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In time-sensitive and dynamic missions, multi-UAV teams must respond quickly to new
information and objectives. This paper presents a dynamic decentralized task allocation al-
gorithm for allocating new tasks that appear online during the solving of the task allocation
problem. Our algorithm extends the Consensus-Based Bundle Algorithm (CBBA), a decen-
tralized task allocation algorithm, allowing for the fast allocation of new tasks without a full
reallocation of existing tasks. CBBA with Partial Replanning (CBBA-PR) enables the team to
trade-off between convergence time and increased coordination by resetting a portion of their
previous allocation at every round of bidding on tasks. By resetting the last tasks allocated
by each agent, we are able to ensure the convergence of the team to a conflict-free solution.
CBBA-PR canbe further improved by reducing the team size involved in the replanning, further
reducing the communication burden of the team and runtime of CBBA-PR. Finally, we validate
the faster convergence and improved solution quality of CBBA-PR in multi-UAV simulations.

Nomenclature

nr = number of robots
nt = number of tasks
I = set of robots
J = set of tasks
Lt = Maximum length of path
D = network diameter
T∗ = new task
bi = bundle
pi = path
yi j = winning bids
zi j = winning agents
Jreset = subset tasks reset in replan
(i∗, j∗) = optimal assignment in central greedy solution

I. Introduction
The use of UAVs and UAGs in large teams has become increasingly desired and viable as robot hardware has

decreased in size and cost. Likewise, there is increasing interest in solving large, more complex missions that require
multi-agent teams to accomplish a varied number of tasks. Decentralized algorithms have allowed planners to scale
with larger team sizes, amortizing computation and communication across the robot teams. In addition, decentralized
algorithms, which only rely only peer-to-peer communication, can be used in environments without a communication
infrastructure or in environment with constrained centralized communication. For example, a team of UAVs operating
in a foreign terrain, may not have access to classic communication infrastructure that one may be accustomed to in local
settings, especially for missions utilizing airspace or underwater environments. Likewise, in an adversarial setting,
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where opponents may look to target a central planner, decentralized algorithms provide robustness to single-point
failures caused by a central planner or communication infrastructure.

This article investigates the decentralized dynamic task allocation problem where a team of robots must respond
to new tasks that appear during the mission which must be allocated along with existing task allocations. This is in
contrast to the static task allocation problem which assumes that all the tasks are known before the team executes the
task allocation solver. The problem is similar to other NP-hard problems such as the Dynamic Vehicle Routing Problem
(D-VRP) or Dial-A-Ride Problem [1], where online requests occur during the operation of the vehicles, in which new
locations must be visited by the vehicles. In addition, we specifically seek a decentralized algorithm that relies only on
peer-to-peer communication to ensure robustness and scalability.

In a centralized setting, such as those studied in the operations research and logistics communities, solvers have been
developed to provide heuristics for searching the space of solutions in the dynamic vehicle routing problem. Ref. [2]
and [3] provide excellent reviews on dynamic VRP solutions. The first group of approaches is to periodically replan,
rerunning the static task allocation solver at predetermined time epochs, such as in the ant colony algorithm [4]. The
second group of approaches is to continuously generate plans to create a shared pool of possible solution, from which a
solution can be adapted when a new customer arrives. These algorithms include the adaptive memory algorithm [5] and
genetic algorithms [6], however, they rely on a centralized memory or global situational awareness. In [7, 8], the genetic
algorithm is extended to multiple UAVs, however they fail to be fully decentralized as a central planner is still required.

As for fully decentralized algorithms, most have focused on convex optimization or task-assignment where the
task score functions are independent. Ref. [9] successfully decentralizes the cooperative optimization by reaching
consensus on sub-gradients, however, is limited to convex score functions with continuous decision variables. Ref. [10]
introduced a decentralized version of the Hungarian algorithm for task assignment, however, requires that the task
scores are independent. Ref. [11] presents an online solver by enforcing strict task swapping, but again relies on the task
assignment problem where scores are independent. Ref. [12] uses a partitioning algorithm, where space partitions are
assigned to agent and agents service any incoming tasks that arrive in the assigned regions. As for a decentralized
planner for the combinatorial optimization in task allocation, [13] introduces the CBBA algorithm which can provide an
approximate solution to the vehicle routing problem when all the tasks are introduced at the beginning of the algorithm.
This article extends the work in [13] to adapt to new tasks while maintaining solution quality and convergence.

