
Planning to Fold Multiple Objects
from a Single Self-Folding Sheet

Byoungkwon An∗ Nadia Benbernou∗

Erik D. Demaine∗ Daniela Rus∗

Abstract

This paper considers planning and control algorithms that enable a programmable
sheet to realize different shapes by autonomous folding. Prior work on self-reconfiguring
machines has considered modular systems in which independent units coordinate with
their neighbors to realize a desired shape. A key limitation in these prior systems is the
typically many operations to make and break connections with neighbors, which lead to
brittle performance. We seek to mitigate these difficulties through the unique concept
of self-folding origami with a universal fixed set of hinges. This approach exploits a
single sheet composed of interconnected triangular sections. The sheet is able to fold
into a set of predetermined shapes using embedded actuation.

We describe the planning algorithms underlying these self-folding sheets, forming
a new family of reconfigurable robots that fold themselves into origami by actuating
edges to fold by desired angles at desired times. Given a flat sheet, the set of hinges,
and a desired folded state for the sheet, the algorithms (1) plan a continuous folding
motion into the desired state, (2) discretize this motion into a practicable sequence of
phases, (3) overlay these patterns and factor the steps into a minimum set of groups,
and (4) automatically plan the location of actuators and threads on the sheet for
implementing the shape-formation control.

1 Introduction

Over the past two decades we have seen great progress toward creating self-assembling,
self-reconfiguring, self-replicating, and self-organizing machines [YSS+06]. Prior work in
self-reconfiguring robots has created modular robot systems with unit size on the order of
several centimeters and above [FK90, MYT+00, BFR02, GKRV08a, GKRV08b, YZLM01,
JKH04, DVY+07, BR03, SKC+06, An08], and supporting algorithms for achieving self-
reconfiguration planning and control [PEUC97, CC01, BKRT04, VKR07, KBN06, LP00].

∗MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar St., Cambridge, MA 02139,
USA, {dran,nbenbern,edemaine,rus}@csail.mit.edu. Supported in part by DARPA under the Pro-
grammable Matter program.

1

{dran,nbenbern,edemaine,rus}@csail.mit.edu

Each of these prior works considers unit-modular systems, in some cases using all identical
modules, and other systems using multiple (e.g., two) types of modules.

This paper studies a new type of self-reconfiguring system without modules called a
self-folding sheet. Self-folding sheets form a new approach to reconfigurable robotics and
programmable matter invented by an MIT–Harvard collaboration [HAB+10]. A self-folding
sheet is a flat piece of material with integrated sensing, actuation, communication, compu-
tation, and connectors capable of autonomously folding into desired shapes. It is similar to
a piece of paper that can be folded by humans into origami structures, except that the sheet
folds itself into shape. The self-folding sheet is assumed to be constructed with a built-in
structure of bends that can be actuated individually, or with parallel group actuation, to
achieve a desired deformation of the sheet that is consistent with the physical constraints of
its folding structure. Controlled by either on-board or external computation, the sheet acts
on itself internally to transform at will into a desired shape. Each sheet can achieve multiple
shapes. For example, the sheet could fold itself into a table, and once the table is no longer
needed, the sheet could become flat for re-use at a later time, for example as a chair or a
bookshelf, according to the user’s needs.

The sheet approach has two advantages over unit-modular self-reconfiguring robot sys-
tems. Unlike the usual reconfigurable modular robots, a self-folding sheet is a single mor-
phable robot, simplifying robot construction and assembly by avoiding the need for complex
connectors and more than one power source. Furthermore, unlike most robots in general, a
self-folding sheet is a thin two-dimensional object, making it relatively easy to manufacture
using standard tools for 2D rapid prototyping. The fabrication processes and manufacturing
details are described in [HAB+10].

In this paper, we present an algorithmic theory for how to design and control self-folding
sheets, minimizing parameters such as number of actuators. While a mathematically ideal
self-folding sheet can actuate any of the infinitely many possible crease lines by any amount
at any time, building such a general sheet would be inefficient if not impossible. In this paper,
we develop algorithms to design an efficient construction of a self-folding sheet that can fold
into any shape belonging to a desired set of foldings. By specifying the target shapes in this
way, we show how to optimize the design to use few actuators and re-use shared components
among foldings.

How do we choose foldings that can share many components? A powerful class of origami
achieving this goal is box pleating, where all creases of a rectangular sheet lie along a square
grid with alternating diagonals; see Figure 1. In mathematics, this grid is called the tetrakis
tiling. The n×n box-pleat pattern was recently shown to be universal in that crease patterns
formed by subsets of the hinges fold into all possible orthogonal shapes made out of O(n)
cubes [BDDO09]. Therefore, exponentially many shapes can be made from different subsets
of one common hinge pattern, forcing this collection of foldings to share many creases. We
focus here on box pleating because of its uniformity and versatility for both practical and
algorithmic origami design, although our techniques apply more generally to any straight-line
hinge pattern.

We consider two models of actuators, corresponding to what we have tested in physical

2

ActuatorActuator

Figure 1: A 4× 4 box-pleated sheet (left), with edge actuators (middle) and threading holes
(right).

self-folding sheets. In the first model (Figure 1, middle), we place one edge actuator along
each foldable edge so that the edge may be bent to one of a few possible fold angles. Such an
actuator can be implemented by several technologies, such as a flat strip of shape memory
alloy (SMA) wire, programmed to bend to a desired angle when heated via electrical current.
In the second model (Figure 1, right), we sew spring SMA wires into the sheet so that several
sides may be pulled together at once. This threading model can be more economical in terms
of the number of actuators, but limits the number of target shapes. Our algorithms detail
how to place either type of actuator.

We present and analyze several algorithms for designing self-folding sheets and their plans
for folding into a desired set of shapes; refer to Figure 2. First, we apply our single origami
planner (Section 3) to each origami design individually, producing a discrete plan for folding
into each single shape. Second, our multiple origami planner (Section 4) combines these
plans into a unified construction of one sheet with one plan for each target shape. Third,
our threading design planner (Section 5) converts these plans, which apply directly to flat
SMA actuators, to work with threaded SMA wire, often substantially reducing the number
of actuators required. Driving this planning process is an outer optimization loop (Section 6)
which reduces the number of actuators required by the planners via optimal alignment of
the target origami designs.

The algorithms in this paper are currently implemented in simulation. They assume
the existence of a self-folding sheet with a built-in crease structure, embedded actuators,
and connectors. It is expected that the algorithms run off-board. Hardware designs and
control algorithms that can be executed on a physical device are described in [HAB+10].
After adding embedded computation and communication on-board the self-folding sheet, we
will enable the on-board execution of the fold-planning algorithms in a centralized or even
decentralized way.

