
Nada Amin (6.854 Problem 9-1) (11/07/07) 1

Problem 1

I made the assumption that the graph representation of this routing problem
uses directed edges.

Part (a)

I devise an integer linear program capturing the routing problem. Let fk
ij be

the indicator variable for whether the path between the kth demand pair uses
edge ij. Let s(k) be the source vertex of the kth pair, and t(k) be its target
vertex. Let uij be the integer capacity of edge ij. The ILP is:

0 ≤ fk
ij ≤ 1 ∀k, ij∑
k

fk
ij ≤ uij ∀ij

∑
j

fk
ij − fk

ji =

 1 if s(k) = i
−1 if t(k) = i
0 otherwise

 ∀k, i

Part (b)

I argue that the relaxion of this ILP can be seen as defining a collection of
fractional paths between each demand pair, of total capacity 1, and that these
paths can be read out of the solution in polynomial time.

For each demand pair k, there is a flow of 1 from s(k) to t(k). I can decom-
pose this flow into a collection of fractional paths as follow. I create a “residual”
graph Gk with the same vertices and edges as the problem graph, but where
the initial capacity of edge ij is rij = fk

ij . I repeat until no paths can be found
in Gk:

• Find a path P from s(k) to t(k) in Gk.

• Saturate this path: for each edge ij, set pij = minij′∈P rij′ if ij ∈ P and
set pij = 0 otherwise.

• Add the path P as defined by the pij ’s to the collection of fractional paths.

• Update the capacities on the edges of Gk: rij ← rij − pij(≥ 0).

Now, the residual graph Gk has the invariant:∑
j

rij − rji = 0 ∀i, s.t. i 6= s(k) and i 6= t(k)

∑
j

rs(k)j − rjs(k) = −
∑

j

rt(k)j − rjt(k)

Indeed, initially the invariant holds as the rij ’s inherit it from the fk
ij ’s which

satisfy the ILP. Then, when a path of length l from s(k) to t(k), ps(k)i1 →



Nada Amin (6.854 Problem 9-1) (11/07/07) 2

pi1i2 → . . . → pilt(k), is substracted from the capacities rij ’s, the invariant is
maintained. Indeed, for any vertex i in the path different from s(k) and t(k),
the path value is substracted from some rij but also from some rji so that the
net flow from i is still 0. Furthermore, the path value is substracted from rs(k)i1

but also from rilt(k) so that the net flow from s(k) is still equal the opposite of
the net flow from t(k). When no path is found, it means that the net flow from
s(k) is 0, which means that all the fractional paths found sum to 1.

Therefore, this procedure indeed decomposes the flow of a demand pair into
a collection of fractional paths of total capacity 1. This procedure runs in
polynomial time. Indeed, each iteration removes an edge from the residual
graph as it saturates the found path, so there can be at most m iterations
(and m paths). Each path can be found in O(m log n) time using Dijkstra’s
algorithm with a binary heap and the other steps of an iteration take O(m)
time. Therefore, the procedure can find the collection of fractional paths of a
demand pair in O(m2 log n) time, which is polynomial in the size of the problem.

Part (c)

If each edge has capacity 1 and the path-finding problem has a feasible solution,
I devise a randomized rounding scheme that gives an integer feasible solution
where every edge carries O(log n) paths, in polynomial time.

By the procedure in part (b), I get a collection of fractional paths for each
flow of a demand pair. Since the value of the flow of a demand pair is 1, the
sum of the values of the fractional paths for a demand pair is 1. So I consider
the values of the paths to be probabilities. For each flow, I pick one of the path
out of its collection with a probability equal to its value. This is my rounding
scheme.

I show that after trying my rounding scheme an expected constant number
of times, I will find an integer solution in which each edge carries ≤ 1+2 log n =
O(log n) paths. Consider an arbitrary edge. Let Xk be the indicator variable
denoting whether the path for the kth demand pair goes through this edge. I
know that E [

∑
k Xk] =

∑
k P [Xk = 1] ≤ 1 = µ. Using the Chernoff bound for

ε = 2 log n > 2e−1, P [
∑

k Xk ≥ 1 + 2 log n] ≥ 2−(1+2 log n) = 1
2n2 . By the union

bound, the probability that some edge carries > 1 + 2 log n paths is ≤ 1
2 .

Since each attempt is polynomial and after a constant number of attempts, I
expect to find a solution in which every edge carries O(log n) paths, my O(log n)-
approximation algorithm is polynomial.

Part (d)

I generalize part (c) and argue that if a solution exists in which every edge
carries only w paths, then in polynomial time a solution can be found in which
edge of capactiy w carries only w + O(

√
w log n) paths.

I use the same rounding scheme as before. Now, for an arbitrary edge,
E [
∑

k Xk] =
∑

k P [Xk = 1] ≤ w = µ. Using the Chernoff bound for ε =

3
√

log n/w < 2e − 1, P [
∑

k Xk ≥ (1 + ε)w] ≤ e−(3
√

log n/w)2w/4 = e−9 log n/4 =



Nada Amin (6.854 Problem 9-1) (11/07/07) 3

1

n
9
4
. By the union bound, the probability that some edge carries > w(1 + ε)

paths is n2− 9
4 = n−

1
4 < 1 for n ≥ 2.

