
Bio-Inspired Adaptive Machines

Mini-Project

Neural Networks – Character Recognition

Students:

Nada Amin
Louis Villedieu

Assistant:

Claudio Mattiussi

April 2004

 Neural Networks – Character Recognition p.1

Table of Contents

1. Task of the Neural Network...3

2. Varying the Learning Rate...3

Some theory...3
Observations..4

3. Varying the Patterns...5

4. Varying the Number of Hidden Units..6

On the Continuity of Outputs..11

5. Varying which input units are linked...11

6. Conclusion...13

Appendix A (ambiguous.py)..14

Appendix B (`python ambiguous.py`)...19

 Neural Networks – Character Recognition p.2

1. Task of the Neural Network
The task of the network is to recognize the letters of the alphabet.

Each input unit represents a pixel. There are 5x7 binary input units, forming an image
that represents a character. For example, the character A is represented by:

0 1 1 1 0
1 0 0 0 1
1 0 0 0 1
1 1 1 1 1
1 0 0 0 1
1 0 0 0 1
1 0 0 0 1

You can see that the 1's “draw” an A. There are 26 output units, each of which stands for
a letter, thus the representation is local.

So the task of the network is to activate the output unit that corresponds to the letter
drawn in the grid of input units.

2. Varying the Learning Rate

Some theory1

At every cycle, during training, the synapses weights are changed
according to the back-propagation of error formula, ∆wij =η δi xj,
where:
• ∆wij stands for the weight alteration applied to the considered

synapse,
• xj is the output of the presynaptic neuron,
• δi = (ti-yi) Φ̇ (Ai)

where:
• (ti-yi) is the error on the presynaptic neurone.
• Φ̇ (Ai) is the derivate of the output function at the

current activation as illustrated in Illustration 1.

This back-propagation of error allows the neural network to learn.

1 Inspired by the Professor Dario Floreano's courses notes “Bio-inspired Adaptive Machines: Neural
System”

 Neural Networks – Character Recognition p.3

Illustration 1 Output
function derivate

Observations
We have trained the network with various learning rates. Table 1 lists our observations.

Learning rate η Approximate number of
cycles to obtain an error <

0.1

Comments

8.0 not effective
6.0 either 250 or not effective fluctuation
5.0 200-300+ fluctuation
4.5 250-350 fluctuation
4.0 250-350 fluctuation
3.0 300 little fluctuation
2.5 350-450
2.0 500
1.0 1000
0.5 2000
0.25 4000
x < 2 1000/x

Table 1 number of cycles to train the network as a function of the learning rate

So, at first sight, it seems that the learning rate determines the speed with which the error
converges to a minimum. Thus the number of cycles should be inversely proportional to
the learning rate. This is verified for small learning rates (0 < η < 2).

However, with higher learning rates, we may jump over a local minimum and even
increase the error during a step.

The figures 1 and 2 show the same gradient descent with
two different learning rates. The vertical axis represents
the error and the horizontal axis the weight. In Figure 1,
the learning rate is small, and the weight is slightly
changed in the direction of the local minimum. In Figure
2, the learning rate is high, and the weight is changed so
much that the local
minimum is jumped over.

The principle illustrated
by these figures explains
why we observe
fluctuations with higher
learning rates.

 Neural Networks – Character Recognition p.4

Figure 1 small learning rate Figure 2 high learning rate

3. Varying the Patterns
In order to recognize the figures from 0 to 9, the input units don't need to change since
we can represent the image of the digits with the same grid. However, for the 10 digits,
we would need an additional 10 output units to represent them locally. As for the hidden
layer, our observations of the section “Varying the Number of Hidden Units” are helpful
here. We realize that with 10 hidden units, we can “code” for 210 = 1024 values2, so 10
hidden units are largely sufficient in this respect. We guess that we actually need only 6
units, since 26 = 64 > 26+10.

We have implemented the changes for the digits 0 and 1. We added two output units to
the network and changed the pattern set as follows:

In the header section, we changed the number of patterns and the number of output units:

No. of patterns : 28
No. of output units : 28

To each output pattern, we appended two 0's to account for the two new output units.

Finally, we added two new patterns to recognize the figure 0 and the figure 1.

