MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Department of Electrical Engineering and Computer Science

6.003: Signals and Systems-Spring 2005

Problem Set 10
Issued: April 28, 2005
Due: May 6, 2005

REMINDER: Computer Lab 3 is also due on May 6.

Reading Assignments:

Lectures \#20-21 \& PS\#10: Chapters 11 (through Subsection 11.3.4) of O\&W and Chapter 10 (through Subsection 10.2) of O\&W

Lectures \#22-23 \& PS\#11: Chapter 10 of O\&W

Exercise for home study (not to be turned in, although we will provide solutions):
(E1) O\&W 11.32 (a) through (d)
Problems to be turned in:
Problem 1 Consider the basic feedback system of Figure 11.3 (a) on p. 819 of O\&W. Determine the closed-loop system impulse response when

$$
H(s)=\frac{1}{s+4}, \quad G(s)=\frac{2 s-1}{s+2}
$$

Problem 2 Consider the feedback system depicted below:

(a) Find the system functions $H(s) \equiv Y(s) / X(s)$ and $G(s) \equiv E(s) / X(s)$
(b) What conditions must be imposed on K_{1} and K_{2} to ensure that the closed loop system is stable?
(c) Suppose that the input $x(t)=(\sin 4 t) u(t)$. We wish to choose values of K_{1} and K_{2} to satisfy the following requirements:

- The closed loop system from $x(t)$ to $y(t)$ is stable.
- $\lim _{t \rightarrow \infty}|y(t)-x(t)|=\lim _{t \rightarrow \infty}|e(t)|=0$.

Find a value of K_{1} and K_{2} such that the above specifications are satisfied.
Problem 3 Consider the following feedback configuration.

Sketch the root loci for $K>0$ and $K<0$ for each of the following:
(a) $G(s)=\frac{1}{s-3}$.
(b) $G(s)=\frac{1}{(s-2)(s+6)}$
(c) $G(s)=\frac{s-2}{(s+2)(s+4)}$.

Problem 4 O\&W 11.45 (a) through (d)
Problem 5 O\&W 11.57
Problem 6 Determine the z-transform for each of the following sequences. Sketch pole-zero plot and indicate the region of convergence. Indicate whether or not the Fourier transform of the sequence exists.
(a) $x[n]=\left(\frac{1}{2}\right)^{n} u[1-n]-\left(-\frac{1}{4}\right)^{n} u[n-1]$
(b) $x[n]=3 \delta[n-4]-6 \delta[n+5]$

Reminder: The first 20 problems in each chapter of O\&W have answers included at the end of the text. Consider using these for additional practice, either now or as you study for tests.

