Nada Amin (6.854 Problem 8-1) (10/31/07) 1

Problem 1

Part (a)

I argue that the greedy algorithm (repeatedly take any edge that does not
conflict with previous choices) can be implemented in linear time and gives a
2-approximation to the maximum (number of edges) bipartite matching.

The greedy algorithm can be implemented in linear time as follows. Keep
2 boolean arrays (one for each side of the matching) of size n indexed by the
nodes on that side of the matching. The arrays indicate which nodes are still
available, so initially all values are true. Process each of the m edge one after
another: if the edge has both endpoint available (just check in the arrays), add
the edge to the solution and mark its endpoints as unavailable in the arrays.
This algorithm takes O(m) since it has to process m edges and does a constant
amount of work on each edge.

I show that this greedy algorithm gives a 2-approximation to the maximum
bipartite matching. When the algorithm includes an edge in the solution, it
makes at most 2 edges of the optimal solution unavailable (one for each end-
point). So if our algorithm ends with k edges, the optimal solution has < 2k
edges.

Part (b)

I generalize to argue that when edges have positive “weights”, the greedy al-
gorithm (consider edges in decreasing order of weight) can be implemented in
O(mlogn) time and is a 2-approximation algorithm for maximum (total) weight
bipartite matching.

The linear algorithm can be implemented in O(mlogn) time as follow. The
procedure is similar to part (a), except that edges are processed in decreas-
ing order of weight. So the algorithm must first sort the edges, which takes
O(mlogm) time, or actually O(mlogn) time, since m < n?. Thus, because of
the sorting, the algorithm takes O(mlogn) time overall.

I show that this greedy algorithm gives a 2-approximation to the maximum
(total) weight bipartite matching. When the algorithm includes an edge of
weight w in the solution, it makes at most 2 edges of the optiomal solution
unavailable (one for each endpoint). Since these edges have not yet been pro-
cessed, each has weight < w. So when our algorithm increases the solution by
w, the optimal solution increases by < 2w. Therefore, if our algorithm ends
with a total of k, the optimal solution has a total of < 2k.

Part (c)

I show that the same holds for the general (non-bipartite) max-weight matching
problem.

The greedy algorithm from part (b) is modified to just have one array for
nodes availability. It still runs in O(mlogn) because the edges need to be sorted.

Nada Amin (6.854 Problem 8-1) (10/31/07) 2

The argument to show that this greedy algorithm gives a 2-approximation
to the general max-weight matching problem is similar to part (b). When the
algorithm includes an edge of weight w in the solution, it makes at most 2 edges
of the optimal solution, of weight < w each, unavailable (one for each endpoint).
So if our algorithms ends with a total of k, the optimal solution has a total of
< 2k.

Nada Amin (6.854 Problem 8-2) (10/31/07) 3

Problem 2
Part (a)

Supposing there are only k distinct item sizes for some constant k, I argue that
I can solve bin-packing in polynomial time using dynamic programming.

My dynamic programming table has the n* distinct job profiles (represented
as a k-vector of integers from 0 to n) as one index variable and the n number
of possible bins as the other. Let B(p,j) be true if the profile p can fit into j
bins and false otherwise.

I initialize B(p, 1) as true if the profile p can fit into 1 bin and false otherwise.
I then compute B(p, j+ 1) recursively as whether p can be decomposed into two
profiles, d and p — d, s.t. profile d can fit into 1 bin and profile p — d can fit into
7 bins:

B(paj + 1) = Vva (B(d, 1) /\B(p_ dm?))

To find the minimum number of bins for a particular profile p of items,
simply search B(p,j) for j from 1 to n for the first true entry and trace back
to get the actual packing. Since the table has n* - n entries and each entry can
be computed in O(n*) time, the table can be filled in O(n?**1) time. So the
algorithm is polynomial for a fixed k.

Part (b)

Supposing I have packed all items of size > € into B bins, I argue that, in linear
time, I can add the remaining small items to achieve a packing using at most
max (B, 1+ (1 + 2¢)B*) bins.