Input pattern 27:
1 1 1 1 1
1 0 0 0 1
1 0 0 0 1
1 0 0 0 1
1 0 0 0 1
1 0 0 0 1
1 1 1 1 1
Output pattern 27:
0 1 0
Input pattern 28:
0 0 1 0 0
0 1 1 0 0
1 0 1 0 0
0 0 1 0 0
0 0 1 0 0
0 0 1 0 0
0 1 1 1 0
Output pattern 28:
0 1

Obviously, we couldn't use the same figure for the digit 0 and the letter O. So we decided
to add 1's in the four corners.

2 This formula is not accurate:
• Since the outputs of the hidden units are continuous, the minimal number of hidden units may be

lower (see the remark “On the Continuity of Outputs” at the end of the section “Varying the Number
of Hidden Units”).

• Since the minimal binary encoding might not be linearly separable, the minimal number of hidden
units may be higher.

But it does give a good indication.

 Neural Networks – Character Recognition p.5

If we had actually used the same figure for both the digit 0 and the letter O, then we
would ask the network to give two different outputs for the same input. This implies a
permanent error, because if the network learns one of the inputs, then it will get the other
input wrong, and so on. As shown in Figure 3, we observe a noisy stabilization above 1.

Figure 3 error graph when 2 patterns conflict

If we use just slightly different figures for the digit 0 and the letter O, as we did, then it is
possible for the network to distinguish between them. Perhaps, the network might need
more cycles to be trained. In our case, the network was able to learn all the patterns with
no change to the hidden layer in about 500 cycles with a learning rate of 2.0. We even
tested a case where the digit 0 and the letter O only differ by one pixel. The network does
not seem to need much more cycles to learn the patterns. Our conclusion is that it seems
the network is pretty good at learning all the patterns when these can be distinguished
from one another, even if only slightly.

4. Varying the Number of Hidden Units
We delete one by one the nodes of the hidden layer, trying to re-train the network after
each deletion.

If we think about the problem before hand, if we make the hypothesis that the hidden
units can be either active (=1) or inactive (=0) (step activation function, which is not the
case), then, for the network to be trainable, there must be enough hidden units to “code”
for all the different characters we want to recognize. In our case, we have 26 characters,
so we need at least ceil(log2(26)) = 5 bits, that is units in the hidden layer. However, in
our case, the activation functions are not discrete, and therefore, there might be other
ways to code for the 26 characters with less units in the hidden layer (see the remark “On
the Continuity of Outputs” at the end of this section). Our results are in Table 2.

 Neural Networks – Character Recognition p.6

Number of
hidden units

Approximate number of cycles
to obtain an error < 0.1

10 500
9 650
8 700-850
7 1250
6 1600
5 3000

Table 2 number of cycles as a function of the number of hidden units (learning rate=2.0)

The network is not able to learn the patterns with less than 5 hidden units. For 4 hidden
units, the error fluctuates around3 10 = 26 – 24 = nb_chars – 2nb_hidden_units as shown in
Figure 4.

Figure 4 error graph for network with 4 hidden units

So, indeed, this confirms that the network is trainable when the number of hidden units is
greater than or equal to 5.

We observe that the number of cycles needed to train the network increases as the number
of hidden units decreases. Simply, there are more good ways to encode the input
information in the hidden layer when there are more hidden units, and therefore, it is
easier to find one of these good ways. Talking about speed and efficiency, adding hidden
units may not always be a good idea as it takes more memory to store the network
structure and above all, more resources and time to correct the weights of the synapses.

Regarding the way the input information is coded in the hidden layer, here is what we
predicted beforehand:

3 This formula may be a coincidence but it seems correct

 Neural Networks – Character Recognition p.7

There are two extreme ways in which the input information could be encoded in the
hidden layer:

1. as in a local representation, that is, each hidden input represents one pattern, (for
an absolute local encoding, the problem should be linearly separable)

2. as in a binary representation, that is, each activation combination in the hidden
layer represents a pattern.

Our intuition is that as the number of hidden units increases, the encoding will tend to be
closer to way 1 (local representation), and, inversely, as the number of hidden units
decreases, the encoding will tend to be closer to way 2 (binary representation).