Related work. Prior work on robotic origami folding considered the design of a robot and
supporting algorithms for manipulating a sheet of material into a folded structure. Balkcom

3

Single
Origami

Origami
Folding
D 0

Single
Origami
Pl 0

Folding or
Unfolding

Single Origami Plan Multi Origami Plan

O
ri
ga
m
i P
la
nn

erPlanner

Origami
Folding
Data 1

Single
Origami
Planner

Multiple
Origami
Plan

Data 0 Plan 0

Single
Origami
Plan 1

Algorithm

3D
geometry
Recorder

Origami 1

Origami 0

Origami 2

M
ul
ti
OPlanner

Single
Origami
Planner

Origami
Folding
Data 2

Single
Origami
Plan 2

Any other
Origami
Recording
System or

Origami 1

Threading
Planner

Threading
Planner

y
Algorithm

Single Origami
Threading

Plan

Multi Origami
Threading

Plan

Figure 2: Visual overview of planning algorithms.

and Mason [BM08, BM04, Bal04] have constructed a robot that can make a sequence of
simple folds—folds along a single line at a time—which enables folding a restrictive class
of origami models. By contrast, our folds are generally more complicated, involving several
simultaneous creases. Many others have considered robots for automatic folding of cartons
and packaging; see, e.g., [LA00, DC10]. All of these robots manipulate the object to fold it,
relying on actuation external to the object itself. By contrast, in our work, the actuation is
internal: the sheet itself is a self-folding robot.

Other work considers folding origami from identical independent units. Nagpal [Nag02,
Nag01] developed algorithms and simulations for folding origami from a sheet of identically
programmed autonomous units called “cells.” She presents a language for instructing the
cells to assemble themselves into a global shape. From this language, a variety of shapes
are able to be folded using only local interactions among the cells. By contrast, this paper
achieves reconfiguration from a single connected robot, which simplifies construction.

2 Problem Formulation

In this section, we describe the model for designing a self-folding sheet robot capable of
folding to any shape among a target set of shapes. We also present relevant definitions from

4

origami mathematics, as well as terms specific to our algorithms. Along the way, we mention
physical limitations of designing a self-folding sheet robot.

2.1 Model

Figure 3: Three small examples of manufactured self-folding sheets.

A self-folding sheet consists of triangular tiles connected together by flexible hinges ar-
ranged in an x×y box-pleated pattern, as in Figure 1. The tiles are made from rigid material,
while the hinges are flexible. Hinges can be folded by actuators, which occupy some space
either within a triangle or along a hinge. Figure 3 shows some small (2 × 2) examples of
self-folding sheets that we have manufactured. The current state-of-the-art in physical robot
construction, described in [HAB+10], is a 4 × 4 box-pleated self-folding sheet, though we
plan to scale up this resolution in the near future.

Edge actuation model. In the edge actuation model (Figure 1, middle), each actuator
lies along a single hinge, and can fold that hinge on demand to a specified angle among a
small set of possibilities. Specifically, because we are interested in folding orthogonal shapes,
we assume that an actuator can fold an edge by an angle of 0, +90◦, −90◦, +180◦, or −180◦.
Such an actuator can be implemented by flat SMA, as we have in our experiments, or with
other technologies such as hydro pump or piezoelectric actuator.

Each edge actuator has (up to) five electrical inputs, one per possible fold angle. Applying
current to one of these inputs causes the actuator to fold the hinge to the corresponding
angle. We allow multiple inputs to be permanently connected together electrically into a
group, so that applying current on one wire (and closing the circuit) causes all connected
inputs to trigger simultaneously. Alternatively, we allow the user to trigger multiple inputs
simultaneously by applying current to multiple wires at once. Naturally, groups are preferable
whenever possible, because they simplify activation and reduce the number of wires to which
the user needs to apply current.

5

Thread actuation model. In the thread actuation model (Figure 1, right), each actuator
lies interior to a tile and is attached to one end of a thread, which passes through small holes
in the tiles, until reaching its other end which is tied to one of the holes. The actuation
contracts the thread, effectively pulling its two ends together. By making the thread short
and taut, this actuation causes hinges to fold by (nearly) ±180◦. In the simplest case, the
thread just connects two holes on opposite sides of a hinge, in which case actuation simulates
an edge actuator: if the loop is on the top side of the sheet, it executes a valley fold, and
if the loop is on the bottom side of the sheet, it executes a mountain fold. More generally,
several hinges can be pulled shut by a single thread, by routing the thread through several
holes, resulting in possibly substantial savings in number of actuators.

Out of practical concerns, we place several requirements on thread designs. We require
that each thread is short, and thus stays near a single vertex. Thus we place the holes at
corners of tiles, with three holes per triangular tile. We also allow up to three actuators
per tile, one next to each edge, to support large actuators or equivalently small tiles. These
limitations, as well as the restriction to fold angles of ±180◦, prevent the thread actuation
model from being universal. When a threaded design is successful, though, it can be prefer-
able for its efficiency: as defined, threading always has at most as many actuators as edges,
and typically it has fewer. Indeed, the first two self-folding sheets produced by our group
(one making a tray, and another making a table) used threaded designs, as they were easier
to build. For this reason, we develop algorithms to determine whether a shape or collection
of shapes can be produced in this model.

Plans. Given k target shapes, we would like to design a self-folding sheet with embedded
actuation (of one of the two types) that is capable of folding itself into each of the k shapes.
More precisely, the input consists of k origami designs—valid foldings of the box-pleated
sheet—that come from either human origami designers or automated design algorithms.
The output from our planning algorithms consists of both a physical design and plans for
controlling the actuators for the sheet to reach the target origami designs. The physical
design consists of the locations and interconnections of the actuators required to realize the
design target shapes. Each plan consists of a sequence of discrete phases, where several
edges fold simultaneously during each phase. We have found this type of plan to be both
flexible—most origami cannot be achieved without folding many creases simultaneously—
and practical—often many creases can be actuated together (reducing the number of phases
and the intrinsically high number of degrees of freedom). Plans assume that the sheet starts
unfolded.

2.2 Definitions from Computational Origami

In this section we introduce some mathematical terminology and background related to
origami, the Japanese art of paper folding. See [DO07] for further background.

A hinge (or edge) is a line segment drawn on a sheet of material. A hinge pattern is
a collection of noncrossing hinges, or equivalently, a planar straight line graph. The box-
pleat pattern, consisting of a square grid with alternating diagonals, is the hinge pattern

6

considered in this paper. The hinges divide the piece of paper into regions or tiles called
faces ; in the case of the box-pleat pattern, these are right isosceles triangles.

We allow the sheet to locally rotate (fold) around its hinge. The fold angle is the supple-
ment of the dihedral angle between the two faces meeting at the hinge, as shown in Figure 4.
If the fold angle is nonzero, we call the hinge a crease. The sign of the fold angle determines
the crease as either a mountain fold or a valley fold, as depicted in Figure 5. We use red
lines to indicate mountain folds, and blue lines to indicate valley folds.

θ

Figure 4: The fold angle at a crease is the supplement of the dihedral angle.

val
ley

mo
unt
ain

Figure 5: A crease can be folded as either a mountain fold (left) or a valley fold (right).

A crease pattern is a subgraph of the hinge pattern indicating which hinges are actually
creases. Figure 6 shows the crease pattern for folding a tray. A mountain-valley assignment
is an assignment of fold directions (mountain or valley) to the edges of a crease pattern.
An angle assignment is an assignment of individual fold angles to the edges of a crease
pattern. An origami design is a crease pattern together with an angle assignment and hence
mountain-valley assignment. Such an origami design determines the 3D geometry of the
folded piece of paper, called a folded state.

A folding motion is a continuous folding of a piece of paper from an initial configuration
to a target configuration. Typically we start from the flat unfolded configuration, and aim to
match the creases and folding angles of a given crease pattern and angle assignment. During
the motion, faces are typically allowed to bend when folding origami. In rigid origami, the
piece of paper is allowed to bend only along hinges; equivalently, the faces can be viewed as
rigid panels.