I consider the B bins in some order, keeping a pointer to the current bin
being considered. For each small item, I consider whether the item fits into the
bin currently pointed at. If it doesn’t, I increment the pointer and try the next
bin, until I find a bin in which the item fits, creating a new bin if necessary. The
algorithm is obviously linear in B plus the number of small items left to pack.

Suppose I end up with n bins. If n = B, then I achieve a packing using at
most B bin. So suppose n > B. Notice that the n — 1 first bins each have < €
space left. So the total space taken by all the items is > n —1 — (n — 1)e =
(n —1)(1 — €). Now, the optimum number of bins, B* must provide at least
that much space. So (n —1)(1 —€) < B*. Hence, n — 1 < 13—_2 < (14 2¢)B* if
€ < 1/2. From which, I conclude that n < 1+ (1 +2¢)B* if e < 1/2. If € > 1/2,
then 1+ (14 2¢)B* < 2B*, so I simply need to show that the average fill ratio
of bins is > 1/2. Because € > 1/2, it is clear that the B bins are filled enough.
Now, consider any two consecutive bins starting with the Bth bin. I had to
create the second bin because I had an item that was overflowing the first bin,
so the sum of items in the two bins is > 1, thus the average fill of these two bins
is >1/2.

It follows that I can achieve a packing using at most max(B, 1+ (1 + 2¢)B*)
bins.

Nada Amin (6.854 Problem 8-2) (10/31/07) 4

Part (c)

Reducing to the previous case by rounding each item size up to the next power
of (1 + ¢) doesn’t work for bin packing because the bins have fixed size, so it’s
possible to double the number of bins required even by small increases in the
sizes of the items (for example, if the items are close to 1/2 in size).

Part (d)

Notice that each item in S; in its original size takes more space than each item
in Sj41 in its increased size. So consider the optimal original packing and set
aside the items in S7. I can place the items in S5 with their increased size in
the space left by the items in S, ..., the items in S; with their increased size
in the space left by the items in S;_1, ..., so that I can pack all items except
those in S7 with their increased sizes in the optimum original packing. Now,
there are n/k items in S, and, in the worse case, I pack them in one bin each,
so I increase the optimal number by at most n/k.

Part (e)

Let w be the number of items of size > 5. Let B, be the optimum number of
bins for packing these w items. Using parts (a) and (d), I can pack these items
in B< B, + %’ Setting k = E%, B < B, + w% Notice that the space taken
by the w items is > w§, so w§ < By,. Thus, B < (1 +¢€)By < (1 +¢)B*. So,
using part (b) to add the remaining small items of size < ¢/2, T can conclude
that I use at most (1 + 2¢)B* + 1 bins. By parts (a) and (b), this algorithm is

polynomial for a fixed e.

Nada Amin (6.854 Problem 8-3) (10/31/07) 5

Problem 3
Part (a)

I argue that any feasible subset of jobs might as well be scheduled in order
of increasing deadlines. Indeed, swapping adjacent out-of-order jobs doesn’t
change feasibility. Suppose that job ¢ is scheduled just before job j but that
d; > d;. Let t be the time that job i starts. Since the schedule is feasible,
t+p <djandt+p+p; <dj <d;. Ifjobi and job j are swapped, the
schedule is still feasible because job j completes at time ¢ + p; < d; and job i
completes at time t + p; + p; < d;.

Part (b)

Assuming the lateness penalties are polynomially bounded integers, 1 give a
polynomial-time dynamic program that finds the fastest-completing maximum-
weight feasible subset. I re-index the jobs so that dy < ds < ... < d,.

I define B(j,w) to be the amount of time taken by the fastest-completing
feasible subset of jobs € {1,...,j} with weight > w.

I initiliaze B(0,w) as follows:

00 otherwise

B(Ow):{o ifwgo}

I compute B(j + 1, w) recursively from B(j,w) as follows:

B(j+1,w) :min(B(j7w)’{R(jvw) if R(j,w) de-‘rl})

00 otherwise
where R(j,w) is defined as:
R(Ja w) =DPj+1 + B(]aw - wj-‘rl)

Let W = max; w;. I search the table from w = nW down for the first
B(n,w) < oo, which gives me the time B(n,w) and the weight w of the fastest-
completing maximum-weight feasible subset. By tracing back, I can explicitly
get the feasible subset itself.

