
6.033 One-Pager #2
February 15, 2005

Nada Amin
Joseph, TR 11

UNIX pipes allow two processes to communicate by sending stream of bytes from one to

the other. Here, I discuss one significant limitation of pipes: they are one-way communication

channels.

 Using a two-way pipe, a developer could easily create a new interface to an old program.

For example, dc and bc are command-line calculators with equivalent functionality but different

interfaces, as dc uses postfix notation and bc infix notation. Instead of duplicating the

functionality of dc, a developer could create bc using a two-way pipe, converting the user input

into dc input and the dc output back into bc output. We could even imagine a more complex

GUI calculator that communicates with a command-line utility for all the calculations. Two-way

pipes would allow the developer to create many different interfaces to the same underlying

program.

In the same way that standard pipes allow a program to be composed as a chain of simpler

programs, two-way pipes would allow a program to be composed as a chain of interactions

between simpler programs. We could imagine an AI chatbot constructed from many interacting

components: a program that turns an affirmation into a question, one that queries the web to find

the meaning of the web, a generator of random quotes, etc.

In conclusion, the one-way limitation of standard pipes significantly restricts the ability of

developers to compose programs from connected components. Indeed, many systems propose

two-way pipes, known as “stream pipes” to bypass this limitation.