7

uncreased

valley

mountain

Figure 6: The crease pattern (left) for folding a tray (right) from a 4× 4 box-pleated sheet.

In this paper, we restrict ourselves to origami designs that can be folded rigidly from
(a subset of) the box-pleat hinge pattern. Our reasons are that the box-pleat pattern is
relatively simple to build, and that the material we use to build the triangular faces of the
pattern has high rigidity.

3 Single Origami Planner

The single origami planner converts an origami design into a plan for folding the design
via a sequence of discrete phases, where each phase consists of one or more creases folding
simultaneously to an angle achievable by an actuator (multiple of 90◦). Figure 7 gives an
overview of the main steps in the algorithm, each of which we detail below. We assume edge
actuation for now, and turn to thread actuation in Section 5.

We have implemented the single origami planner in simulation and generated success-
ful plans for a variety of origami designs—a tray, table, airplane, boat, bench, cup, and
elephant—from 4× 4 and 8× 8 box-pleated sheets. Figure 8 shows a running example, from
the input design in the upper left, to the two phases in the bottom right.

3.1 Folded-State Representation

An origami design is most easily specified as a crease pattern together with an angle assign-
ment: which creases get folded by how much. Figure 6 shows a simple example. Thus this
representation is the input for the single origami planner.

There is a unique transformation (up to isometry) of this input into a folded state, that
is, the 3D geometry of the folded paper. Step 1 of the single origami planner is to compute
this folded state, to obtain an explicit representation of the target 3D shape.

The transformation is standard (often implicit) in computational origami. Perform a
depth-first search on the faces of the crease pattern. (Equivalently, this search can be
viewed as navigating the vertices of the dual graph.) Place the (arbitrarily chosen) root

8

Single Origami Planner

1. Given a crease pattern and angle assignment, construct the corresponding folded
state (by composing 3D rotations). (This step corresponds to an “instantaneous
folding”, not a continuous folding motion.)

2. Continuously unfold this folded state using local repulsive energies at each crease
(a modification of Rigid Origami Simulator [Tac09]).

3. Reverse the output to obtain a time series of how the crease angles at each edge
change as a function of time, starting with a flat sheet and ending with the desired
folded state.

4. Discretize each angle time series, approximating it by a step function to minimize
the number of steps for a given error tolerance (using a greedy algorithm from
[DBM01]).

5. Decompose these steps into discrete phases where several angles fold simultaneously,
by splitting at pauses where angles change little.

6. Output a table of target fold angles for each edge during each phase.

Figure 7: Algorithmic overview of single origami planner.

face r in some canonical fashion, e.g., in the xy plane, with one (arbitrarily chosen) vertex
at the origin, and another (arbitrarily chosen) vertex along the x axis. This placement can
be viewed as an isometry (rotation and translation) Ir mapping the face r of the crease
pattern into 3D. As the search traverses through an edge e from one face f to another f ′,
we define the isometry Mf ′ of f ′ as the composition of the isometry Mf of f followed by
a rotation around edge e by the (signed) fold angle of the edge. Then we can determine
the 3D coordinates of any vertex in the crease pattern by applying a map Mf from a face
f containing that vertex; for valid origami designs, it will not matter which such face f we
choose.

3.2 Continuous Planning

Now that we have a folded state, we need a folding motion from a flat sheet into the folded
state. It is known that such a folding motion always exists [DDMO04]. This motion, however,
may not respect our restriction to rigid origami, where each panel of the hinge pattern
remains rigid during the folding. The goal of the continuous part of the single origami
planner is to find a continuous folding motion of the desired folded state that respects the
rigid origami constraint.

There are many ways to obtain a continuous plan, and the rest of the planning algorithms
can use any as input. Perhaps the simplest is to build an instrumented sheet of paper, and
have a human fold it into the desired folded state, with internal or external motion tracking
recording the time series of folded states. From this perspective, the continuous motion is
simply a more precise form of input to the planner.

Computing a continuous folding motion of rigid origami is relatively understudied, and we
believe that additional theory (possibly tailored to the case of the box-pleat hinge pattern) is

9

Origami
Folding Data

2

1.5

1

0.5
Bench

15 20 25 30 35 40 45 50 55 60 65 70

0

‐0.5

‐1

A
ng
le

‐1.5

‐2
Time

Single
Origami Plan

Bench
+ 180
+ 90

‐ 90
‐ 180

Time t0 t1

Figure 8: Example of the single-origami planner applied to a bench design. The top-right
plot illustrates the continuous plan, with each curve plotting the fold angle of one of the 176
hinges (divided by 90◦) over time. The vertical lines decompose the motion into two discrete
phases, in which the creases shown below are active.

required to adequately address it. One natural approach is to apply the probabilistic roadmap
(PRM) algorithm [KSLO96, SA04]; to our knowledge, this has not yet been attempted for
origami crease patterns which have closure constraints on the fold angles of hinges around
each vertex. Here we opt for a (likely faster) heuristic approach, which lacks a guarantee of
success, but upon success produces a rigid origami folding motion.

The Rigid Origami Simulator [Tac09] is a software tool designed to simulate the con-
tinuous folding of a piece of paper along a specified crease pattern. As the name suggests,
the simulation produces folding motions that satisfy the constraints of rigid origami. The
Rigid Origami Simulator computes a folding motion by applying local bending energies at
the creases and following gradient flow, or more precisely, projecting the unconstrained fold-
angle velocities of the edges onto the rigid-origami constraint space specified by [smbH02].
The software, however, does not have an explicit target folded state in mind, and will keep
trying to fold all creases until the process converges. It often gets stuck at a configuration
different from the intended folded state, and thus not directly applicable to our case.

The author of the Rigid Origami Simulator modified his code for our situation as follows.

10

Figure 9: Continuous plan for a bench computed by unfolding into its 8×8 box-pleat pattern.

Figure 10: Continuous plan for a tray computed by unfolding into its 8×8 box-pleat pattern.

First, the modified input format allows specifying an angle assignment in addition to a
crease pattern. Second, the modified simulator supports unfolding from the target folded
state, instead of folding from the flat sheet. Neither folding nor unfolding is guaranteed to
converge to its goal, but we found unfolding to do so more reliably. Intuitively, we believe
that this because the goal state (an unfolded sheet) is most “central” in the configuration
space, and therefore easier to reach. An interesting research direction is to investigate and
formalize this phenomenon.

When the unfolding algorithm (Step 2 in Figure 7) converges to an unfolded sheet, we
obtain a time series of (partially) folded states, each specified by a different angle assignment
to the same creases, which tightly sample a continuous motion from the target folded state
to an unfolded sheet. We can then reverse this time series to obtain a motion from an
unfolded sheet to the target folded state (Step 3 in Figure 7). This data is the output of the
continuous part of the single origami planner. Figures 9–11 show three examples.

This algorithm is similar to an algorithm for unfolding linkages via local bending energies

Figure 11: Continuous plan for a table computed by unfolding into its 8×8 box-pleat pattern.