These trends were hard to verify in the character-recognition network, because of its
irregularity and complexity. So we decided to analyze a smaller network to see if we
could confirm these trends.

To do this analysis, we used a simple network that simply recognizes binary numbers up
to 7. There are three inputs representing the bits of the number, and there are 8 outputs
representing the numbers from 0 to 7 locally.

Figure 5 simple network that recognizes binary numbers from 0 to 7

We trained the simple network with 8 and 3 hidden units, and looked at the encoding in
the hidden units. Our observations are summarized in Table 3.

 Neural Networks – Character Recognition p.8

8 hidden units 3 hidden units
pattern 1 2 3 4 5 6 7 8 number

of X's
1 2 3 number

of X's
0 X X 2 0
1 X X X X 4 0
2 X X X 3 X 1
3 X X X 3 X 1
4 X X X 3 X 1
5 X X 2 X 1
6 X X X 3 X X 2
7 X X X 3 X X 2

Table 3 comparison of encoding in trained simple networks with 8 and 3 hidden units

The rows represent the patterns (number 0 to 7) and the columns the hidden units.
An X indicates an output of the hidden unit >0.75. For the smaller network.

We see that our intuition is hard to verify because of the continuity of the output
functions of the hidden units. For example, in the case with 3 units, if we look only at the
X's, we would not be able to distinguish between pattern 0 and pattern 1. Yet the network
can. So the continuity plays a role that we have neglected.

We notice something however. When we count the number of X's for every pattern, the
range of possible values is not exploited when the number of hidden units is large. Here,
with 3 hidden units, the number of X's varies between 0 and 2, while with 8 hidden units,
it varies between 2 and 4. This somewhat matches our intuition, because a binary
representation would have a larger range than a local representation.

To confirm our observations, we looked again at our character-recognition network, with
10 hidden units and 5 hidden units. We counted the number of X's (hidden output > 0.75)
for every pattern. Our results are displayed in Table 4.

 Neural Networks – Character Recognition p.9

Pattern # Number of
X's with

10 hidden
units

Number of
X's with
5 hidden

units
1 5 2
2 5 1
3 5 2
4 4 1
5 4 1
6 4 3
7 5 3
8 4 2
9 5 3

10 4 2
11 3 3
12 3 3
13 5 0
14 5 2
15 5 2
16 6 3
17 4 3
18 4 5
19 6 3
20 5 4
21 4 1
22 7 2
23 3 3
24 4 1
25 5 3
26 5 1

min 3 0
max 7 5

Table 4 comparison of #X’s in trained
networks with 10 and 5 hidden units

The observations concur. With 5 hidden units, we see that the full range 0-5 is
represented, while with 10 hidden units, only the range 3-7 is represented. We observe
that the range for more hidden units is even smaller. With the histograms we can see that
X's counts have a better repartition in the 5 hidden units case. All this allows us to affirm
that more hidden units leads to a more local representation and fewer hidden units leads
to a more binary representation.

 Neural Networks – Character Recognition p.10

Histogram 1 Occurrences of X's counts with 10 hidden
units

Remark: we notice that choosing to place X's where the
activation is greater than 0.75 instead of the normal
value of 0.5 implies a bias that should not be a problem
as it appears in both histograms.

Histogram 2 Occurrences of X's counts with 5 hidden
units

On the Continuity of Outputs
Indeed, the simple network shows that it is possible, because of the continuous nature of
the output of the hidden units, to “code” for all patterns with less than the minimum
number of units required for a binary representation of all these patterns. We tried to train
the simple network with only two hidden units and we succeeded after 6000 cycles (with
a learning rate of 2.0), though the error fluctuates a lot in the range 2'000 - 4'000 cycles as
shown on Figure 6.

Figure 6 error graph of simple network with only 2 hidden units

5. Varying which input units are linked
We wrote a little python program, listed in Appendix A, to find the smallest sets of input
units needed to recognize all the characters.

In the best imaginable case, we would need only 5 (=ceil(log2(26))) input units. However,
given the figures to recognize, we found that the smallest number of input units needed is
8. There are a few such small sets. Here is the first one of them (see Appendix B for a
complete listing):

11000000000000101100001000000011000

That is we keep only the units 1, 2, 15, 17, 18, 23, 31, 32. We generated a network with
only these input units linked to the hidden units. It is shown in Figure 7.

