
1 Definitions

DT convolution y[n] = x[n] ∗ h[n] =
∑+∞

k=−∞ x[k]h[n− k]

CT convolution y(t) = x(t) ∗ h(t) =
∫ +∞
−∞ x(τ)h(t− τ ]dτ

CFS synthesis x(t) =
∑+∞

k=−∞ akejkω0t =
∑+∞

k=−∞ akejk(2π/T )t

CFS analysis ak = 1
T

∫
T

x(t)e−jkω0tdt = 1
T

∫
T

x(t)e−j(2π/T )tdt

CFT synthesis x(t) = 1
2π

∫ +∞
−∞ X(jω)ejωtdω

DFT analysis X(jω) =
∫ +∞
−∞ x(t)e−jktdt

DFS synthesis x[n] =
∑

k=<N> akejkω0n =
∑

k=<N> akejk(2π/N)n

DFS analysis ak = 1
N

∑
n=<N> x[n]e−jkω0n = 1

N

∑
n=<N> x[n]e−j(2π/N)n

DFT synthesis x[n] = 1
2π

∫
2π

X(ejω)ejωndω

DFT analysis X(ejω) =
∑+∞

n=−∞ x[n]e−jkn

LCC differential equation
∑N

k=0 ak
dky(t)

dtk =
∑M

k=0 bk
dkx(t)

dtk ⇐⇒ H(jω) =
PM

k=0 bk(jω)kPN
k=0 ak(jω)k

LCC difference equation
∑N

k=0 aky[n− k] =
∑M

k=0 bkx[n− k] ⇐⇒ H(ejω) =
PM

k=0 bke−jkωPN
k=0 ake−jkω
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2 Summary of Bode Plotting Rules

First, normalize so that H(s) = c (s+z1)(s+z2)···(s+zn)
(s+p1)(s+p2)···(s+pn) .

2.1 Plotting Magnitude 20 log |H(jω)|
1. Identify locations and order (how many) of all poles and

zeros - these are the breakpoints.

2. Draw axes. Note that it is impossible to include ω = 0
on a log scale. Start with a small ω, like 1, 0.00001,
or whatever is appropriate. It is also useful to draw
vertical dashed lines at breakpoints.

3. Starting at the left, the magnitude plot starts flat un-
less there is a pole at s = 0 (start plot with slope of
−20dB/dec for each pole at origin) or there is a zero at
s = 0 (start with a plot of +20dB/dec for each zero at
origin).

4. Continue drawing asymptote in a straight line until you
reach a breakpoint (pole/zero).

5. For each pole, decrease slope of asymptote by 20dB/dec.
For each zero, increase slope by 20dB/dec. Go to step
4 unless there are no more breakpoints left.

6. Label one point on the y-axis by plugging in a value of
ω into H(jω) from any flat region of the y-axis using
slopes of asymptotes as guides.

7. Round corners by ±3dB for a more accurate magnitude
plot.

2.2 Plotting Phase ∠H(jω)

1. Identify locations and order (how many) of all poles and
zeros - these are the breakpoints.

2. Draw axes and vertical dashed lines at breakpoints.

3. Starting at the left, the phase plot starts at ∠H(jω = 0)
(usually 0o). Plot starts at +90o for each zero at origin
and −90o for each pole at origin. A leading minus sign
will add 180o to the phase. Plug in a very small imag-
inary number for jω and evaluate the phase manually
if you’re confused. Also, remember, shifting the phase
curve up or down by 360o doesn’t change anything.

4. The phase plot continues as a flat line until reaching
0.1×breakpoint.

5. Each pole substracts 90o from the phase, spread over a
distance of 0.1×pole location to 10×pole location. At
the pole location, the phase has dropped by 45o (halfway
there). The situation is the same for zeros, but this time
phase is added. Watch out for multiple poles/zeros. Go
back to step 4 unless there are no more breakpoints left.