11

airplane 1.20 sec
boat 1.01 sec
table 0.97 sec
bench 8.41 sec
tray 0.80 sec

CPU: Intel Core 2 Quad 2.83GHz (Q9550)
Storage: 3 GB RAM, Seagate 750GB 300MBps 7200rpm HD
Graphics: NVIDIA Quadro FX 1700

Table 1: Approximate running times (averaged over ten runs) for the continuous planner
based on Rigid Origami Simulator, including significant overheads in graphical user interface,
but excluding load and export times. All designs are represented as 8×8 box-pleat patterns.

[CDIO04], for which a pseudopolynomial time bound is known. We suspect that the contin-
uous planner also satisfies a pseudopolynomial time bound, and have found it to be efficient
in practice. Table 1 shows measured running times of an unoptimized implementation.

We have found this continuous planner to succeed on many box-pleated origami models,
in fact, on all origami designs we have tested (tray, table, airplane, boat, bench, cup, and
elephant). All of these designs are relatively simple (8 × 8 or smaller), and we suspect
that more complex designs will fail in some cases, based on observing near-failures for some
designs. A natural open problem is to characterize when the continuous planner succeeds.
Upon failure, the unfolding process will get stuck in a configuration other than the desired
flat state, and the user will need to compute or specify a rigid origami folding motion using
another method such as those suggested above. The rest of our algorithm works from any
continuous folding motion obtained by any of these methods.

3.3 Discrete Planning

Our next goal is to discretize the continuous motion computed so far into a short sequence
of simply describable steps, so that the motion can be executed by a self-folding sheet robot.
This algorithm will run in linear time.

3.3.1 Step Function Approximation

The first discretization step (Step 4 in Figure 7) simplifies the motion of each crease sepa-
rately. The continuous plan tells us the crease’s fold angle changes in each time step, which
we can view as point samples of a continuous function plotted in angle versus time space. We
approximate this function by an optimal step function, where the objective is to minimize
the number of steps, and the constraint is that the step function is within a specified additive
error ε from the original function at all times.

Dı́az-Báñez and Mesa [DBM01] give an optimal O(n) algorithm for this step-function
approximation problem, where n is the number of time steps in the input continuous plan.
We apply this algorithm repeatedly to obtain the optimal discretization of each crease’s
continuous motion.

For completeness, we briefly describe their algorithm. Given a set of points P = {p1, p2, . . . , pn}
in the plane and an error tolerance ε, plot vertical segments Vi of length 2ε centered at each

12

point pi. Our constraint that each point be within ε of the step function is equivalent to say-
ing that the step function intersects each of these segments of length 2ε. Sweeping from left
to right, the algorithm greedily tries to intersect as many consecutive segments as possible,
before starting a new step and repeating this procedure. A vertical segment Vi defines a y
interval [y−i , y

+
i] where y−i and y+

i denote the y coordinates of the lower and upper endpoints,
respectively. Sweeping from left to right, we maintain the intersection ∆ of the y intervals
of the vertical segments until we reach a segment Vi whose y interval does not intersect ∆,
in which case we terminate the current step, and start a new step at Vi setting ∆ = [y−i , y

+
i].

This algorithm runs in O(n) time, and it constructs the optimal step function with error
tolerance ε [DBM01].

3.3.2 Decomposing into Phases

At this point, the folding of each edge has been decomposed into a few discrete steps. Our
next goal is to coalesce steps from all the edges into phases, where a phase moves some subset
of the edges together.

We define phases as intervals of time between pauses. Intuitively, a pause is a time interval
during which all fold angles remain stationary. The precise definition of “stationary” requires
care, because in the step-function view, an angle is stationary (has zero derivative) at almost
every moment in time. We use the heuristic of defining a fold angle to be stationary if its
value is either zero or the global minimum or maximum ever taken by the angle during the
motion. Given the approximation by step functions and the observation in practice that
angles proceed roughly monotonically from zero to the target angle, an angle is effectively
stationary if it has not moved much or is near its target value. (This observation is true only
for motions produced by the unfolding algorithm, and a different definition of pauses may
be necessary for other continuous plans.)

Finally, we assemble the output of the single origami planner. For each phase, we record
the final angle of each edge (usually the minimum or maximum) within the phase, rounded
to the nearest feasible target angle for an actuator (e.g., multiple of 90◦). This table of
angles defines the phased folding plan, which serves as input to the multiple origami planner
described in the next section.

The running time of this phase-decomposition algorithm, and thus the entire discrete part
of the single origami planner, is linear in the total size of the input and output. Table 2 shows
some measured running times of our implementation. The airplane and boat continuous plan
inputs have 50 steps, while the table has 30 steps, explaining the faster load for the table.

As this discrete approximation to a folding motion is rather coarse, it needs testing either
in simulation or in a real system to ensure that it will succeed in folding the desired folded
state. Essentially we are relying on the actuation of the “primary” folds (which fold quickly
to a significant angle) to drive the passive “secondary” folds, which all must fold together
to realize any nontrivial folding. An interesting direction for future work is to formalize this
notion and make guarantees about the discrete resolution required to implement a continuous
folding motion.

13

load plan export total
airplane 571.8 ms 22.1 ms 34.2 ms 628.1 ms
boat 572.2 ms 23.5 ms 35.7 ms 631.4 ms
table 404.5 ms 26.6 ms 36.0 ms 467.1 ms

Table 2: Running times (averaged over ten runs) for the single origami planner. All designs
are represented as 8× 8 box-pleat patterns. Computer specs are the same as Table 1.

4 Multiple Origami Planner

The multiple origami planner combines multiple plans, each produced by the single origami
planner, into a single design for a self-folding sheet robot, along with a plan for how to fold
the sheet into each of the original origami designs. Figures 13–16 show some two-origami
examples, while Figures 17–18 show some three-origami examples. The multiple origami
planner specifies the edge actuators and their electrical connectivity, so it is in fact needed
even for designing self-folding sheets that make only a single shape.

The goal of the multiple origami planner is to write each phase in each single-origami
plan as a union of groups. As defined in Section 2.1, a group consists of one or more edge
actuators that can be permanently electrically connected because they always fold together.
More precisely, if two folds (including both the hinge and the fold angle) always appear
together in each phase of the single origami plans, then they can belong to a common group.
Our algorithm essentially maximally packs folds into groups.

The planner requires that the crease patterns for the different origami designs are all
subsets of a common hinge pattern, e.g., an x× y box-pleat pattern. Given origami designs
for different resolution box-pleat patterns, such as in Figure 15 with 8× 8 and 4× 4 designs,
we can simply scale the designs to the least common multiple of the resolutions (8 × 8 in
Figure 15).

Figure 12 gives an overview of the multiple origami planner algorithm. Step 1 simply
runs the single origami planner for each target origami design. Step 2 is an optimization

Multiple Origami Planner

1. Given n crease patterns, all subsets of a common hinge pattern, and n angle as-
signments for n origami designs, run the single origami planner on each.

2. Optimize the overlay of these single-origami plans according to a desired objective,
via a brute-force algorithm (Section 6).

3. Decompose the phases of the single-origami plans into a minimum set of groups of
hinges. (A group is maximal collection of hinges that always move in parallel.)

4. Determine the placement of actuators (and threads if using threading) for each
group, to be compatible over all groups.

5. Establish electrical connectivity of actuators within a given group.

Figure 12: Algorithmic overview of multiple origami planner.