 Neural Networks – Character Recognition p.11

Figure 7 Neural network with only eight, well-chosen linked input units

This network takes ~600 cycles to train with a learning rate of 2.0. It is interesting to note
that the network does not require that many more cycles, though the task seems harder
because there are less "clues" for the network to work with.

Now, if we remove the links of input 1 from this network, we get an ambiguous network.
Using our python program (see the function lettersamb in Appendix A), we find that
pattern 10 (figure J) and pattern 15 (figure O) look the same, as do pattern 1 (figure A)
and pattern 16 (figure P). Since the network is ambiguous, it will not be possible to train
it. We tried to train the network. The error stabilizes around 2. As before, refer to sections
“Varying the Patterns” and “Varying the Number of Hidden Units”, it seems that the
error stabilizes around the number of patterns that the network fails to learn. In this case,
it is 2, because the network, at best, can only learn one element of each list of
indistinguishable figures. So here, since we have two pairs of ambiguous patterns, it can,
at best, only learn 2 of them, and thus will fail to learn the 2 others.

 Neural Networks – Character Recognition p.12

6. Conclusion
Two compromises have to be found with back-propagation neural networks:
1) If we choose a high learning rate, we may get faster to a good configuration of the

network but we also have a higher risk of having to wait longer. This dispersion in the
number of accomplishment cycles can be explained by the length of the “jumps” in the
weights space that are longer with higher learning rates.

2) The number of neurones in the hidden layer strongly affects the speed of the whole
process and the robustness of the solution. A particular attention should be taken
considering the choice of the architecture of the network.

The character recognition is a problem that will never be fully solved as there will always
be at least one font or one way to write something that will not be recognized. But, the
neural networks approach was very interesting for us to apply to this problem.

In spite of the theoretical omnipotence of the neural networks (any kind of algorithm
could be synthesized) we cannot expect to get a solution to every problem as the choices
of the parameters and the architecture are critical and there are always the problems of the
local minimum and the specialization. But, we can spare ourselves a lot of understanding
and modeling of the phenomenons included in the problem by letting the neural network
just learn.

 Neural Networks – Character Recognition p.13

Appendix A (ambiguous.py)
This is ambiguous.py, a Python program to run with the command:
python ambiguous.py
See the output given in Appendix B.
One interesting trick used here is the iterator of genMask which is a “Simple Generator”.
As there is a huge quantity of possible masks, it was a necessity to use the masks one by
one.
Further explanations on “Simple Generators” can be found at
http://www.python.org/peps/pep-0255.html .

"""Masks, patterns and ambiguities.

When run as a program, this module finds all the smallest perfect
masks (this may take a while!) for 26 patterns representing the
letters of the alphabet. A perfect mask is one which still allow all
the pattern to be distinguished from one another.

Authors: Nada Amin <nada.amin@epfl.ch> (mostly)
Louis Villedieu <louis.villedieu@epfl.ch>

Version: 2004-04-15
"""

def maskPattern(pattern, mask):
 """Returns the masked pattern.

 Examples:

 >>> maskPattern('110110', '000000')
 []
 >>> maskPattern('110110', '001100')
 ['0', '1']
 """
 newpattern = []
 for i in range(0,len(mask)):
 if mask[i] == '1':
 newpattern.append(pattern[i])
 return newpattern

def genMasks(ones, size):
 """Returns an iterator of all masks of the given size containing
 the given number of 1's.

 Examples:

 >>> gen = genMasks(2, 3)
 >>> gen.next()
 ['1', '1', '0']
 >>> gen.next()
 ['1', '0', '1']
 >>> gen.next()
 ['0', '1', '1']
 >>> gen.next()
 Traceback (most recent call last):
 StopIteration
 """

 Neural Networks – Character Recognition p.14

 if ones > size:
 print 'ones (%d) is bigger than size (%d)' % (ones, size)
 return

 if size == 0:
 yield []
 return

 if ones > 0:
 gen = genMasks(ones-1,size-1)
 while 1:
 try:
 next = gen.next()
 next.insert(0,'1')
 yield next
 except StopIteration:
 break

 if size > ones:
 gen = genMasks(ones, size-1)
 while 1:
 try:
 next = gen.next()
 next.insert(0,'0')
 yield next
 except StopIteration:
 break

 return

def isamb(mask, patterns):
 """Given the mask, returns True if at least two patterns look the
 same when masked, false otherwise.