In this work, we propose CBBA with Partial Replanning (CBBA-PR) which quickly allocates the new task by only
reallocating a subset of tasks. Whereas the static decentralized solver Consensus-Based Bundle Algorithm (CBBA)
requires a full re-solving of the original task allocation problem to allocate a new task, CBBA-PR allows for a partial
replanning of the existing allocations. This is achieved by enabling agent to partially reset their allocation between
rounds of auctioning. We show that this partial resetting strategy still converges to a conflict-free solution. In addition,
the amount of resetting can be chosen to achieve a desired response time for the system. In doing so, the team has the
flexibility to allow for little coordination but quick response, or vice versa. We also present a method for choosing
a subset of robots to participate in the reallocation process. Finally, we validate the convergence of CBBA-PR and
solution quality improvements, compared to the baseline CBBA approach.

The remainder of this paper is structures as follows. In Section II, we state the dynamic task allocation problem
statement and describe the Consensus-Based Bundle Algorithm, which we build off of in this paper. In Section III, we
describe and analyze CBBA’s existing approaches to allocating a new task. Section IV, presents the main algorithm:
CBBA with Partial Replanning, a resetting approach that guarantees quicker allocation of the new task. Section V
reports simulations results that show improvements in convergence and solution quality. Finally, in Section VI we
provide concluding thoughts and future directions.

II. Decentralized Task Allocation: Consensus-Based Bundle Algorithm (CBBA)

A. Problem Statement
The goal of the static task allocation problem is to allocate a set of nt tasks to nr agents to arrive at a conflict-free

assignment of tasks to robots. Generally, the agents can be assigned up to Lt tasks which can represent either a physical
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limitation or a planning horizon for the agent. The decentralized task assignment can then be formed as an optimization:

max
nr

∑
i=1

⎛

⎝

nt

∑
j=1

ci j(xi,pi)xi j
⎞

⎠

subject to:
nt

∑
j=1

xi j ≤ Lt ∀i ∈ I

nr

∑
i=1

xi j ≤ 1 ∀ j ∈ J

nr

∑
i=1

nt

∑
j=1

xi j = min{nr Lt, nt}

xi j ∈ {0, 1}, ∀(i, j) ∈ I × J

where xi j = 1 if agent i is assigned to task j and xi is a vector of length nt with the assignment of all tasks in J . The
variable length vector pi represent the path for agent i which is a list of the tasks assigned to agent i in order of execution.
The current length of the path is ∣pi ∣ and is not allowed to be longer than the path constraint Lt .

In the dynamic scenario, a new task T∗ arrives during or at the end of the task allocation process. Now the agents
must allocate a total of nt + 1 tasks. We denote the new set of tasks J ′, new paths p′1 . . .p

′
i , and new decision variables,

x′i j . The team must now optimize the following optimization:

max
nr

∑
i=1

⎛

⎝

nt+1
∑
j=1

c′i j(x
′
i,p

′
i)x′i j

⎞

⎠

subject to:
nt+1
∑
j=1

x′i j ≤ Lt ∀i ∈ I

nr

∑
i=1

x′i j ≤ 1 ∀ j ∈ J ′

nr

∑
i=1

nt

∑
j=1

x′i j = min{nr Lt, nt + 1}

x′i j ∈ {0, 1}, ∀(i, j) ∈ I × J ′

B. Consensus-Based Bundle Algorithm (CBBA)
Consensus-Based Bundle Algorithm [13] is a decentralized auction based algorithm designed to solve the static task

allocation problem, where all the task are known at the beginning. The algorithm alternates between two main phases:
the bundle building phase and the consensus phase of the algorithm. In the bundle building phase, the agents iteratively
generate a list of tasks to service by bidding on the marginal increase for each task. In the consensus phase, the agents
resolve differences in their understanding of the winners of each task. Before proceeding, we define five lists used in the
running of CBBA:

1) A path, pi ≜ {pi1, . . . pi∣pi ∣} is a list of tasks allocated to agent i. The path is in the order by which agent i will
service the tasks.

2) A corresponding bundle, bi ≜ {bi1, . . . bi∣bi ∣} is the list of tasks allocated to agent i in the order by which agent i
bid on each task, i.e., task bim is added before bin if m < n . The size of bi , denoted ∣bi ∣ cannot exceed the size of
pi and an empty bundle is denoted bi = ∅.