14

Group Information

Single Origami Plan 0
Airplane

O
ri
ga
m
i P
la
nn

er

Group 0 Group 2Group 1

M
ul
tip

le
 O

Shape Information

Single Origami Plan 1
Boat

Multiple Origami Plan

Shape 0 (Airplane) Vector: {Group0, Group2}

Shape 1 (Boat) Vector: {Group1, Group2}

+ 180
+ 90

‐ 90
‐ 180

Figure 13: Multiple-origami plan for airplane and boat.

Group Information

Single Origami Plan 0
Airplane

O
ri
ga
m
i P
la
nn

er

Group 0 Group 1

M
ul
tip

le
 O

Shape Information

Group 2

Single Origami Plan 1
Tray

Multiple Origami Plan

Shape 0 (Airplane) Vector: {Group0, Group2}

Shape 1 (Tray) Vector: {Group1, Group2}

+ 180
+ 90

‐ 90
‐ 180

Figure 14: Multiple-origami plan for airplane and tray.

described in Section 6. Step 4 is primarily for threading technology, and will be detailed in
Section 5. Step 5 is a standard wire-routing problem, which we do not address here.

15

Group Information
t0 t1

Single Origami Plan 0 ‐ Bench ga
m
i P
la
nn

er

g g

Group 0 Group 2Group 1

M
ul
tip

le
 O
ri
g

Shape Information

t0

Group 3

Single Origami Plan 1 ‐ Boat
Multiple Origami Plan

Shape 0 (Bench) Vector: {Group0} {Group1, Group3}

Shape 1 (Boat) Vector: {Group2, Group3}

+ 180
+ 90

‐ 90
‐ 180

Figure 15: Multiple-origami plan for bench and tray.

Group Information

Single Origami Plan 0
Boat

O
ri
ga
m
i P
la
nn

er

Group 0 Group 1

M
ul
tip

le
 O

Shape 0 (Boat) Vector: {Group0}

Shape Information

Single Origami Plan 1
Tray

Multiple Origami Plan

Shape 0 (Boat) Vector: {Group0}

Shape 1 (Tray) Vector: {Group1}

+ 180
+ 90

‐ 90
‐ 180

Figure 16: Multiple-origami plan for boat and tray.

The heart of the multiple origami planner is Step 3, which decomposes the phased single-
origami plans into groups.

Let O1, O2, . . . , Ok be the given origami designs. We use the term angled edge to refer
to an edge of a crease pattern with an angle assignment. Let Ê(Oi) denote the set of
angled edges of the crease pattern for origami design Oi. (Note that all edges of all crease

16

Group Information

Group 1 Group 2an
ne

r

Single Origami Plan 0
Airplane

Group 0

lti
pl
e
O
ri
ga
m
i P
l p

Single Origami Plan 1
Boat

M
u

Sh I f i

Group 4Group 3

Shape 0 (Airplane) Vector: {Group0, Group3, Group4}
Shape 1 (Boat) Vector: {Group1, Group3}

Shape Information

Shape 2 (Tray) Vector: {Group2, Group4}

Single Origami Plan 2
Tray

Multiple Origami Plan
+ 180
+ 90

‐ 90
‐ 180

Figure 17: Multiple-origami plan for airplane, boat, and tray.

patterns should be edges of the common hinge pattern; if a crease pattern has what could
be interpreted as a longer crease, we split it into its constituent hinges.) Define the angled
union of the crease patterns of O1, O2, . . . , Ok to be the union of the angled edges over all
crease patterns:

⋃k
i=1 Ê(Oi).

The multiple origami planner partitions this angled union into the minimum number of
disjoint groups such that each phase j of each origami design Oi can be written as a union
of groups. (In the worst case, each angled edge can be its own group.) To do this, we define
the signature of an angled edge e to be the set of pairs (i, j) for which the jth phase of
the single-origami plan for Oi activates e. Then we assign one group per distinct signature,
consisting of all angled edges with that signature.

For example, in Figure 13, the only angled crease shared by the two plans is the one that
ends up in Group 2. All other creases differ either in location or in fold angle, so they belong
to distinct groups. In Figure 15, some creases appear just in phase 0 of the bench (Group 0),
some creases appear in phase 1 of the bench but not in the boat (Group 1), some creases
appear both in phase 1 of the bench and in the boat (Group 2), and some creases appear in
the boat but not in the bench (Group 3).

To compute this partition into groups, we first loop over every angled edge in every phase

17

Group Information

Group 1 Group 2an
ne

r

Single Origami Plan 0
Boat

Group 0

lti
pl
e
O
ri
ga
m
i P
l p

Single Origami Plan 1
Tray

M
u

Sh I f i

Group 4Group 3 Group 5

Shape 0 (Boat) Vector: {Group0, Group3, Group4, Group5}
Shape 1 (Tray) Vector: {Group1, Group3, Group5}

Shape Information

Shape 2 (Table) Vector: {Group2, Group4, Group5}

Single Origami Plan 2
Table

Multiple Origami Plan
+ 180
+ 90

‐ 90
‐ 180

Figure 18: Multiple-origami plan for boat, tray, and table.

j of the single origami plan for Oi, and append (i, j) to the signature of the angled edge. By
looping in order, the signatures are already sorted. Now we put the signatures into a hash
table to detect duplicate values and thus cluster equal signatures. We can then easily map
the matching signatures back to angled edges that belong to a common group. The total
running time is linear in the total number n of creases in the input single origami plans.

Theorem 1. For a set of origami designs {O1, . . . , Ok}, the multiple origami planner pro-
duces the minimum possible number of groups that partition the angled union of the crease
patterns (for this relative orientation of the crease patterns).

Proof. If two angled edges e, e′ with two signatures s, s′ belonged to a common group, then
we would only be able to actuate that group during the phases in the intersection s ∩ s′.
But if s 6= s′, then at least one phase would not be able to actuate either e or e′ as needed,
because every angled edge belongs to exactly one group, a contradiction. Thus only angled
edges with equal signatures can belong to a common group, and the algorithm puts all such
angled edges together.

Table 3 shows some measured running times of our implementation.

18

unoptimized optimized
load plan export total load plan export total

airplane, boat 37.4 ms 1.6 ms 44.4 ms 83.4 ms 34.6 ms 45.2 ms 75.0 ms 154.0 ms
airplane, boat, table 45.4 ms 1.6 ms 39.0 ms 86.0 ms 45.4 ms 73.4 ms 71.9 ms 190.7 ms

Table 3: Running times (averaged over ten runs) for the multiple origami planner, with
and without the optimization of Section 6. All designs are represented as 8 × 8 box-pleat
patterns. Computer specs are the same as Table 1.

5 Threading Planner

For the edge actuation model, we simply place an actuator on each hinge that is a crease in
at least one of the crease patterns. For the threading actuation model, we use a threading
planner that converts the result of the multiple origami planner into an actuator placement
and thread design. In linear time, the planner either produces such a sheet or determines
that none exists.

Because thread actuators can only execute ±180◦ fold angles, the threading planner
discards any folds with angles of ±90◦. The resulting simplified multiple origami plan needs
to be tested, either in simulation or in a real system, to test whether the more limited
actuation suffices to reach the target folded state.

