
Nada Amin (6.854 Problem 7-1) (10/24/07) 1

Problem 1

w = min
∑

cijfij∑
j

fij − fji = 0 (∀i)

∑
fij = 1

fij ≥ 0

Part (a)

I explain why the above linear program captures the minimum mean cycle prob-
lem.

fij is a circulation, so it can be decomposed into cycles. For each cycle k, let
nk be the number of edges involved in the cycle, λk be the weight of that cycle in
the decomposition, so that the contribution of the cycle to the circulation fij is
λkck

ij , where ck
ij = 1

nk
if the cycle k goes from edge i to j and ck

ij = 0 otherwise.
In this way, fij =

∑
k λkck

ij with
∑

k λk = 1. Note that
∑

ij ck
ij = nk

1
nk

= 1∀k,
so that

∑
ij fij =

∑
ij

∑
k λkck

ij =
∑

k λk

∑
ij ck

ij =
∑

k λk = 1.
I claim that all the cycles of fij are minimum mean cycles when fij is optimal.

Indeed, if one of the cycles, say cycle k, was not a minimum mean cycle, then I
could improve the optimum by setting λk = 0 and increasing the weights of the
other (smaller) mean cycles accordingly.

Part (b)

The dual of this linear program is:

w = maxλ

λ + yi − yj ≤ cij

If I set pi = −yi, I can transform this linear program into a form where costs
(cij − λ) and reduced costs ((cij − λ) + pi − pj) appear explicitly:

w = maxλ

(cij − λ) + pi − pj ≥ 0

Part (c)

For a k-edge cycle of 1 unit of flow, the cost is
∑

edges∈cycle cij ≥ kλ since the
prices cancel out. Therefore, the ratio cost to length of any cycle is ≥ λ, i.e. λ
is a lower bound on the ratio cost to length. By maximizing λ, the LP finds the
greatest lower bound, which corresponds to the value of the smallest ratio cost
to length.

Nada Amin (6.854 Problem 7-1) (10/24/07) 2

Part (d)

I suggest a combinatorial algorithm that uses binary search to find the right λ
to solve the dual problem.

My initial search space is between λl = minij cij and λu = maxij cij . I can
lower bound the difference between the smallest and next smallest mean cost of
a cycle by 1

n2 . Indeed, let a
b be the smallest mean cost of a cycle (a being the

total cost of a cycle, and b its length) and c
d be the next smallest mean cycle.

Then |ab −
c
d | = 1

bd |ad − cb| ≥ 1
n2 because b ≤ n and c ≤ n. This means that

once my search space interval is ≤ 1
n2 , I can stop the search because I am closer

to the right λ than any possible other value.
For a given λ, I assign prices by adding a vertex s′ and edges of length 0

from s′ to any other vertex and running Bellman-Ford using the costs cij −λ as
the edge length and then setting pi = d(s′, i). All edges must have non-negative
reduced cost ((cij −λ)+pi−pj) to satisfy the LP constraints. If the constraints
are not satisfied, then the given λ is too large, so I make it the new upper
bound λu. If the constraints are satisfied, then the given λ becomes the new
lowerbound λl.

Once the binary search stops (because λu − λl < 1
n2), I can find a minimum

mean cycle by finding a cycle of edges with reduced cost of 0 (or, actually,
between 0 and λu − λl, since λ = λl is just very close to optimal).

Nada Amin (6.854 Problem 7-2) (10/24/07) 3

Problem 2

Part (a)

I show that if Alice’s mixed strategy is known, then Bob has a pure strategy
serving as his best response.

Let Aj represent the jth column of the matrix A. Let j′ = arg maxj xAj .
Consider the pure strategy yj′ = 1 and yj = 0,∀j 6= j′. This strategy is optimal
because xAy =

∑
j xAjyj = xAj′ ≥ xAλ for any other strategy λ which will

dilute the max xAj′ by mixing in other components.

Part (b)

I show how to convert Alice’s and Bob’s programs above into linear programs,
and thus find an optimal strategy for both players in polynomial time.

Let Aj be the jth column of A and a′i be the ith row of A.
The program for Alice is:

w = minλ∑
i

xi = 1

λ− xAj ≥ 0,∀j
xi ≥ 0,∀i

The program for Bob is:

z = maxλ∑
j

yj = 1

λ− a′iy ≤ 0,∀i
yj ≥ 0,∀j

Part (c)

Consider Alice’s linear program. It gives the optimum because it finds the
minimum expected payoff in the space of possible mixed strategies for Alice
while inferring Bob’s best response to Alice, which by part (a) is a pure strat-
egy. Because Bob will respond by playing the pure strategy that maximizes
the expected payoff, the expected payoff for a given Alice’s strategy x is just
λ = max xAj . The constraint λ − xAj ≥ 0,∀j, ensures that λ ≥ max xAj .
Minimizing λ ensures that this inequality is tight and that the best of Alice’s
strategies is chosen. The case for Bob’s linear program is symmetric.