3) A list of winning agents zi ≜ {zi1 . . . zint }, where each element zi j ∈ I indicates who agent i believes is the
winner of task j for all tasks in J . If agent i believes that no one is the winner of task j, then zi j = −1.

4) A corresponding list of winning bids yi ≜ {yi1 . . . yint } where yi j is agent i’s belief of the highest bid on task j
by winner zi j for all j in J . If agent i believes that no one is the winner of task j, then yi j = −∞.

5) A list of timestamps si ≜ {si1, . . . sinr } where each element sik represents the timestamp of the last information
that agent i received about a neighboring agent k, either directly or indirectly.
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Algorithm 1 CBBA Phase 1: Bundle Build
1: yi(t) = yi(t − 1)
2: zi(t) = zi(t − 1)
3: bi(t) = bi(t − 1)
4: pi(t) = pi(t − 1)
5: while ∣bi(t)∣ < Lt do
6: ci j = maxn≤∣pi(t)∣+1 Spi(t)⊕n j

i − Spi(t)
i ,∀ j ∈ J ∖ bi(t)

7: hi j = I(ci j ≥ yi j),∀ j ∈ J
8: Ji = arg maxj ci j ⋅ hi j
9: ni,Ji = arg maxn Spi(t)⊕nJi

i

10: bi(t) = bi(t) ⊕end Ji
11: pi(t) = pi(t) ⊕ni,Ji Ji
12: yi,Ji (t) = ci, Ji
13: zi,Ji (t) = i
14: end while

1. Phase 1: Bundle Building
Unlike other algorithms which enumerate every possible allocation of tasks for agent i, in CBBA the agents greedily

bid on a bundle of tasks. In the bundle building phase (Algorithm 1), an agent i determines the task Ji that will yield the
maximum increase in marginal score when inserted into its previous path. If this score is larger than the current team
winner, agent i will add the task Ji to its bundle. This process is repeated until it can no longer add tasks to its path,
concluding by updating its list of winners and bids, zi and yi .

2. Phase 2: Consensus
In the second phase of CBBA, each agent i communicates their updated lists, zi, yi and si to their neighboring agents

and resolve any conflicts in their belief of winners. An important aspect of this process is that if two neighbors disagree
on a specific task j̄ located at location n̄i in their bundles, the two agents are required to reset not only task j̄ but also
any tasks located in the bundle after n̄i:

yi,bin
= −∞, zi,bin

= −1 ∀n > n̄i
bin = ∅, n ≥ n̄i

(1)

where bin denotes the nth entry of bundle bi and n̄i = min{n ∶ zi,bin
≠ i}. The resetting of subsequent tasks is necessary

for the proper convergence of CBBA, as the bids for those subsequent tasks (yi,bin
) were made assuming a bundle

consisting of the reset task j̄.

C. Convergence of CBBA
Along with providing a procedure for decentralized allocation, Choi et. al. [13] were able to show that CBBA

converges in O(ntD) rounds of communication, where D is the network diameter, and that CBBA arrives at the same
result as a centralized sequential greedy algorithm (SGA). In addition, they showed that for submodular value function,
the sequential greedy solution achieves 50% of the optimal score. To prove convergence and optimality of the algorithm,
CBBA requires that the score function has diminishing marginal gains (DMG). This leads to decreasing scores within
an agent’s own bundle (ybin, j ≥ ybim, j ∀n > m), a characteristic of the bidding that also leads to CBBA’s convergence.
They show in Lemmas 1 and 2 that during the running of CBBA the team sequentially agree on the SGA solution.
Specifically, after O(nD) rounds of communication, the team will agree on the first n tasks allocated using a sequential
greedy allocation ( j∗1 , j∗2 , . . . j∗n ). Also, the bids for the task will be optimal, yi, j∗n = c∗i j∗n ∀i ∈ I, and the agents will
remain in agreement on those scores for the duration of the task allocation.

III. Bundle Resetting in Consensus-Based Bundle Algorithm
The Consensus-Based Bundle Algorithm was originally intended for the static task allocation, in that it guarantees

convergence when the tasks are known initially. The authors [14] proposed that in dynamic settings, when information
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is outdated or there is a large change in situational awareness, the team should re-solve the new task allocation problem
by rerunning CBBA. The shortcoming of this approach, however, is that in missions with a large number of tasks nt and
a network diameter D, the response time for a new task will be O(ntD) for a single task. In addition, a full re-solving
of CBBA ignores the fact that the team had already arrived at a conflict-free solution, wasting the computation and
communication used to allocate the original nt tasks.