5.1 Threading

Given the output of the multiple origami planner, we construct a 2-CNF formula that is
satisfiable if and only if a valid threading exists. Refer to the example in Figures 19 and 20.
Recall that a Boolean formula is 2-CNF (2-Conjunctive Normal Form) if it is a disjunction
C1 ∧ C2 ∧ · · · ∧ Cm, where each clause C` is the disjunction xi ∨ xj of exactly two literals
(variables or their negations). Such a formula is satisfiable if the variables can be assigned
values of true or false such that the formula comes out true.

We represent a crease as a pair (u, v) of vertices. For a crease (u, v) folded in group i,
we use the Boolean variable xuv,i to denote whether there is a thread connecting the pair
of holes adjacent to the crease closest to vertex u. Similarly, xvu,i denotes whether a thread
connects the pair of holes closest to vertex v.

We form constraints as follows. First, for each crease (u, v) folded in group i, we add the
clause

(xuv,i ∨ xvu,i) (1)

to ensure that the crease gets pulled shut from one side or another, as required by the group.
Second, for each crease (u, v) folded in two groups i 6= j, we add the clauses

(xuv,i ∨ xuv,j) ∧ (xvu,i ∨ xvu,j) (2)

to ensure that the same pair of holes is not used in two different groups. Third, for each
neighboring pair of edges (u, v) and (u,w) (forming a 45◦ angle at u), if (u,w) appears in

19

Group 1 Group 2

0

1 2 3

4

567

8
0

1 2 3

4

567

8x01,1

x10,1

x02,1

x20,1

x03,1

x30,1

x08,2x80,2

x07,2

x70,2

x03,2

x30,2

(x01,1 ∨ x10,1) ∧ (x02,1 ∨ x20,1) ∧ (x03,1 ∨ x30,1) ∧ (x03,2 ∨ x30,2) ∧ (x07,2 ∨ x70,2) ∧ (x08,2 ∨ x80,2)

∧ (x03,1 ∨ x03,2) ∧ (x30,1 ∨ x30,2) ∧ (x02,1 ∨ x03,1) ∧ (x02,1 ∨ x03,2) ∧ (x01,1 ∨ x08,2)

Figure 19: 2-CNF formula (below) resulting from an example with two groups (above). The
top line of constraints are of type (1); the next two constraints are of type (2); and the last
three constraints are of type (3).

group j, and either i 6= j or (u, v) and (u,w) are both mountain or both valley in group i,
then we add the clause

(xuv,i ∨ xuw,i). (3)

This constraint reflects that two separate threads cannot share a hole, by preventing the use
of two hole pairs that share a hole, except in the allowed case where the hole pairs come
from creases of opposite direction (mountain and valley) in the same group and thus can
belong to the same thread.

Because 2SAT is solvable in linear time [APT79], we can find an assignment of variables
to satisfy this 2-CNF formula, Φ, or determine that no such assignment exists. Given a
satisfying assignment for Φ, we can construct a valid threading as follows; refer to Figure 20.
If xuv,i is set to true, and edge (u, v) is mountain (valley) in group i, then we thread under
(over) that edge through the pair of holes closest to u. Also, if we have a consecutive run
of edges xuv1,i, xuv2,i, . . . xuvk,i in group i all set to true, then by constraint (3) these edges
must have an alternating mountain/valley assignment in a common group i. Thus we can
concatenate the threadings, weaving alternately over/under each edge.

Theorem 2. Given box-pleated origami designs O1, O2, . . . , Ok with n total creases, in O(n)
time we can either find a threading or determine that none exist.

Proof. Assume the data structure for a crease (u, v) has pointers to the groups to which it
belongs as well as its immediate neighbors. The construction of Φ described above runs in

20

x01,1 = F
x10,1 = T
x02,1 = F
x20,1 = T
x03,1 = F
x30,1 = T
x03,2 = T
x30,2 = F
x07,2 = T
x70,2 = F
x08,2 = T
x80,2 = F

Group 1 Group 2

0

1 2 3

4

567

8
0

1 2 3

4

567

8x01,1

x10,1

x02,1

x20,1

x03,1

x30,1

x08,2x80,2

x07,2

x70,2

x03,2

x30,2

Figure 20: Converting a satisfying assignment for the 2-CNF formula in Figure 19 (left) into
a threading (right).

Valley threading

Mountain threading

Figure 21: Output of our threading planner applied to the multiple origami plan for the boat
and tray from Figure 16.

O(n) time, because there are O(n) creases and neighboring pairs of creases, and each takes
O(1) time to test and possibly add clauses. In particular, Φ has O(n) clauses. The 2SAT
solver [APT79] takes O(n) time. Finally, given a satisfying assignment, we can construct
the corresponding threading as described above in O(n) time.

Figure 21 shows a sample output of our implementation of this algorithm. Although the
tray’s creases do not all have fold angles of ±180◦, we have verified that it folds successfully
via threading by building a physical self-folding sheet. This fact naturally leads us to wonder
what other shapes with 90◦ fold angles are possible by threading.

A simple consequence of our characterization of threading is that it is always possible for

21

Figure 22: Threading for the worst-case crease pattern (every crease) on a 4× 4 box-pleated
sheet. Gray threads show how to extend the threading to larger-size sheets.

load + plan export total
airplane, boat 42.5 ms 35.5 ms 78.0 ms
airplane, boat, table 48.0 ms 25.5 ms 73.5 ms

Table 4: Running times (averaged over ten runs) for the threading planner. All designs are
represented as 8× 8 box-pleat patterns. Computer specs are the same as Table 1.

a single origami design with fold angles of ±180◦:

Theorem 3. Any single box-pleated crease pattern has a valid threading.

Proof. In the worst-case crease pattern, all hinges are creases and they are all in the same
direction, say valley. In this case, we can still construct a valid threading, with one thread
per edge, as shown in Figure 22. Any other crease pattern is a subpattern of this worst case,
so we can just use the threads corresponding to edges of the subpattern.

Table 4 shows some measured running times of our implementation. The three-shape
example likely runs faster because it has no solution to threading.

5.2 Actuator Placement

Once we have computed a threading of each group from the previous section, it remains
to place thread actuators that activate each group. We show that it is enough to consider
placing at most one actuator along each edge of a triangle, and with the actuator incident
to the threading it activates, because such an actuator placement always exists.

Theorem 4. Any valid multiple-origami threading has a valid actuator placement in the
box-pleat pattern, computable in O(n) time.

22

Proof. Each triangular face (u, v, w) of the box-pleat pattern has three holes Tu, Tv, and Tw,
one in each corner. Any valid threading routes at most one thread from one group in each
hole Ti. Consider placing one actuator along each edge of each triangle (the maximum we
are allowed). Then we can attach the actuator along (u, v) to the thread through Tu, the
actuator along (v, w) to the thread through Tv, and the actuator along (w, u) to the thread
through Tw. In this way, every thread has at least one actuator attached to it. We can cull
this set of actuators down to just one per thread, at either end of the thread, to obtain a valid
actuator placement. To construct this actuator placement in O(n) time, we can simply take
each end of each thread, say at the corner u of some triangular face (u, v, w), and attach
an actuator along the clockwise-next edge (u, v) of the face. Because this placement is a
subset of the full placement described above with one actuator per triangle edge, at most
one actuator will be constructed on each edge.