 Examples:

 >>> isamb('100', ['100', '110'])
 True
 >>> isamb('010', ['100', '110'])
 False
 """
 masked = []
 for p in patterns:
 m = maskPattern(p, mask)
 if m in masked:
 return True
 masked.append(m)
 return False

def genPerfectMasks(ones, size, patterns):
 """Returns an iterator of all masks of the given size containing
 the given number of 1's that still allow the given patterns to be
 distinguished unambiguously.

 Examples:

 >>> gen = genPerfectMasks(2, 3, ['111', '101'])
 >>> gen.next()
 ['1', '1', '0']
 >>> gen.next()

 Neural Networks – Character Recognition p.15

 ['0', '1', '1']
 >>> gen.next()
 Traceback (most recent call last):
 StopIteration
 """
 masks = genMasks(ones, size)
 while 1:
 try:
 mask = masks.next()
 if not isamb(mask, patterns):
 yield mask
 except StopIteration:
 break
 return

def findamb(mask, patterns):
 """Given the mask, finds which patterns look the same. Returns a
 list of (pattern, list of indices).

 Examples:

 >>> findamb('110', ['111', '110', '011', '010'])
 [(['0', '1'], [2, 3]), (['1', '1'], [0, 1])]
 >>> findamb('011', ['111', '110'])
 [(['1', '0'], [1]), (['1', '1'], [0])]
 """
 lst = [(maskPattern(patterns[i],mask), i) for i in range(0,len(patterns))]
 lst.sort()

 # find the duplicate masked patterns
 retlst = []

 # we start with the first pattern
 (prev_pattern,num) = lst[0]
 numlst = [num]

 for i in range(1,len(lst)):
 (p,num) = lst[i]
 if prev_pattern == p:
 # add the index to the numlst for this pattern
 numlst.append(num)
 else:
 # add the old list to retlst
 retlst.append((prev_pattern,numlst))
 # and start a new pattern list
 prev_pattern = p
 numlst = [num]

 # add the last found pattern to retlst
 retlst.append((prev_pattern,numlst))

 return retlst

def keepamb(mask, patterns):
 """Returns a list of lists, each list listing the index of the
 elements that have the same masked patterns. Only returns the
 lists with > 2 elements.

 >>> keepamb('110', ['111', '110', '011', '010', '000'])
 [[2, 3], [0, 1]]

 Neural Networks – Character Recognition p.16

 >>> keepamb('011', ['111', '110'])
 []
 """
 lst = findamb(mask, patterns)
 redlst = []
 for (p,els) in lst:
 if len(els) >= 2:
 redlst.append(els)
 return redlst

this is the input patterns for the characters of the 26 letters
letters = [
 '01110100011000111111100011000110001',
 '11110100011000111110100011000111110',
 '01110100011000010000100001000101110',
 '11110100011000110001100011000111110',
 '11111100001000011110100001000011111',
 '11111100001000011110100001000010000',
 '01110100011000010111100011000101110',
 '10001100011000111111100011000110001',
 '01110001000010000100001000010001110',
 '11111000010000100001000011000101110',
 '10001100101010011000101001001010001',
 '10000100001000010000100001000011111',
 '10001110111010110001100011000110001',
 '10001100011100110101100111000110001',
 '01110100011000110001100011000101110',
 '11110100011000111110100001000010000',
 '01110100011000110001101011001101111',
 '11110100011000111110101001001010001',
 '01110100011000001110000011000101110',
 '11111001000010000100001000010000100',
 '10001100011000110001100011000101110',
 '10001100011000110001100010101000100',
 '10001100011000110001101011010101010',
 '10001100010101000100010101000110001',
 '10001100010101000100001000010000100',
 '11111000010001000100010001000011111'
]

def lettersamb(mask):
 """Returns a list of lists of undistinguisable letters under the
 given mask.