For a quick response, one could allow for absolutely no replanning, without allowing any resetting of an agent’s
previous allocation, pi(t − 1), bi(t − 1). This approach, which we will call CBBA with No Bundle Reset, was in
the original version of CBBA [13], having the Bundle Build process begin each round with pi(t) = pi(t − 1) and
bi(t) = bi(t − 1). The advantage of CBBA with No Bundle Reset is that the convergence of the algorithm is virtually
unaffected by the new task. For example, in the case where the team has already reached convergence on the original
nt tasks and arrived at some allocations p1, . . . ,pi , the agents will never consider reallocating their existing tasks and
simply bid on inserting the new task into their existing bundles p′i = pi ⊕T∗. By effectively only bidding on T∗ and not
allowing any bidding on other tasks in its paths, the team is able to reach agreement very quickly in O(D) time. While
it is beyond this paper to provide quality guarantees for the no reset solution, intuitively it is clear that a no reset solution
provides very little flexibility to the robot team in allocating T∗. For example, in a highly constrained systems where
many robots are at capacity ∣pi(t − 1)∣ = Lt or there are only a few robots that can service specific tasks, then only those
robots under capacity and with the ability to service T∗ will be considered for T∗. In these constrained scenarios, robot
teams will need reset their previous allocations to consider the new task.

A later addition to CBBAwas to begin the Bundle Build process by fully resetting the previous allocations, bi(t) → ∅

and pi(t) → ∅ [15]. This approach, CBBA with Full Bundle Reset, gives the agents maximum flexibility in allocating
the new task, in that they are not bound by their previous allocations. While this full bundle reset increases the team
coordination, one possible shortcoming of any bundle resetting approach is that it will no longer guarantee convergence
for the original task allocation problem, as the algorithm is introducing additional resetting at each round of Bundle
Build.

Claim 1. If all tasks are known at the beginning of CBBA, both CBBA with Full Bundle Reset and CBBA with No
Bundle Reset arrive at the SGA solution in O(ntD)

Proof. CBBA’s convergence to the centralized sequential greedy algorithm’s (SGA) solution relies on the fact that at
some time t the team will agree on the first n tasks in the SGA solution and then subsequently agree on this solution for
the rest of time (Lemma 1 [13]). The authors use induction to show that the team will first agree on the highest valued
task (the first task allocated in the greedy solution) and after nD rounds of communication, will agree on the first n tasks
in the SGA solution (Lemma 2 [13]). In the case of a full reset at the beginning of Bundle Build, we need to show that
the reset will not break Lemma 1, i.e., that if the team agrees on the first n SGA tasks, they will continue to agree on
those tasks for s > t. First, denote the list of agreed SGA tasks at time t, as J ∗

(n) = j∗(1) . . . j∗(n) and the SGA winners of
those tasks as i∗(1) . . . i

∗
(n). Note that according to Lemma 1, at time t, all agents are in agreement on the bids fo the first

n-SGA tasks:
yi j = c∗i j ∀ j ∈ J ∗

(n) ∀i ∈ I (2)

As such, at some time t, agent i will have a bundle bi that consists of agreed-on SGA tasks bi[∶ n∗i ](t), where n∗i is the
number of tasks in J ∗

(n) that are assigned to agent i by the SGA solution. The rest of the bundle will consist of other
tasks from J that may or may not be in consensus with the rest of the team, bi[n∗i + 1 ∶](t). At time t + 1, when the
agent resets its bundle at the beginning of Bundle Build, it will begin greedily choosing tasks from J to add to its now
empty bundle. However, when agent i calculates its own bid on a task j∗(k) in J

∗
(n) where i∗(k) ≠ i (i.e., for tasks whose

SGA winner is not i), agent i will always be outbid by the current team winner since their bids are greedily optimal.
Instead, agent i will first re-assign itself any of the tasks in J ∗

(n) that have i as the SGA winner, since for those tasks
agent i will be the highest bidder, bidding the centralized optimal bid. As a result, after the full bundle reset agent i
rebuilds its first n∗i in its previous bundle, bi(t + 1)[∶ n∗i ] = bi(t)[∶ n∗i ]. This means that even in a full bundle reset,
Lemma 1 and Lemma 2 hold, and thus convergence to the SGA is guaranteed in O(ntD). �

We have just shown that a full reset and no reset converge to the same solution, however, when a new task is
introduced, these two approaches diverge in terms of solutions and convergence guarantees. First, in the proof above,
the full reset converged to the sequential greedy solution because the Bundle Build process rebuilds the first part of its
previous bundle bi(t)[∶ n∗i ], even after fully resetting its allocation. However, if a new task is now considered in the
building process, agent i is not guaranteed to rebuild bi(t)[∶ n∗i ]. In fact, it may be the case that the sequential greedy
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(a) Initial bundles b1 . . . bi and
new task T∗

(b) Each agent resets lowest
ni,reset tasks in bundle

(c) Converges to modified allo-
cations with T∗

Fig. 1 Dynamic task allocation using CBBA-PR by partially resetting the last task in each agent’s bundle at
the beginning of Bundle Build. The tasks are chosen to be the last tasks auctioned in the bundle (not the order
of physical path) to ensure convergence of CBBA-PR

solution for nt + 1 tasks, J ′∗, will be completely different to the solution for original static nt task allocation problem.
Thus a full reset may result in a completely new allocation, requiring a full O(ntD) rounds of communication, even
for a single new task. In summary, CBBA’s existing approaches to allocating a new tasks is either to to allow a full
rerunning of CBBA (full reset), requiring O(ntD) rounds of communication, or a quick consensus on a winner for the
new task, without allowing any reallocation of the existing tasks (no reset).

IV. CBBA with Partial Replanning (CBBA-PR)

A. Partial Resetting of Local Bundles
To better trade-off coordination with the speed of convergence, we propose CBBA with Partial Replan (CBBA-PR)

which enables each agent to reallocate a portion of their existing allocation at each round of CBBA. In CBBA-PR, each
agent resets part of their bundle at the beginning of Bundle Build, releasing their ni,reset lowest bid tasks from their
previous bundles. The ni,reset can be chosen by the team depending on the amount of replanning or response speed that
is necessary for the team. For example, in the case where new tasks are frequently appearing and the team wants to
converge before another new task arrives, they may choose ni,reset to be very small. On the other hand, if the new tasks
are particularly high-valued, the team can allow for more coordination by selecting a larger number of tasks to reset.
Furthermore, the amount of resetting may change during the duration of CBBA. If the new task arrives early on in the
team’s allocation of the original nt tasks, they may allow for more resetting. While if the team has already converged on
all nt original tasks, they may limit the amount of resetting, to not waste the computation for the original tasks.

An important requirement for the tasks chosen for resetting is they must be the lowest tasks in each agent’s respective
bundles. This is to ensure the convergence of CBBA, for if tasks are reset in any other order (randomly chosen or
maximum bids), CBBA will not have diminishing valued bids, and the team will not converge to a conflict-free solution.
Rather, if the agents reset only the lowest nreset tasks in each bundle to reset, we can re-use Lemmas 1 and 2 to prove
that the team sequentially agree on a conflict-free solution.

B. Improving on the Convergence of CBBA-PR
One limitation of the local partial reset strategy is that while average convergence will generally be better than a

full reset, we can not guarantee that worst-case performance will improve. For example, if an agent only has one task
to reset, and that task happens to be the first task in the centralized SGA solution, a full replan may occur. However,
if the team has converged on the first nt tasks before T∗ arrives, then we can guarantee worst-case performance of
O(nresetD) where nreset = nr × ni,reset is the total number of tasks reset by the team. In this scenario, the team can
choose the nreset lowest bid tasks from across the entire team. Since the team has already reached consensus on the
original centralized greedy solution, those nreset lowest solutions will in fact be the last nreset tasks allocated by the
SGA. Since the higher bid tasks will remain allocated after the partial reset, the team is guaranteed to converge within
O(nresetD) rounds of communication,
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Algorithm 2 CBBA-PR with Partial Local Replan (Fixed Bundle Size)
1: Ji,reset = {bim(t − 1) ∀m ≥ nreset}
2: for all j ∈ Ji,reset do
3: bi(t) = bi(t − 1) ⊖ j
4: pi(t) = pi(t − 1) ⊖ j
5: zi, j(t) = −1
6: yi, j(t) = ∞
7: end for
8: Phase 1: Bundle Build(pi(t),bi(t), yi(t), zi(t))
9: Phase 2: Consensus