6 Optimization of the Multiple Origami Planner

In previous sections, we took the origami designs O1, O2, . . . , Ok and their crease patterns
to be given in some default orientation. However, the relative orientations of these crease
patterns is irrelevant to achieving the desired shapes, leaving us with some freedom in choice.
Depending on how we rotate and/or reflect each crease pattern, we can optimize one of several
parameters of interest in the final plan:

Number of actuators: Perhaps the most natural objective is to minimize the total number
of actuators in the multiple origami plan. For edge actuators, this is the number of
edges in the union of the oriented crease patterns; for thread actuators, this is the
number of threads produced by the threading planner.

Number of groups: Each distinct group in the multiple origami plan must be connected
together by an electrical circuit, with an external input triggering the closure and hence
activation of this circuit. Given the limited space for electrical wiring in the sheet, and
the desire for few external inputs, we may wish to minimize the total number of groups.

Number of bidirectional edges: It is easier to build an edge actuator that folds in only
a single direction (either mountain or valley). Such actuators suffice to make a single
origami design, and often suffice to make suitably oriented multiple origami designs
from a single sheet. Such sheets can be found by minimizing the number of edges that
need to be folded both mountain and valley in the union of all crease patterns.

We show that each of these optimization problems is fixed-parameter tractable [DF97] in
the number k of origami designs. In other words, there is an algorithm with running time
f(k)nO(1), which is exponential in the parameter k but polynomial in the size n of the input.
Specifically, f(k) ≤ 8k.

Let D4 denote the dihedral group of the square, i.e., the group of symmetries (rotations
and/or reflections) of the square. Each crease pattern has |D4| = 8 possible orientations.

23

optimization (minimization) extreme worst (maximization)
metric #actuators #groups #biedges #actuators #groups #biedges
#edge actuators 76 80 76 92 86 88
%all edges in single origami plans 73.1% 76.9% 73.1% 88.4% 82.7% 84.7%
%all edges in 8× 8 box-pleat 12.2% 12.8% 12.2% 14.7% 13.8% 14.1%
#groups 6 5 7 5 7 6
#bidirectional edges 14 14 10 26 24 26

Table 5: Results from optimizing (minimizing) and anti-optimizing (maximizing) the num-
bers of actuators, groups, and bidirectional edges for a multiple origami plan of the airplane,
boat, and table. The second and third rows divide the first row by the total number of edge
actuators among the three single origami plans, and by the number of hinges in an 8 × 8
box-pleat pattern, respectively.

Depending on the symmetries of the crease pattern itself (e.g., left-to-right symmetry), there
will actually be either one, two, four, or eight distinct orientations of a crease pattern.

Given an orientation τi ∈ D4 of each origami design Oi, we obtain oriented designs
τ1(O1), τ2(O2), . . . , τk(Ok). Note that the box-pleated hinge pattern is invariant under such
transformations, so our crease patterns remain subsets of the box-pleat grid.

To optimize one of the metrics defined above, we use a brute-force algorithm which tries
all orientations of all k crease patterns, and for each, evaluate the metric by constructing
the multiple origami plan as described in previous sections. Our overall planner chooses the
orientations that achieve the best value for the desired metric.

Table 3 (right half) shows some measured running times of our implementation. Table 5
shows the range of the three different objectives for an example integrating three single
origami plans. To show the impact of this optimization procedure, we also compute the worst
choice for each metric, which is what an arbitrary choice of orientations might give. Results
for other examples are similar in overall behavior. We observe that the three objectives tend
to improve together, as they all aim to have fortuitous overlaps between the single origami
plans. Figure 23 shows the resulting group decompositions for the best orientation for each
of the three objectives.

7 Conclusions

We have described a suite of algorithms for planning the creation of objects using self-folding
sheets. We described the algorithm for automatically planning the creation of one object. We
also presented an algorithm for the automatic creation of multiple objects from a single sheet.
Finally we described design optimization issues by presenting a method for automatically
planning the threading of a self-folding sheet so that one actuator can drive multiple creases
of the object. These algorithms are designed for sheets with built-in creases and embedded
actuators, sensors, and connectors. The algorithms are assumed to run off-board the robot
in the current form. Embedded computation and communication to the self-folding sheets
will enable the algorithms to run on-board the sheet in a possibly distributed way, where

24

each tile can be viewed as a module with a dedicated processor.
Much work remains to be done in order to develop a complete theory of self-folding

sheets. The main challenge is to characterize which box-pleated origami designs can be
folded rigidly, or at least design a wide family for which this is guaranteed to be possible.
Ideally this would also allow us to replace our continuous planner with one that guarantees
a successful continuous folding. Changing the geometry of the hinge pattern may also help;
in particular, we believe that adding slits to the sheet in a regular pattern may enable rigid
folding of all polycubes.

The algorithms described in this paper are centralized and computed off-board. This
approach is appropriate for the designing sheets that are specific to making a few different
shapes, which is where the technology is currently most practical. In the future, however,
we plan to build universal sheets where every edge has an actuator, enabling the possibility
of online planning for new shapes. For this to become reality, an important next step is
the development of a decentralized algorithm for multiple origami planning that can be
computed on-board the robot. Another issue is how the user can interact with the sheet in
the field, e.g. to select the required shape, when a computer may not be available.

Acknowledgments

Support for this work has been provided in part by the DARPA Programmable Matter
project. We are grateful for this support. We are also grateful to the team lead by Prof.
Robert Wood at Harvard, the team lead by Profs. Ron Fearing and Ali Javey at U. C.
Berkeley, and the team lead by Profs. Vijay Kumar and Mark Yim at U. Pennsylvania
for very exciting discussions and collaborations during the course of this work. We also
thank Sangbae Kim and Martin Demaine for invaluable discussions and insights. We thank
Tomohiro Tachi for providing a modification to his Rigid Origami Simulator to enable our
continuous unfolding of folded states. Finally we thank the anonymous referees for their
many helpful comments on the presentation of this paper.

References

[An08] Byoungkwon An. Em-cube: cube-shaped, self-reconfigurable robots sliding on
structure surfaces. In Proceedings of the IEEE International Conference on
Robotics and Automation, pages 3149–3155, May 2008.

[APT79] Bengt Aspvall, Michael F. Plass, and Robert Endre Tarjan. A linear-time algo-
rithm for testing the truth of certain quantified boolean formulas. Information
Processing Letters, 8(3):121–123, March 1979.

[Bal04] Devin Balkcom. Robotic Origami Folding. PhD thesis, Robotics Institute,
Carnegie Mellon University, Pittsburgh, PA, August 2004.

25

[BDDO09] Nadia Benbernou, Erik D. Demaine, Martin L. Demaine, and Aviv Ovadya. A
universal crease pattern for folding orthogonal shapes. arXiv:0909.5388, Septem-
ber 2009. http://arXiv.org/abs/0909.5388.

[BFR02] Z. Butler, R. Fitch, and D. Rus. Distributed control for unit-compressible
robots: Goal-recogition, locomotion and splitting. IEEE/ASME Transactions
on Mechatronics, 7(4):418–30, Dec. 2002.

[BKRT04] Z. Butler, K. Kotay, D. Rus, and K. Tomita. Generic decentralized control
for lattice-based self-reconfigurable robots. International Journal of Robotics
Research, 23(9):919–937, 2004.