 Example:

 >>> lettersamb('01000000000000101100001000000011000')
 [['j', 'o'], ['a', 'p']]
 """
 alpha = map(chr, range(ord('a'), ord('a')+27))
 return map(lambda x: map(lambda i: alpha[i], x), keepamb(mask, letters))

def _main():
 print 'Find a smallest perfect mask'
 print '============================'
 start = 5
 stop = 20
 mask = None
 for i in range(start, stop):
 print 'Trying with %d ones' % i

 Neural Networks – Character Recognition p.17

 gen = genPerfectMasks(i, 35, letters)
 try:
 mask = gen.next()
 break
 except StopIteration:
 pass
 if not mask:
 print 'No perfect mask found.'
 else:
 print 'Found mask %s.' % "".join(mask)
 print
 print 'Find all smallest perfect masks'
 print '==============================='
 print 'Found mask %s.' % "".join(mask)
 while 1:
 try:
 print 'Found mask %s.' % "".join(gen.next())
 except StopIteration:
 break

def _test():
 import doctest, ambiguous
 return doctest.testmod(ambiguous)

if __name__ == '__main__':
 _test()
 _main()

 Neural Networks – Character Recognition p.18

Appendix B (`python ambiguous.py`)
 This is the output of ambiguous.py (Appendix A). These are all the sets of 8 input units
needed to differentiate the alphabet (the perfect masks). It took a lot of time to get this
output. As there are many perfect masks with eight 1's, it would have been faster to find
one using a genetic algorithm. However, it would have been hard to confirm – as we did –
that there were no perfect masks with less than eight 1's.

Find a smallest perfect mask
============================
Trying with 5 ones
Trying with 6 ones
Trying with 7 ones
Trying with 8 ones
Found mask 11000000000000101100001000000011000.

Find all smallest perfect masks
===============================
Found mask 11000000000000101100001000000011000.
Found mask 11000000000000101100001000000010010.
Found mask 10100000000000101100001000000011000.
Found mask 10100000000000101100001000000010010.
Found mask 10010000000000101100001000000011000.
Found mask 10010000000000101100001000000010010.
Found mask 01001010000000000011001000000011000.
Found mask 01001010000000000011001000000010010.
Found mask 01001000100000000011001000000011000.
Found mask 01001000100000000011001000000010010.
Found mask 01001000000100000011001000000011000.
Found mask 01001000000100000011001000000010010.
Found mask 01001000000010000011001000000011000.
Found mask 01001000000010000011001000000010010.
Found mask 01001000000010000011000000001010100.
Found mask 01001000000000001101001000000011000.
Found mask 01001000000000001101001000000010010.
Found mask 01001000000000001101000000001010100.
Found mask 01001000000000001100001010000011000.
Found mask 01001000000000001100001010000010010.
Found mask 01001000000000001100000010001010100.
Found mask 01001000000000000111001000000011000.
Found mask 01001000000000000111001000000010010.
Found mask 01001000000000000111000000001010100.
Found mask 01001000000000000011001100000011000.
Found mask 01001000000000000011001100000010010.
Found mask 00101010000000000011001000000011000.
Found mask 00101010000000000011001000000010010.
Found mask 00101000100000000011001000000011000.
Found mask 00101000100000000011001000000010010.
Found mask 00101000000100000011001000000011000.
Found mask 00101000000100000011001000000010010.
Found mask 00101000000010000011001000000011000.
Found mask 00101000000010000011001000000010010.
Found mask 00101000000010000011000000001010100.
Found mask 00101000000000001101001000000011000.
Found mask 00101000000000001101001000000010010.
Found mask 00101000000000001101000000001010100.
Found mask 00101000000000001100001010000011000.
Found mask 00101000000000001100001010000010010.
Found mask 00101000000000001100000010001010100.
Found mask 00101000000000000111001000000011000.
Found mask 00101000000000000111001000000010010.
Found mask 00101000000000000111000000001010100.
Found mask 00101000000000000011001100000011000.
Found mask 00101000000000000011001100000010010.
Found mask 00011010000000000011001000000011000.
Found mask 00011010000000000011001000000010010.
Found mask 00011000100000000011001000000011000.
Found mask 00011000100000000011001000000010010.
Found mask 00011000000100000011001000000011000.
Found mask 00011000000100000011001000000010010.
Found mask 00011000000010000011001000000011000.
Found mask 00011000000010000011001000000010010.
Found mask 00011000000010000011000000001010100.
Found mask 00011000000000001101001000000011000.
Found mask 00011000000000001101001000000010010.
Found mask 00011000000000001101000000001010100.
Found mask 00011000000000001100001010000011000.
Found mask 00011000000000001100001010000010010.
Found mask 00011000000000001100000010001010100.
Found mask 00011000000000000111001000000011000.
Found mask 00011000000000000111001000000010010.
Found mask 00011000000000000111000000001010100.
Found mask 00011000000000000011001100000011000.