6. Round all corners to ressemble an arctan curve (that’s
how phase is calculated) for more accurate plotting;
the phase round by about 6o at 0.1×breakpoint and
at 10×breakpoint.

3 Partial Fraction Expansion

3.1 linear, non-repeated factors

X(s) =
k1

s− p1
+ frack2s− p2 + . . .

ki =X(s)(s− pi)|s=pi

3.2 linear, repeating factors

The formula is inhuman, but reduces to the one for non-
repeated roots for the residual of the highest power term. So
find that, then substract that term from the equation and
keep going.

4 Quadratic Formula

ax2 + bx + c = 0

x =
−b±

√
b2 − 4ac

2a

5 Sampling

5.1 sampling period

The sampling rate (ωs) must be greater than twice the maxi-
mum frequency present in the input signal (ωM ).

ωs > 2ωM

ωs =
2π

T

5.2 low-pass filter

gain T

cutoff between ωM and ωs − ωM

5.3 c/d conversion

If xp = xc sampled with period T , then Xp(jω) is Xc(jω)
repeated every 2π

T . If xd[n] = xc(nT ), then Xd(ejw) is Xc(jω)
repeated every 2π. In short, to convert a sampled CT signal
into a DT signal, in the frequency domain, multiply the ω-axis
by the sampling period.

ωct = Tωdt
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6 C Systems Properties

6.1 Causality

• LTI system is causal ↔ h(t) = 0 for t < 0.

• system is causal rightarrow ROC is a right-half plane.

• rational system is causal ↔ ROC is a rightmost right-
half plane.

6.2 Stability

• LTI system is stable ↔
∫ +∞
−∞ |h(τ)|dτ < ∞.

• LTI system is stable ↔ ROC includes jω-axis (<e{s} =
0).

6.3 Causality and Stability

Rational system is causal and stable ↔ all poles lie in the
left-half of the s-plane.

7 D Systems Properties

7.1 Causality

• LTI system is causal ↔ h[n] = 0 for n < 0.

• system is causal → ROC is the exterior of a circle in-
cluding infinity.

• rational system is causal ↔ ROC is the exterior of a
circle outside the outermost pole.

7.2 Stability

• LTI system is stable ↔
∑+∞

k=−∞ |h[k]| < ∞.

• LTI system is stable ↔ ROC includes the unit circle,
|z| = 1.

7.3 Causality and Stability

Rational system is causal and stable ↔ all poles lie inside the
unit circle – i.e., thez must all have magnitude smaller than
1.

8 Checking if All Poles Are in LHP

Calculate all the roots and see! or apply Routh-Hurwitz –
without having to solve for roots.

8.1 Routh-Hurwitz

Polynomial Condition
so that all roots
are in the LHP

1st order s + a0 a0 > 0
2nd order s2 + a1s + a0 a1 > 0, a0 > 0
3rd order s3 + a2s

2 + a1s + a0 a2 > 0, a1 > 0, a0 > 0
and a0 < a1a2

9 Bode Plots from Pole-Zero Plot

For a rational system,

X(s) = M
ΠR

i=1(s− βi)
ΠP

j=1(s− αj)

The magnitude of X(s1) is then the magnitude of the scale
factor M , times the product of the lengths of the zero vectors
(i.e., the vectors from the zeros to s1) divded by the product
of the lengths of the pole vectors (i.e., the vectors from the
poles to s1).

The angle of the complex number X(s1) is the sum of the
angles of the zero vectors minus the sum of the angles of the
pole vectors. If the scale factor M is negative, an additional
angle of π would be included.

10 Root Locus

K = 1
|G(s0)H(s0)|

• For K = 0, poles of G(s)H(s).

• For K = ∞, zeroes of G(s)H(s).

• For K > 0, odd number of real poles and zeros of
G(s)H(s).

• For K < 0, even number of real poles and zeros of
G(s)H(s).

• Branches of the root locus between two real poles must
break off into complex plane for |K| large enough.
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