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Problem 1

Part (a)

I argue that at any vertex M of the polytope, at least m — 2n + 1 of the x;;
must be equal to 0.

Since a vertex is a basic feasible solution, I know that at any vertex, (i)
all equalities are tight and (ii) m linearly independent constraints are tight.
There are 2n equalities, but only 2n — 1 of them are independent, because
D02 jeN() Tij = 2oj 2uien(y) Tij- So that leaves m — 2n + 1 tight inequalities
(of the form x;; > 0). Hence, m — 2n + 1 of the z;; are 0.

Part (b)

In M, there are potentially m nonzero entries (x;;), one for each edge ij. Be-
cause of the equality constraint, each row must have at least one nonzero entry.
Suppose that each row has at least 2 nonzero entries, for a total of at least 2n
nonzero entries. Then, there can be at most m — 2n zero entries. This contra-
dicts part (a), in which I showed that at least m — 2n + 1 of the entries are 0.
So at least one row of M must contain a single nonzero entry. Because of the
equality constraint on this row, this nonzero entry must be 1 with all other en-
tries 0. Because of the equality constraint on the column of this single nonzero
entry, all other entries in that column must be 0.

Part (c)

Let the single entry of value 1 from part (b) be z;;, so that it involves row %
and column j. Let M’ be the matrix obtained by deleting row ¢ and column ;.
The sum of each remaining row and column of M’ is still 1, because only zero
entries have been deleted from these rows and columns. Therefore, M’ is doubly
stochastic. Suppose I loose k variables when going from M to M’. T lost two
equality constraints and k — 1 tight inequality constraints, only & — 2 of which
are independent (since I can determine one entry by the sum constraint from
part (a)). Therefore, I loose as many constraints as I loose variables, so that M’
is still a vertex of the resulting LP. Hence, M’ satisfies part (b), so it has at least
one row / column containing a single 1 with all other entries 0, and it can be
reduced further. When n = 1, the matrix has a single entry with 1. I have thus
shown that any vertex M is an integer doubly stochastic matrix (i.e. a perfect
matching). Because any feasible point of the polytope is a convex combination
of vertices, any solution is a convex combination of perfect matchings.

Let A be the maximum of (i) the largest rate at which packets arrive on
an input line and (ii) the maximum rate at which packets want to depart from
an output line. By the result above, the switch can decompose any demand
into a convex combination of matchings, in which the sum of the weights of the
matchings is < A. So as long as the switch can deliver matchings at rate A\, it
can deliver the specified traffic.
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Problem 2

Farkas’ lemma states that exactly one of the following two systems has a solution:
1. Ax=band x>0
2. yA>0but yb <0

In this problem, I prove Farkas’ lemma.

Part (a)

I give a direct proof that the two systems cannot both be feasible, by showing
that if 1 is feasible then 2 is unfeasible.

Suppose 1 is feasible, so Az = b and & > 0. Suppose that yA > 0. Then
yb = y(Azx) = (yA)x > 0 since yA > 0 and « > 0. So 1 is feasible implies that
2 is unfeasible.

Part (b)

I shows that the linear program minyb | yA > 0 can only have two possible
answers: 0 and —oo.

First, notice that the linear program has the trivial solution y = 0, which
gives yb = 0. So the minimum yb < 0.

Suppose —Jy, s.t. yb < 0 and yA > 0. So the minimum is yb = 0.

Suppose Jy, s.t. yb < 0 and yA > 0. Then, I can multipliy y by some A > 0,
y = Ay. Then, y'b < yb and y’A > yA. So y satisfies the linear program
constraint and gives a smaller y’b. With A\ — oo, y'b = A\yb — —oco. So the
minimum is —oo.

Part (c)

I show that if 1 is unfeasible, then 2 is feasible. Combined with part (a), this
proves Farkas’ lemma.

Consider the dual of minyb | yA > 0: max0x | Az = b,z > 0. If 1 is
unfeasible, then the dual is unfeasible. If the dual is unfeasible, by strong
duality, the primal is either unfeasible or unbounded. By part (b), the primal
cannot be unfeasible. Therefore it is unbounded. Therefore, Jy, s.t. yA > 0
but yb < 0, i.e. 2 is feasible. So 1 is unfeasible implies that 2 is feasible.
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Problem 3

I suppose I am given two polyhedra P = {z|Ax < b} and Q = {z|Dx < e}.

Part (a)

Using duality, I prove that if polyhedra P and @ have empty intersections, then
there are y,z > 0 s.t. yA+ zD =0 but yb+ ze < 0.

Consider R = {z|Ax < b,Dxz < e¢}. If R = (), then the linear program
max 0z | z € R is unfeasible. Its primal counterpart, minyb + ez | yA + zD =
0,y > 0,z > 0, is either unbounded or unfeasible. However, the primal is clearly
not unfeasible since y = z = 0 is a solution. So it must be unbounded. Thus,
Jy,z>0s.t. yA+ 2D =0 but yb+ ze < 0.

Part (b)

I conclude that if polyhedra P and @@ have empty intersections, then there is a
separating hyperplane for P and @ (i.e., a vector ¢ s.t. cx < cw for all z € P
and w € Q).

By part (a), if P and @ have empty intersections, 3y, z > 0s.t. yA+2D =0
but yb + ze < 0. Consider ¢ = yA. Then, for x € P, cx = yAzx < yb since
Ax <b. Sofor x € P, cx < yb. Similarly, for w € Q, cw = yAw = —zDw, using
yA+ zD = 0. Since Dw < e, cw = —zDw > —ze. So for w € Q, —cw < ze.
Adding the inequalities, cx — cw < yb+ ze < 0. So for z € P and w € Q,
cx < cw. In other words, there is a separating plane between P and Q.

