
6.823: Lab 3 Questions

Nada Amin
namin@mit.edu

Due: 7 November 2008

1. When possible, it’s more efficient to move code out of the analysis function
and into the instrument function, because the instrument code is executed
once, while the analysis code is executed repeatedly.

Since we already know whether a branch has been taken or not during
the analysis, it is more judicious to have two analysis functions, one for
actually taken branches and one for actually not taken branches, so that
when we collect the statistics, we can avoid an extra if statement.

I haven’t noticed a big speed-up from this change. Perhaps, the overhead
of an extra if statement per analysis is rather negligible compared to the
overall overhead per analysis.

2. My implementation is based on [1].

I keep a table of N perceptrons. I also keep track of h bits of global history,
which records whether each of the h most recent branches are taken or not
taken. A perceptron learns to compute t(x1, . . . , xh): given the h bits of
global history, it decides whether the target branch is taken or not. The
perceptron has h + 1 weights, one for each history bit and one for the
branch bias which is independent of the history. If it fails to predict the
outcome correctly, the perceptron updates its weights.

The perceptron computes whether the branch is taken as follows:

w0 +
h∑

i=1

wi · xi > 0

where each xi is 1 or −1 depending on whether the ith most recent history
bit indicates taken or not taken.

The perceptron updates its weights when it fails to predict the actual
outcome. Let t be 1 if the branch is actually taken and −1 if the branch is
actually not taken. Then, the weights are updated as follows: w′

0 ← w0+t
and w′

i ← wi + txi for i ∈ {1, . . . , h}.
I chose this perceptron-based algorithm for several reasons:

• The algorithm is elegant and straightforward to implement.

1



• It combines global history and local history judiciously. I only need
to explicitly track the global history, and the local characteristics are
encoded in the weights. Thus, this algorithm is rather efficient in
memory usage.

• It outperformed all other algorithms which I tested with similar mem-
ory usage.

I implemented other algorithms, inspired by [2] and the class discussion: a
bimodal branch predictor, a local branch predictor, a combined local and
percetron branch predictor. The perceptron predictor outperformed the
other algorithms because of its efficient use of memory and its judicious
combination of local and global history.

I decided to use INT8 for each weight. Each perceptron is simply an array
of h + 1 weights. I keep a table of N perceptrons, represented as an array
of N arrays of h + 1 INT8. I also keep a UINT64 (64 bits) for the global
history. Thus, the global memory usage is

8 ·N · (h + 1) + 64

I tried the following combinations of N and h, each totalling 32832 <
33792 = 33K bits of global memory:

• N = 26, h = 63

• N = 27, h = 31

• N = 28, h = 15

Each of these combinations gave me an average accuracy in the 95% range
for the benchmarks. The middle combination performed best, so it’s my
final choice.

3. As explained in [1], it is perfectly possible to implement the perceptron
predictor in hardware. In addition, several optimizations are possible: for
example, since the inputs xi are just 1 and −1, it is not necessary to
perform full multiplications when calculating the outcome.

If implemented in silicon, the challenge is to keep the prediction calcula-
tion fast enough to complete in a cycle. If that’s not always possible, we
can use the percepton predictor in conjunction with a simpler faster pre-
dictor. If the percepton predictor contradicts the simpler faster predictor,
it overrides it, thus potentially catching the mispeculation earlier.

4. In a real machine, several predictions might be made before an update
occurs because of pipelining. Indeed, a second branch might follow a first
branch so closely that it is necessary to speculate on the second before the
first has been (dis)confirmed. Similarly, a third branch might follow and
so on. In particular, such a scenario could occur if a very tight loop is

2



consistently speculated so as to loop, creating a serie of speculations from
the same branch.

The impact on prediction is that the history needs to be updated to take
into account speculation so that predictions can be made consistently re-
gardless of whether previous branch outcomes are merely speculated or
confirmed. For my predictor in particular, I would need to update the
global history speculatively with the predicted outcomes. Then, in case
of mispeculation, I would need to undo the mispeculated outcome (and
all following outcomes) in the global history. This recovery mechanism
would require extra memory to be able to shift back the older history
bits. The number of extra history bits needed for recovery is bounded
by the maximum number of predictions that can occur before the first is
updated.

References

[1] Daniel A. Jimenez and Calvin Lin. Neural methods for dynamic branch
prediction. ACM Transactions on Computer Systems, 20:369–397, 2002.

[2] Scott McFarling. Combining branch predictors. WRL Technical Note TN-
36, June 1993.

3


