
6.823: Lab 2 Questions

Nada Amin

namin@mit.edu

Due: 20 October 2008

1. The hit rate increases with higher associativity and higher capacity. The
three cache models agree highly. The number of rows most dramatically
affect the hit rate, while the associativity and block size affect it minorly.

I am not surprised that the three cache models agree, because the differ-
ence is just in the translation, and shouldn’t affect the hit rate much.

It is obvious why the hit rate increases with increasing associativity and
increasing number of rows as we are in effect using a bigger cache. The hit
rate increases with increasing block sizes, because we don’t have to fetch
the same page multiple times.

I further explore the more interesting trade-off between number of rows
and block size at the same cache capacity. The sweet spot on the graph
is with 26 number of rows and block sizes of 25 bytes.

2. The working set for a SPEC benchmark (used gap for INT and swim for
FLOAT) is very large and doesn’t fit in a cache. The working set is not
supposed to fit in a cache, because then it wouldn’t test all the relevant
parts of the architecture like the replacement policy.

To calculate the working set, I study the graph, looking for a value of
log(r) after which the hit rate stagnates. Then the working set is r · b

where b the block size (here, 4 bytes). I estimate r to be 24, because the
FLOAT program has a sudden significant increase at the tail.

The INT program seems to benefit more steadily from increasing the num-
ber of rows. For this reason, the FLOAT program might benefit more from
a higher associativity. Thus, I would choose a cache configuration with
more associativity in the FLOAT program than in the INT program.

3. The physically indexed, virtually tagged cache model doesn’t make sense
because, if we get the physical page number for indexing, we might as well
use it later for tagging. Getting the physical page number takes time, and
if we use it for indexing, this cost is incurred upfront. Once we get to the
tagging phase, there is no advantage of using a virtual tag if we can use a
physical tag.

1

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25

hi
t r

at
e

log(number of rows)

physical index physical tag
virtual index physical tag

virtual index virtual tag

Figure 1: Varying the number of rows for SPEC gap. Block size is 4 bytes,
associativity is 1.

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 2 4 6 8 10 12

hi
t r

at
e

log(block size)

physical index physical tag
virtual index physical tag

virtual index virtual tag

Figure 2: Varying the block size for SPEC gap. Number of rows is 512, asso-
ciativity is 1.

2

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0 2 4 6 8 10 12 14 16

hi
t r

at
e

associativity

physical index physical tag
virtual index physical tag

virtual index virtual tag

Figure 3: Varying the associativity for SPEC gap. Number of rows is 512, block
size is 4 bytes.

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 1 2 3 4 5 6 7 8 9 10

hi
t r

at
e

log(number of rows)

physical index physical tag
virtual index physical tag

virtual index virtual tag

Figure 4: Varying the number of rows for SPEC gap while fixing the cache
capacity. Cache capacity is 211. Associativity is 1.

3

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25

hi
t r

at
e

log(number of rows)

swim
gap

Figure 5: Comparing varying the number of rows for SPEC gap (INT) and swim
(FLOAT). Block size is 4 bytes, associativity is 1.

4. Different processes will have different mappings from virtual to physical
addresses. Thus, it is possible for the same virtual address to point to
different physical addresses in different processes. Thus, using a virtual
tag might lead us to hit the wrong data.

For the physically indexed, physically tagged cache model, no modifica-
tions are necessary. For the virtually indexed, physically tagged cache
model, we might have multiple copies of the same physical data lying
around in the case where two different processes access the same physical
data with two different virtual addresses. This is bad, because if one up-
dates the data in its cache slot, the other might not see it. As explained
above, the virtually tagged cache model is even worse, because we might
hit the wrong data. One fool-proof albeit inefficient modification is to
simply flush the cache when switching processes. In the virtually indexed,
physically tagged cache model, we could instead have a physically indexed
structure where we keep track of which process last wrote some physical
data. Then, when reading some data, we check that the current process
is the one who has written it last in order to return a hit.

For the virtually indexed, virtually tagged cache model, given a page size
of 256 bytes and a cache size of 512 bytes, some cache configurations
work. The trick is for the index to be independent of the virtual page
number. In addition, it is necessary to tag each cache entry with a process
number along with the virtual tag. The cache configurations that work

4

in this model are those with log(r) + log(b) ≤ log(p) = 8, where r is
the number of rows, b is the block size and p is the page size. Thus, in
order to use the cache to the fullest, we need at least a 2-way cache, so
that abr = 512, where a is the number of ways of the cache. For 2-way
caches, we can vary log(r) from 1 to 7 and let log(b) = 8 − log(r). More
generally, for a-way caches, we can vary log(r) from 1 to 8 − log(a), and
let log(b) = 9 − log(a) − log(r).

5. I simply created a pin tool which counts the number of unaligned memory
accesses and all memory accesses. The percentage of unaligned memory
accesses on the benchmark vary from 0.2% to 15%. Our assumption makes
sense, because most of the time, we will stay within a block. In the worst-
case benchmark, the probability that we need to read more than one block
of size 25 bytes for one memory access is 0.15

25 = 0.4%.

In any case, it makes sense that the frequency of unaligned memory ac-
cesses would be low, since the memory accesses are usually arranged by
high-level programs to be word-aligned.

5