Thus, after an expected constant number of polynomial-time attempts, I’ll
find a solution in which each edge carries only w + 3

√
w log n paths. Assuming

w > log n, I have a 4-approximation.



Nada Amin (6.854 Problem 9-2) (11/07/07) 4

Problem 2

Part (a)

If the answer to a set-basis instance is “yes”, I can say that the number of sets
in C is ≤ 2k, because there are 2k subsets of B and each set A ∈ C equals the
union of some subset of B.

Part (b)

I show that if two elements x and y appear in precisely the same family of sets
in C, removing y from all sets in C preserves the answer to the basis.

If the answer to the basis was “yes”, it is clear that it is still “yes” after
removing y from all sets in C. Indeed, we can use the same solution B after
removing y from all sets in B.

If the answer to the basis was “no”, then it is still “no” after removing y
from C. If C had more than 2k sets, it still has more than 2k sets, so a solution
B cannot exists. If C has less than 2k sets, suppose, for sake of contradiction,
that a solution B exists after the removing of y. Then, I can construct a solution
to the original C by adding y to each set of B which has x. Contradiction.

Thus, the answer is preserved.

Part (c)

If C has more than 2k sets, then I can immediately answer “no”. So suppose C
has ≤ 2k sets. I can simplify the sets as in part (b) in polynomial time in the
number of sets and the number of items. After simplification, each two items
must disagree on at least one set to belong to, so there can be at most 22k − 1
items. So I have reduced the problem to a problem with at most 2k sets and
at most 22k − 1 items, so the problem is now a function of k. Thus, set basis is
fixed-parameter tractable with respect to k.



Nada Amin (6.854 Problem 9-3) (11/07/07) 5

Problem 3

Part (a)

I show that maximum satisfability is fixed-parameter tractable with respect to
treewidth. I modify the algorithm presented in class for the decision version of
SAT to keep track of the number of clauses satisfied (as opposed to just whether
all clauses are satisfied) in the truth table for a set of merged clauses.

Initially, my algorithm has one truth table per clause. For each truth as-
signment in a truth table, the number of clauses satisfied is naturally 1 if the
clause is satisfied with the given truth assignment and 0 otherwise. I eliminate
variables using the elimination ordering on the graph where vertices are vari-
ables and edges represent shared clauses between variables. When I eliminate
a variable, I merge all the clauses (or, recursively, set of clauses) in which it
appears and create one truth table out of the smaller ones. I fill in each possible
truth assignment (of the other variables) in the big table as follows: for the two
possible truth assignments of the eliminated variable, I compute the sum of the
number of satisfied clauses over all projections in the smaller tables, keeping the
maximum sum and the corresponding best truth assignment of the eliminated
variable for this truth assignment of the other variables. At the end, I’ll have a
few truth tables corresponding to independent sets of clauses. I can then simply
choose the maximum number of clauses satisfied from each table and sum them
to get the total maximum number of clauses satisfied. This algorithm works
because it preserves the number of clauses satisfied as the variables are elimi-
nated, in the same way that the original algorithm preserves the satisfiability
of the formula. The order of its running time remains the same, so it’s still
polynomial for a fixed treewidth.

Part (b)

I show that vertex cover is fixed-parameter tractable with respect to the treewidth
parameter by reducing vertex cover to maximum satisfiability.

Each vertex corresponds to a variable: the vertex is in the cover if its corre-
sponding variable is true. Each edge corresponds to an or-clause of its endpoints.
In order to minimize the number of variables that are true, for each variable x,
I add the one-variable clause (not x).

Now, I can solve the corresponding maximum satisfiability problem. This
works because note that if any edge is not covered by the returned solution,
it means that there is another optimal solution in which the edge is covered,
which corresponds to another optimal solution in which the corresponding clause
is true. Indeed, simply set either variable of the or-clause to true: this won’t
change the number of the clauses satisfied because it will toggle the or-clause
from false to true and toggle a variable negation clause from true to false. So
if the solution returned by the problem is missing some edges, I can cover them
by choosing any of its endpoints, indifferently.

So I’ll have n variables and n + m clauses in the corresponding maximum



Nada Amin (6.854 Problem 9-3) (11/07/07) 6

satisfiability problem. The treewidth graph of this maximum satisfiability prob-
lem is the same as the treewdith graph of the vertex cover problem, because
the one-variable negation clauses don’t add any edges (as they are not shared
clauses). Therefore, by part (a), vertex cover is fixed-parameter tractable with
respect to the treewidth parameter.



Nada Amin (6.854 Problem 9-4) (11/07/07) 7

Problem 4

Part (a)

I give a 9-competitive deterministic algorithm for optimizing the total distance
travelled up and downstream before I find a bridge.

Algorithm

I go upstream for 1 meter and back, then downstream for 2 meters and back,
then upstream for 4 meters and back, then downstream for 8 meters and back, . . .,
then upstream for 2k meters and back, then downstream for 2k+1 meters and
back, and so on, until I find the bridge.