[BM04] Devin J. Balkcom and Matthew T. Mason. Introducing robotic origami folding.
In IEEE International Conference on Robotics and Automation, pages 3245–
3250, 2004.

[BM08] Devin Balkcom and Matthew Mason. Robotic origami folding. International
Journal of Robotics Research, 27(5):613 – 627, May 2008.

[BR03] Zack J. Butler and Daniela Rus. Distributed planning and control for modu-
lar robots with unit-compressible modules. International Journal of Robotics
Research, 22(9):699–716, 2003.

[CC01] C.-H. Chiang and G. Chirikjian. Modular robot motion planning using similarity
metrics. Autonomous Robots, 10(1):91–106, 2001.

[CDIO04] J. H. Cantarella, E. D. Demaine, H. N. Iben, and J. F. O’Brien. An energy-
driven approach to linkage unfolding. In Proceedings of the 20th Annual ACM
Symposium on Computational Geometry, pages 134–143, Brooklyn, New York,
June 2004.

[DBM01] J. M. Dı́az-Báñez and J. A. Mesa. Fitting rectilinear polygonal curves to a set
of points in the plane. European Journal of Operational Research, 130(1):214 –
222, 2001.

[DC10] J. S. Dai and D. G. Caldwell. Origami-based robotic paper-and-board packaging
for food industry. Trends in Food Science & Technology, 21(3):153–157, March
2010.

[DDMO04] Erik D. Demaine, Satyan L. Devadoss, Joseph S. B. Mitchell, and Joseph
O’Rourke. Continuous foldability of polygonal paper. In Proceedings of the
16th Canadian Conference on Computational Geometry, pages 64–67, Montréal,
Canada, August 2004.

[DF97] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer-Verlag,
1997.

26

http://arXiv.org/abs/0909.5388

[DO07] E. D. Demaine and J. O’Rourke. Geometric Folding Algorithms: Linkages,
Origami, Polyhedra. Cambridge University Press, July 2007.

[DVY+07] C. Detweiler, M. Vona, Y. Yoon, S. Yun, and D. Rus. Self-assembling mo-
bile linkages with active and passive modules. IEEE Robotics and Automation
Magazine, 14(4):45–55, december 2007.

[FK90] T. Fukuda and Y. Kawakuchi. Cellular robotic system (CEBOT) as one of the
realization of self-organizing intelligent universal manipulator. In Proceedings
of IEEE International Conference on Robotics and Automation, pages 662–7,
1990.

[GKRV08a] Kyle Gilpin, Keith Kotay, Daniela Rus, and Iuliu Vasilescu. Miche: Modular
shape formation by self-disassembly. The International Journal of Robotics
Research, 27(3-4):345–372, 2008.

[GKRV08b] Kyle Gilpin, Keith Kotay, Daniela Rus, and Iuliu Vasilescu. Miche: Self-
assembly by self-disassembly. International Journal of Robotics Research, 27(3–
4):345–372, 2008.

[HAB+10] E. Hawkes, B. K. An, N. M. Benbernou, H. Tanaka, S. Kim, E. D. Demaine,
D. Rus, and R. J. Wood. Programmable matter by folding. Proceedings of the
National Academy of Sciences of the United States of America, 107(28):12441–
12445, 2010.

[JKH04] White P. J., Kopanski K., and Lipson H. Stochastic self-reconfigurable cellular
robotics. In Proceedings of the IEEE International Conference on Robotics and
Automation, pages 2888–2893, May 2004.

[KBN06] Eric Klavins, Samuel Burden, and Nils Napp. Optimal rules for programmed
stochastic self-assembly. In Robotics: Science and Systems, Philadelphia, PA,
2006.

[KSLO96] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars. Probabilistic
roadmaps for path planning in high-dimensional configuration spaces. IEEE
Transactions on Robotics and Automation, 12(4):566–580, 1996.

[LA00] Liang Lu and Srinivas Akella. Folding cartons with fixtures: A motion plan-
ning approach. IEEE Transactions on Robotics and Automation, 16(4):346–356,
2000.

[LP00] Hod Lipson and Jordan Pollack. Automatic design and manufacture of robotic
lifeforms. Nature, 406:974–978, 2000.

[MYT+00] S. Murata, E. Yoshida, K. Tomita, H. Kurokawa, A. Kamimura, and S. Kokaji.
Hardware design of modular robotic system. In Proceedings of the International
Conference on Intelligent Robots and Systems, pages 2210–7, 2000.

27

[Nag01] Radhika Nagpal. Programmable self-assembly: constructing global shape using
biologically-inspired local interactions and origami mathematics. PhD thesis,
Massachusetts Institute of Technology, 2001.

[Nag02] Radhika Nagpal. Self-assembling global shape, using ideas from biology and
origami. In Thomas Hull, editor, Origami3: Third International Meeting of
Origami Science, Math and Education, pages 219–231. A K Peters, 2002.

[PEUC97] A. Pamecha, I. Ebert-Uphoff, and G. Chirikjian. Useful metrics for modu-
lar robot motion planning. IEEE Transactions on Robotics and Automation,
13(4):531–45, 1997.

[SA04] Guang Song and Nancy M. Amato. A motion-planning approach to folding:
from paper craft to protein folding. IEEE Transactions on Robotics and Au-
tomation, 20(1):60–71, February 2004.

[SKC+06] Wei-Min Shen, Maks Krivokon, Harris Chiu, Jacob Everist, Michael Rubenstein,
and Jagadesh Venkatesh. Multimode locomotion for reconfigurable robots. Au-
tonomous Robots, 20(2):165–177, 2006.

[smbH02] sarah-marie belcastro and Thomas C. Hull. A mathematical model for non-flat
origami. Origami3: Proceedings of the 3rd International Meeting of Origami
Mathematics, Science, and Education, pages 39–51, 2002.

[Tac09] Tomohiro Tachi. Simulation of rigid origami. Origami4: Proceedings of the 4th
International Meeting of Origami Science, Math, and Education, pages 175–187,
2009.

[VKR07] P. Varshavskaya, L. P. Kaelbling, and D. Rus. Automated design of adaptive
controllers for modular robots using reinforcement learning. International Jour-
nal of Robotics Research, Special Issue on Self-Reconfigurable Modular Robots,
2007.

[YSS+06] M. Yim, W-M. Shen, B. Salemi, D. Rus, H. Lipson, E. Klavins, and
G. Chirikjian. Modular self-reconfiguring robot systems: opportunities and
challenges. IEEE/ASME Transactions on Mechatronics, 2006.

[YZLM01] M. Yim, Y. Zhang, J. Lamping, and E. Mao. Distributed control for 3D shape
metamorphosis. Autonomous Robots, 10(1):41–56, 2001.

28

(a) Minimizing number of actuators.

(b) Minimizing number of groups.

(c) Minimizing number of bidirectional edges.

Figure 23: Group decompositions resulting from the optimized multiple origami planner,
with the three different objectives.

29

	Introduction
	Problem Formulation
	Model
	Definitions from Computational Origami

	Single Origami Planner
	Folded-State Representation
	Continuous Planning
	Discrete Planning
	Step Function Approximation
	Decomposing into Phases

	Multiple Origami Planner
	Threading Planner
	Threading
	Actuator Placement

	Optimization of the Multiple Origami Planner
	Conclusions