Nada Amin (6.854 Problem 7-2) (10/24/07) 4

Part (d)

The dual of Alice’s linear program is Bob’s linear program, so by strong duality,
Alice’s expected payoff using her best strategy is equal to Bob’s expected payoff
using his best strategy.

Nada Amin (6.854 Problem 7-3) (10/24/07) 5

Problem 3

Given a standard form LP min{cx|Ax = b, x ≥ 0}, I define a different LP with
an obvious basic feasible point (x = 0), whose optima are precisely the feasible
points of the original LP.

a′i is the ith row of A.

min{−
∑

∀i s.t. bi≥0

a′ix +
∑

∀i s.t. bi<0

a′ix}

subject to the constraints
0 ≤ a′ix ≤ bi,∀i s.t. bi ≥ 0,

bi ≤ a′ix ≤ 0,∀i s.t. bi < 0,

x ≥ 0.

The minimum of this LP is
∑

i −|bi| and is achieved exactly on feasible points
of the original LP, since, then, Ax = b, x ≥ 0.

I can therefore use this different LP (modified to standard form) to start the
simplex algorithm. I call the simplex algorithm on this different LP with the
obvious basic feasible solution x = 0, which will return a feasible point of the
original LP. I transform the returned feasible point into a basic feasible point,
by repeatedly making the solution more basic by sliding it in the direction of a
constraint that’s not yet tight. I can now use this basic feasible point to start
the simplex algorithm on the original LP.

Nada Amin (6.854 Problem 7-4) (10/24/07) 6

Problem 4

Part (a)

I prove that if there is an independent set of size k in G, then there is an
independent set of size k2 in the product graph.

Let the independent set of vertices in G of size k be S. I construct an
independent set of vertices in the product graph of size k2, S′, as follows. For
each v ∈ S, I add the k vertices of Gv corresponding to S to S′. Since I add k
vertices for each of the k vertices of S, S′ will contain k2 vertices at the end of
the process. These k2 vertices are independent. Indeed, take any two vertices
v′, u′ ∈ S′. Say v′ ∈ Gv and u′ ∈ Gu. If u = v, then v′ and u′ are independent
because Gv is a copy of G and the corresponding vertices are independent in G.
If u 6= v, then v′ and u′ are independent because v and u are independent in
G and so any vertices between Gv and Gu are independent since there are no
edges between vertices in Gv and vertices in Gu.

Part (b)

I prove that given an independent set of size s in the product graph, one can
find an independent set of size

√
n in G.

Partition the independent set S of size s in the product graph into sets Sv

of size sv, where Sv is the set of vertices of S belonging to Gv. Let k be the
number of non-empty such sets Sv. If k ≤

√
n, then there exists at least one

Sv with sv ≥ n
k ≥

√
n, and, since the vertices in Sv are independent in Gv,

the corresponding ≥
√

n vertices in G are independent too. If k ≥
√

n, then
there ≥

√
n vertices in distinct Gv’s that are independent in the product graph,

which means that the vertices corresponding to these Gv’s are independent in
the graph G as there are no edges between them.

Part (c)

I prove that if there is an α-approximation for MIS for some fixed α, then there
is a polynomial approximation scheme for MIS.

For a fixed α, I can find a k such that 1 + ε ≥ α
1
2k . I construct a product

graph G1 from G, then a product graph G2 from G1, and so on, until the
product graph Gk from Gk−1.

Let OPT be the size of the MIS in G. Let OPT′ be the size of the MIS in
Gk. Note that OPT’ = OPT2k

. I find an α-approximation of a MIS in Gk, with
size s′, s.t. αs′ ≥ OPT’. By part (b), I can find a independent set in G of size

s, s.t. s = s′
1
2k ≥ OPT′

1
2k

α
1
2k

≥ OPT

α
1
2k

. Hence, since (1 + ε)s ≥ OPT, there is a

approximation scheme for MIS.
The algorithm runs in polynomial time for a fixed ε because the size of the

graph Gk increases polynomially for a fixed k.

Nada Amin (6.854 Problem 7-5) (10/24/07) 7

Problem 5

Part (a)

Supposing the optimum diameter d known, I devise a greedy 2-approximation
algorithm.

I repeat until all points are in a cluster: For any point not yet in a cluster,
I create a cluster of all the points not yet in a cluster within distance d of it.

This algorithm ensures that the maximum diameter is ≤ 2d. In addition, it
will not create more than k clusters. Indeed, for any point acting as the cluster
center (center point), all points in the same cluster as the center point in the
optimal solution will have been considered for inclusion. So all center points
are in different clusters in the optiomal solution. Thus the number of clusters
in the optimal solution is greater than or equal to the number of center points,
which is equal to the number of clusters created by this algorithm.

Part (b)

The new algorithm ensures that once there are k center points, all points will
be within distance d of a center point. Indeed, as long as there is a point that is
at a distance > d from all current center points, it belongs to a different cluster
in the optimal solution and so, as long as that’s true, the center points belong
to different clusters in the optiomal solution. Since each center point considers
for inclusion in its cluster only points that are within distance d of it, the new
algorithm is a 2-approximation like the algorithm in part (a).