Analysis

Let d be the distance at which the bridge is located. Let k = blog2 dc. In the
worst case, I will be going up and down until I go 2k+1 meters in one direction
and back, and then a distance d in the other direction to finally find the bridge.
In the worst case then, d = 2k + c where 0 < c < 2k (if c = 0, I would find the
bridge without needing to go the distance 2k+1 in the wrong direction). Notice
that k = log2(d− c). So the worst-case distance I’ll have to travel before finding
the bridge is:

d′ = 2

(
k+1∑
i=0

2i

)
+ d

d′ = 2(2k+2 − 1) + d = 2(4 · 2k − 1) + d = 2(4(d− c)− 1) + d

d′ = 8d− 8c− 2 + d = 9d− 8c− 2
d′ ≤ 9d

Thus, the competitive ratio is 9.

Part (b)

I give a randomized 7-competitive algorithm for the problem.

Algorithm

The algorithm is similar to part (a), except that I flip a fair coin once to decide
whether to go upstream or downstream initially.

Analysis

I have a probability 1
2 of starting on the “worst” side and travelling the same

distance d′ as in part (a). I also have a probability 1
2 of starting on the “best”



Nada Amin (6.854 Problem 9-4) (11/07/07) 8

side and travelling a smaller distance, saving on the (k +1)th round trip. Thus,
using the randomized algorithm, the expected distance I’ll travel before finding
the bridge is:

d′′ =
1
2

(
2

(
k+1∑
i=0

2i

)
+ d

)
+

1
2

(
2

(
k∑

i=0

2i

)
+ d

)

d′′ =

(
k+1∑
i=0

2i

)
+

(
k∑

i=0

2i

)
+ d

d′′ = 2

(
k+1∑
i=0

2i

)
+ d− 2k+1

d′′ = d′ − 2k+1 = d′ − 2 · 2k = d′ − 2(d− c) = d′ − 2d− 2c

d′′ = 9d− 8c− 2− 2d− 2c = 7d− 9c− 2
d′′ ≤ 7d

Thus, the expected competitive ratio is 7.



Nada Amin (6.854 Problem 9-5) (11/07/07) 9

Problem 5

Part (a)

I show that any deterministic strategy for this problem is terrible from a com-
petitive perspective. Indeed, for any deterministic strategy, I can contrive a
setting which forces the strategy to choose the date of lowest rank, as follows.
The first date has a score of 0. As long as the strategy decides to break up, the
score of the ith date is −i + 1. Once the strategy accepts a date, say the ith
date, the remaining k − i dates have scores set to 1, 2, . . . , k − i. This way, the
deterministic strategy chooses the date with the worst score, i.e. the one with
the lowest rank.

Part (b)

I devise a random strategy that gives me a constant probability of ending with
the absolute best companion.

I divide the pool of k partners into two sets, A and B, each partner inde-
pendently having probability 1

2 of being in either set. I date each person in A
and break up, remembering the score of the best partner seen in A. I proceed
to dating the persons in B. If I find a date in B with a better score than the
best score seen in A, I stay with them forever.

The probability that I end up with the absolute best companion, pb, is≥ than
the probability that the second best person ended up in A and the best person
ended up in B. Since, these two probabilities are independently 1

2 , pb ≥ 1
4 . So

I have a constant probability of ending up with the absolute best companion.

Part (c)

I devise a randomized strategy in which the expected rank of my final choice is
O(log k).

I divide the pool of k people into sets A and B like in part (b). I date all
the people in A, ranking them. When I date the people in B, I decide to stay
forever with the first person whose rank is better than the rank of the (2 log k)th
person in A.

I consider 3 cases for k large enough.

1. Suppose there is no person in B that is better than the (2 log k)th best
in A. This means that the best 2 log k persons are in A, so this case has
probability 1

2

2 log k = 1
k2 . In this case, I might end up with the person of

the lowest possible rank (k).

2. Suppose the (2 log k)th person in A has rank > 12 log k. This means that
at most 2 log k of the best 12 log k people are in A. To upper-bound
the probability of this case, I use the Chernoff bound. My indicator
variable Xi denotes whether the ith best person belongs to A. Then,
P
[∑12 log k

i=1 Xi ≤ 2 log k ≤ (1− 2
3 )6 log k

]
≤ e− 4

3 log k ≤ 1
k . In this case,



Nada Amin (6.854 Problem 9-5) (11/07/07) 10

let’s suppose I might end up with the person of the lowest possible rank
(k) for sake of upper bounding the expectation.

3. If (1) and (2) don’t hold, then I’ll end up with a companion whose rank
is < 12 log k. I upper-bound the probability of this case by 1.

Putting it all together, the expected rank of my final choice, E [rank], is ≤
1
k2 · k + 1

k · k + 1 · 12 log k = O(log k).

Part (d)

People are in one of two dating phases: sample phase (set A) and commit phase
(set B). During the sample phase, it might be hard to stick to the strategy
and move on no matter what if you find someone you really like. The problem
doesn’t deal with the companions actually having strategies of their own, so
I won’t even go into the headaches and heartbreaks that can occur between
partners in distinct dating phases.


