, there are no more negative residual reduced edge
costs, and the solution is optimal again. However, even if the edge from v to
w is not saturated, the solution is optimal again. Indeed, I can change the set
of prices to make them feasible again. I do this by incrementing the price of v
and then incrementing all nodes which have a path of reduced cost 0 to v in the
new residual network. Since there is no path of cost 0 from w to v (because,
if there were, I would have pushed more flow along it), the price of w will not
increase. So now, the edge between v and w will have residual reduced cost 0. In
addition, I am not introducing any negative residual reduced edge costs, because
if a residual reduced edge cost decreases then its edge is from a node whose price
isn’t incremented to a node whose price is incremented, which implies that the
residual reduced edge cost must have been positive, so decrementing it won’t
cause it to become negative. Therefore, in any case, the flow is optimal again.

Part (b)

I deduce a cost-scaling algorithm for minimum-cost flow that makes O(m log C)
calls to my solution of part (a). I start with all costs at 0 and look for a
maximum flow. I have O(log C) scaling phases, in which I shift bits of costs,
from highest to lowest. At the beginning of a phase, I double the costs of each
edge, which doesn’t change the optimal flow. In a phase, for each edge in turn,
if the bit of the edge cost is set for this phase, I increment or decrement the
cost, depending on its sign, and then call my algorithm of part (a).



Nada Amin (6.854 Problem 5-4) (10/10/07) 6

Problem 4

I create a graph that looks like a bipartite matching graph between results (old
and new) and available slots. It has more structure than a bipartite graph to
enforce the constraints that all clicked old results and at least k new results
must appear. In addition, matching edges have costs in order to maximize the
value of the merged result list (derived from values vi and penalty changes pij

for old results and values v′i for new results).
Here is how I create the graph G. Unless explicitly specified, the cost of an

edge is 0 and its capacity 1.

• Add a source s and a sink t, a node sc (for clicked), a node sn (for new),
a node sr (for rest).

• Add an edge of capacity c (number of clicked old results) from s to sc.

• Add an edge of capacity k from s to sn.

• Add an edge of capacity n− c− k from s to sr.

• For each result i in the old result list:

– Add a node oi.
– Add a node o′i.
– Add an edge from sr to oi.
– Add an edge from oi to o′i.

• For each clicked result i in the old result list: add an edge from sc to oi.

• For each result i in the new result list:

– Add a node ni.
– Add a node n′i.
– Add an edge from sr to ni.
– Add an edge from ni to n′i.
– Add an edge from sn to ni.

• For each available slot j in the merged result list:

– Add a node si.
– Add an edge from si to t.

• For each pair of old result i and available slot j: add an edge of cost pij−vi

from o′i to si.

• For each pair of new result i and available slot j: add an edge of cost −v′i
from n′i to si.

Now, I look for a min-cost max-flow in G from s to t. I simply look at
the edges with positive flow between result nodes (o′i’s and n′i’s) and slot nodes
(si’s) in order to construct the best merged result list.



Nada Amin (6.854 Problem 5-4) (10/10/07) 7

Note: a simple O(n log n) greedy algorithm

It is possible to solve the problem using a greedy approach. Hold onto the c
clicked items in the old result list. Sort the new result list by value, and hold
onto the k most valued new items. Merge the remaining old result list (without
the c clicked items) and the remaining new result list (without the k most valued
items) and sort the merged list. Hold onto the n− k− c most valued remaining
items in the merged list. Now, put each old item, which was hold onto, into the
best merged result list at the same position as its position in the old result list.
Put the new items, which were hold onto, into the remaining positions in the
merged result list. Voilà!



Nada Amin (6.854 Problem 5-5) (10/10/07) 8

Problem 5

I consider the following linear programming problem: minimize cx s.t. x1+x2 ≥
1, x1 + 2x2 ≤ 3, x1 ≥ 0, x2 ≥ 0, x3 ≥ 0. For each of the following objectives c,
I give the optimum value and the set of optimum solutions.

(a) c = (−1, 0, 0) The optimium value is −3 and the set of optimum solutions
is x1 = 3, x2 = 0, x3 ∈ [0,+∞).

(b) c = (0, 1, 0) The optimium value is 0 and the set of optimum solutions is
x1 ∈ [1, 3], x2 = 0, x3 ∈ [0,+∞).

(c) c = (0, 0,−1) The optimum value is −∞ and the set of optimum solutions
is x1 ∈ [0, 3], x2 ∈ [max(0, 1− x1), 3−x1

2 ], x3 = +∞.



Nada Amin (6.854 Problem 5-6) (10/10/07) 9

Problem 6

Part (a)

I represent this problem as a directed graph, where each currency x is a node,
each order i is an edge from node ai to node bi with capacity ui, rate ri and
flow fi (the flow values fi will be our linear programming variables).

My constraints are as follows:

• For each order i:
0 ≤ fi ≤ ui

• For each currency x except Dollar:∑
∀i, s.t. ai=x

fi ≤
∑

∀i, s.t. bi=x

firi

• For the currency Dollar (d):∑
∀i, s.t. ai=d

fi ≤
∑

∀i, s.t. bi=d

firi + D

My objective is to maximize the amount in the currency Yen (y):

−
∑

∀i, s.t. ai=y

fi +
∑

∀i, s.t. bi=y

firi

The second and third constraints guarantee that we’re never “creating”
money, and that all money starts at the node of the currency Dollar.

Part (b)

Because
∏

ri < 1 for any cycle, cycles just waste money and so I can get rid of
them (see part (c)). Once I have a solution with no cycle, I can order the edges
topologically by the flow, and process each edge at most once. Since each edge
represents an order, I will be processing each order at most once. Because of
the topological ordering, I will have enough money in the necessary currency to
respond to an order at once when I process it.

Part (c)

By running the linear program of part (a), I will get the optimal amount Y
in the currency Yen (y). I add this optimum as a new constraint to the linear
program from part (a):

−
∑

∀i, s.t. ai=y

fi +
∑

∀i, s.t. bi=y

firi = Y



Nada Amin (6.854 Problem 5-6) (10/10/07) 10

My objective is now to minimize the amount in the currency Dollar (d) that
I spend: ∑

∀i, s.t. ai=d

fi −
∑

∀i, s.t. bi=d

firi

By minimizing the amount of dollars that I spend, I am sure that I won’t
be wasting money in cycles. In addition, I won’t convert money into another
currency unless it will eventually be converted into yens, since, otherwise, I
am better off keeping my dollars. Therefore, the new linear program above
guarantees that I will have the optimum amount of Yen and no other currency
except dollars.