Part (c)

I conclude that given two polyhedra P and @, there is a quickly verifiable answer
as to whether or not the two polyhedra have a point in common.

If the two polyhedra have a point x in common, simply give the point z. It
is easy to verify that x € P by checking Az < b and that = € Q) by checking
Dzx <e.

If the two polyhedra have no point in common, simply give y and z, s.t.,
y>0,2>0, yA+ 2D = 0 but yb+ ze < 0 (these constraints are all easily
verifiable). By part (a), if the two polyhedra have no point in common, then
there exists such a y and z. By part (b), if such a y and z exists, there is a
separating plane between the two polyhedra, so they have no point in common.
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Problem 4

I argue that weak duality holds for an arbitrary linear program, with its dual
taken by the cookbook method.

Let A be a matrix with rows a; and columns A;.

The arbitrary primal linear program is: minimize ¢'z, subject to

alx >b;, i € My
a;:z:gb,;,iEM2
a,x =b;, i € M3
z;>0,7€N;
2; <0,7€ Ny
z; free, j € N3

The dual linear program is: maximize y'b, subject to

yi >0,1€ M;
v, < 0,1 € My
y; free, i € M;3
YA <cj,jEN
y'A; >cj, j € Ns
y'Aj=cj,j€Ns

PRIMAL | minimize || maximize DUAL
> b; >0
constraints < b; <0 variables
=b; free
> 0 < Cj
variables <0 > ¢ constraints
free =cj

Let = and y be vectors for the primal and dual feasible. Define,
ui = yi(a;x — b;)
vj = (c; —y'Aj)x;
The definition of the dual requires that the sign of y; equals the sign of

a;x — b; and that the sign of ¢; — y’A; equals the sign of ;. Thus, the primal
and dual feasibility imply that:

U; 20, Vi
Uj ZO, V]
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Notice:
Zui =y Az —y'b
i
Zvj =cdz—y Ax
J
Adding these two equalities and using non-negativity of u;,v;:

0< Zui-i-Zvj =cdz—y'b
i J

Thus yb < cx or OPT(dual) < OPT(primal). So I have just shown that
weak duality holds for an arbitrary linear program.



Nada Amin (6.854 Problem 6-5) (10/17/07) 6

Problem 5

I consider this linear program formulation of the max-flow problem as the dual:

z:maXpr
ZfP Sue

Pse
fp2>0

I derive the primal of the dual using the cookbook method:

z :minZue:ce
er >1

ecP
xe, >0

I interpret the variable z. as representing the saturation of an edge (0 for
unsaturated, 1 for saturated, though the linear program allows arbitrary non-
negative values). Using this interpretation, an English explanation of the ob-
jective and constraints is: minimize the sum of the capacities of saturated edges
subject to the constraint that there is at least one saturated edge per path.

Still in other words, using network flow concepts, the linear program is look-
ing for the s-t cut of minimum value: the objective function defines the value
of an s-t cut as the sum of the capacities of cross-cut edges and the constraints
require that, in an s-t cut, at least one edge in each s-t path is across the cut.
In this interpretation, x. is 1 for cross-cut edges and 0 for other edges (though,
again, the linear program doesn’t constrain the values to be 0 or 1).
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Problem 6
Part (a)

I argue that any LP optimization problem can be transformed into a problem
of the form minOx|Ax = b,z < 0, i.e., the objective is to minimize 0z and
the constraint on « is in standard form. This form is only concerned with the
feasibility of the LP, as it has optimium value 0 if it is feasible, and oo if it is
unfeasible.

Let’s start with a LP optimization problem in standard form: min cz|Az =
b,x > 0. Tts dual is max yblyA < ¢. By strong duality, if the problem is feasible
and bounded, then cx = yb. So here are the constraints on a LP program that
decides whether the optimization problem is feasible and bounded:

Ax =10
x>0
yA<c
cx =yb

I can put these constraints in standard form and use the objective 0z + Oy
to end up with a problem of the required form. The program returns 0 if the
original program is feasible and bounded and oo if it is unfeasible or unbounded.

Part (b)

The dual of the linear program min 0x|Az = b,z < 0 is max yblyA < 0.

Part (c)

If the primal is feasible, then its solution is 0. By strong duality, 0 is also the
optimum of the dual. In the dual, I can obviously get yb = 0 by letting y = 0.
So if the primal is feasible, the dual has the obvious optimum solution y = 0.

Part (d)

Given an algorithm that could optimize an LP with an m X n constraint matrix
in O((m+n)¥) time given an optimal solution to the dual LP, I can build an LP
algorithm that will solve any LP without knowing a dual solution, in the same
asymptotic time bounds. I assume that, if given a wrong optimal solution to
the dual, the given algorithm might not return a correct answer, but will stop
nevertheless (I can always stop it after it runs for more than c(m + n)* steps
where c¢ is the constant in its running time).

I call the algorithm on the same LP with the objective function modified to
0 and use an obvious dual solution similar to that of part (b). If the algorithm
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returns with a feasible solution, then I know that the LP is feasible. Otheriwse,
it is unfeasible.

If the LP is feasible, I transform the LP into the form of part (a), call it
LP’. T call the algorithm on LP’ using the obvious optimum solution y = 0 for
the dual. If LP’ is feasible, the algorithm should return an x that satisfies the
constraints of LP’. If it doesn’t, I can assume LP’ is unfeasible, which means
that the original LP is unbounded (since I know it is feasible). If the LP is
feasible and bounded, I can easily transform the solution of LP’ into a solution
to the original LP.

The asymptotic time bounds remain O((m +n)*) because, LP’ has a O(m +
n) x O(m + n) constraint matrix. Transforming the LP’ solution back into LP
is straightforward, as it just involves reading the variables of interest.