This dynamic programming algorithm takes time O(n?W).

Part (c)

I use rounding and scaling to give a fully polynomial-time approximation scheme
for the original problem of minimizing lateness penalty with arbitary lateness
penalties.

Suppose the maximum weight of optiomal solution is (). I round and scale
each lateness penalty w;:

n
w; — \‘EQ’LUJ‘J

Nada Amin (6.854 Problem 8-3) (10/31/07) 6

Assuming p; < d; Vj, each scaled and rounded w; < %. So I can run the
dynamic programming algorithm in O(";) time. The weight of the optimal
solution from the DP algorithm is just a scaled down @ with a possible rounding
error for each j, so the optimum weight is > %Q —n= n(% —1). Scaling back
up yields an optimum weight of > n(1— 1)% = (1—¢€)Q. In order to hone in the
optimal solution @ which allows a good scaling factor, I perform a multiplicative
binary search between W to nW.

Thus, since my optimum is > (1 —¢€) the real optimum, I have a polynomial-
time approximation scheme.

Nada Amin (6.854 Problem 8-4) (10/31/07) 7

Problem 4
Part (a)

I show that a minimum cycle cover can be found in polynomial time by reducing
the problem to maximum weight bipartite matching.

Place the n vertices on one side of the bipartite matching as “entry” nodes
and on the other side as “exit” nodes. For each edge of length [between v and w
in the original graph, add an edge of weight —[from the “entry” node of v to the
“exit” node of w in the bipartite matching graph. Now, look for a maximum
weight perfect matching in the bipartite matching graph. If the matching is
perfect, this corresponds to a minimum cycle cover, where the matching edges
represent edges that are in the cover.

Part (b)

Each cycle has at least 2 nodes, so there are < n/2 cycles. Therefore, there are
< n/2 representative nodes. The optimum tour traversing only these represen-
tative nodes costs not more than the original optimum by the triangle inequality.
Indeed, in the worse case, I can always just use the original optimum, traversing
all nodes instead of just the representative ones.

Part (c)

I can unravel all the selections I've done, patching together various cycles to
produce a tour of the whole graph. At the top-level, starting from the last
iteration, I use the cycle cover found, stopping at each representative node, and
opening up and tracing the cycle behind the representative node recursively.
So I'll be visiting at least all nodes underneath this representative node before
moving on to the next representative node, and so on, recursively.

Let C be the cost of the optimum tour. By part (b), I won’t be paying more
than C at each iteration. So C(n) < C + C(%). Thus, C(n) = C - O(logn), so
the tour of the whole graph costs O(logn) time the optimum.

Nada Amin (6.854 Problem 8-5) (10/31/07) 8

Problem 5
Part (a)

I argue that the optimum strategy is to work on whichever job is available with
the shortest remaining processing time.

Consider available jobs j and k with remaining processing times /; and .
Let t be the current time. If I process job j then job k, I get C; =t +[; and
Cr =t +1; + 1 for a total C; + C; =t + 2l; + l;,. Similarly, if I process job k
then 7, I get Cj + Cy =t + 2l + ;. So if l; < Iy, I am better off processing j
first, and if I, < l;, I am better off processing k first.

Therefore, in general, at any point in time, I am better off processing the
job with the shortest remaining processing time.

Part (b)

I show that scheduling the jobs non-preemptively in order of their completion
time in the pre-emptive schedule increases each completion time only by a factor
of 2.