Found mask 00011000000000000011001100000010010.
Found mask 00001110000000000011001000000011000.
Found mask 00001110000000000011001000000010010.
Found mask 00001110000000000011000000001010100.
Found mask 00001100100000000011001000000011000.
Found mask 00001100100000000011001000000010010.
Found mask 00001100100000000011000000001010100.
Found mask 00001100000100000101001000000011000.
Found mask 00001100000100000101001000000010010.
Found mask 00001100000100000101000000001010100.
Found mask 00001100000100000011001000000011000.
Found mask 00001100000100000011001000000010010.
Found mask 00001100000100000011000000001010100.
Found mask 00001100000010000011001000000011000.
Found mask 00001100000010000011001000000010010.
Found mask 00001100000010000011000000001010100.
Found mask 00001100000000001101001000000011000.
Found mask 00001100000000001101001000000010010.
Found mask 00001100000000001101000000001010100.
Found mask 00001100000000001100001010000011000.
Found mask 00001100000000001100001010000010010.
Found mask 00001100000000001100000010001010100.
Found mask 00001100000000000111001000000011000.
Found mask 00001100000000000111001000000010010.
Found mask 00001100000000000111000000001010100.
Found mask 00001100000000000101001100000011000.
Found mask 00001100000000000101001100000010010.
Found mask 00001100000000000101000100001010100.
Found mask 00001100000000000011001100000011000.
Found mask 00001100000000000011001100000010010.
Found mask 00001100000000000011000100001010100.
Found mask 00001000001100000101001000000011000.
Found mask 00001000001100000101001000000010010.
Found mask 00001000001100000101000000001010100.
Found mask 00001000001100000011001000000011000.
Found mask 00001000001100000011001000000010010.
Found mask 00001000001100000011000000001010100.
Found mask 00001000001010000011001000000011000.
Found mask 00001000001010000011001000000010010.
Found mask 00001000001010000011000000001010100.
Found mask 00001000000100010101001000000011000.
Found mask 00001000000100010101001000000010010.
Found mask 00001000000100010100001010000011000.
Found mask 00001000000100010100001010000010010.
Found mask 00001000000100010100000010001010100.
Found mask 00001000000100010011001000000011000.
Found mask 00001000000100010011001000000010010.
Found mask 00001000000100010011000000001010100.
Found mask 00001000000100010010001010000011000.
Found mask 00001000000100010010001010000010010.
Found mask 00001000000100010010000010001010100.
Found mask 00001000000100000101101000000011000.
Found mask 00001000000100000101101000000010010.
Found mask 00001000000100000100101010000011000.
Found mask 00001000000100000100101010000010010.
Found mask 00001000000100000100100010001010100.
Found mask 00001000000100000011101000000011000.
Found mask 00001000000100000011101000000010010.
Found mask 00001000000100000011100000001010100.
Found mask 00001000000100000010101010000011000.
Found mask 00001000000100000010101010000010010.
Found mask 00001000000100000010100010001010100.
Found mask 00001000000010010011001000000011000.
Found mask 00001000000010010011001000000010010.
Found mask 00001000000010010011000000001010100.
Found mask 00001000000010010010001010000011000.
Found mask 00001000000010010010001010000010010.
Found mask 00001000000010010010000010001010100.
Found mask 00001000000010000011101000000011000.
Found mask 00001000000010000011101000000010010.
Found mask 00001000000010000011100000001010100.
Found mask 00001000000010000010101010000011000.
Found mask 00001000000010000010101010000010010.
Found mask 00001000000010000010100010001010100.

 Neural Networks – Character Recognition p.19