Let C; be the completion time of job j in the preemptive schedule. Let C;-
be the completion time of job j under the new non-preemptive schedule. I show
that C} < 2C; by induction on the order of the job j under Cj.

base case: Consider the job j with the smallest C;. It is the first job to com-
plete under the pre-emptive schedule, so it cannot have been pre-empted
(since then, it would need to wait until a job with a smaller remaining pro-
cessing time completes — but there’s no such job!). Therefore, C; = r;+p;.
In the non-preemptive schedule, job j is the first to run, so C§ =r; +pj.
Since, for the first job, C; = C}, C} < 2C; trivially.

inductive case: Consider the job j with the (i 4+ 1)th smallest C; and the
previous job p with the ith smallest C;. Note that C = max (r;, Cp) +p;.
By the inductive hypothesis, C}, < 2C), so € < max (r;,2Cp) + p;. |
consider two cases:

1. Under the pre-emptive schedule, job j ran uninterrupted from r; to
completion. So C, < r;j and Cj = rj+p;. Then, C} = max (r;,2C,)+
p; < 2r; +p; < 2(7“j +pj) <2G;.

2. Under the pre-emptive schedule, job j completed (at least part of)
its time after C,. Decompose p; = b; 4+ a; where b; is the processing
time completed before C), and a; is the processing time completed
after Cp,. Also, decompose C, = o, +b;. So r; < C, and C; =
Cp + aj = 0op + b; + a;. I consider two cases:

(a) If b; = 0, then C% < 2C, + p; = 20, + a; < 2(0p + a;) < 2C;.

(b) If b; > 0, then notice that actually C;, < 2C, — b; as by C}, j
won’t be processed at all. So C;- <2C,—bj+p; = 20,4+2bj+a; <
2(Op + bj + aj) < QCj.

Nada Amin (6.854 Problem 8-5) (10/31/07) 9

Part (c)

T argue that the non-preemptive scheduling of part (b) yields a 2-approximation
to (non-preemptive) average-completion-time scheduling with release dates.

Pre-emptive scheduling of part (a) is more relaxed than non-preemptive
scheduling, and we achieve optimality in part (a). Therefore, the optimal pre-
emptive scheduling represents a lower bound of what we can achieve in non-
preemptive scheduling. Since the non-preemptive scheduling of part(b) yields
a 2-approximation to the optiomal preemptive scheduling of part (a), it cer-
tainly also yields a 2-approximation to non-preemptive average-completion-time
scheduling with release dates.

Nada Amin (6.854 Problem 8-6) (10/31/07) 10

Problem 6

Part (a)

Here is the ILP to solve the problem 1 | prec | > w;C;. The variable z;
denotes the indicator that job j completed at time ¢ exactly. For convenience,
I introduce variables s;¢, derivable from x;;’s, denoting the indicator that job j
completed before or at time t.

mlng g Wt j¢
it

subject to the constraints
0<z; <1 Vjt

t
Sjt = Z zjp Vit
=0

t
ijt =1V
t
Sj(t4p;) S Sit Vt, j,i € A(j)
D pjsie <t Vi
J

Part (b)

For a given hj, the smallest C; happens when zjo = § — € and xj,, = 5 + € as

€ — 0. In this case, we have 6j = %ﬂ So 6j > %ﬂ

Part (c)

The halfway point h; is the time ¢, s.t. s, > % and s;;—1) < % The precedence
constraints ensure that s;iyp.) < sit Vi, 5,0 € A(j). Supposing p; > 1, the
precedence constraints at least ensure that s;i;41) < s Vi,7,1 € A(j). So
V4,4 € A(j), at the time h; — 1, where Si(h;—1) < %, the precedence constraints
ensure that s;, < 3, which means that h; > h;. Thus, no job runs before its
predecessors.

Part (d)

Let P(j) comprise job j and all the jobs i such that job i precedes job j in the
given order. At hj, at least half of each job in P(j) has been completed, so
3 2iep() Pi < hj. Hence, 35, p(;ypi < 2h; < 4C; (by part (b)). Thus, the
actual completion time for job j is at most 4C;.

Nada Amin (6.854 Problem 8-6) (10/31/07) 11

Part (e)

The LP is more relaxed than its ILP. By part (d), we achieve a 4-approximation
to the LP, so we certainly achieve a 4-approximation to the ILP. Thus, we have
a constant-factor approximation to 1 | prec | > w;C}.