Algorithm 3 CBBA with Partial Team Replan
1: Given: Ireset , tresponse
2: d = Diameter(Ireset)
3: nreset =

tresponse

d×∆comm

4: ysi = Sort(yi)
5: Jreset = ysi [nreset ∶ nt]
6: for all j ∈ Jreset do
7: pi(t) = pi(t − 1) ⊖ j
8: bi(t) = bi(t − 1) ⊖ j
9: yi j(t) = −∞
10: zi j(t) = −1
11: end for
12: Phase 1: Bundle Build(pi(t),bi(t), yi(t), zi(t))
13: Phase 2: Consensus

In this procedure, CBBA with Partial Team Replan (Algorithm 3), when a new task appears, each agent sorts the
final bid array yi , enabling the agents to identify the nreset -lowest SGA tasks, Jreset (Line 4). Any agent with a task
from Jreset in their previous bundle, will reset the task by removing it from bi and pi and resetting the values in yi and
zi . By doing so, the team is able to get increased coordination from reallocating existing tasks while still guaranteeing
convergence that is O(nresetD), where nreset can be chosen to fit the team’s desired response time. In addition, if only
a subset of the team Ireset is chosen to participate in the replanning, the team can reuse the known assignments in zi to
specifically reset nreset tasks that were assigned to agents in Ireset , ensuring that none of the reset tasks are “wasted"
on agents that are not participating in the replan. Conversely, the team can choose a combination of nreset tasks and
desired subteam of diameter d, reusing yi and zi to achieve replanning within a desired convergence. With this subteam
and subtask selection, the team can choose between selecting a large subteam with few tasks per robot to reallocate or a
small subteam with robots fully resetting previous allocations. In general, this ideal mix of d and nreset for a given
scenario will be dependent on the mission characteristics.

V. Results

A. Simulation
A UAV task allocation simulator was created to validate the convergence and quality of solutions for various

replanning strategies. The simulator is implemented in Python and allows for varying communication conditions,
dynamic robot movements, and newly appearing tasks. CBBA with Partial Replan is run locally on multiple instances
of the Robot class and the Simulator only facilitates message passing between agents and the revealing of new tasks
the team. We implement a vehicle routing scenario where nr = 8 UAVs must visit nt = 80 task locations. In these
experiments, we use a time-discounted scoring function:

S(pi) = ∑
j∈pi

λ
τ

pi
j

i j Ri j (3)
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(a) t=0s (b) t=0.05s (c) t=0.10s

(d) t=0.15s (e) t=0.20s (f) t=0.25s

Fig. 2 Simulation of eight robots allocation nt = 80 tasks, allocated tasks pi are colored corresponding to the
assigned robot. A new task T∗ (cyan star) appears sequentially and tasks are released (black, filled circles) until
all are allocated.

where λi j ∈ (0, 1] is the time-discount value, Ri j is the static reward of task j by agent i, and τpi

j is the time it takes to
service task j along path pi . We run 100 Monte Carlo simulations where the initial tasks are placed in randomly located
location, initialized with Ri j = 1 and λi j = 0.95. Once the team converges on an initial solution p1 . . .pi , a new task
T∗ arrives that must be allocated by the team. This process is repeated 8 times for a total arrival of 8 tasks. For each
simulation scenario, the setting is saved so that multiple strategies can be run and compared. Figure 2 shows an example
simulation of a new task allocated with CBBA-PR, where initially a new task appears (Fig. 2a), then tasks are reset (Fig.
2b-2e), and a final allocation is reached (Fig. 2f). Note that significant changes and disagreement during the replanning
phase since the team is resetting a subset of previous tasks while allocating the new task.

B. Comparing Convergence
We compare the number of rounds of CBBA required for the team to agree on a conflict-free solution, using the four

strategies outlined above: no bundle resetting, partial local reset, partial team reset, and a full bundle reset. In both
cases of partial resetting, the team initially resets a total of nreset = 24 tasks, where the difference lies in resetting a
fixed number from each bundle (local reset) or choosing the lowest tasks from the entire teem (team reset). We first
compare the team’s convergence for the initial static allocation of nt tasks (Fig. 3) and then the final team convergence
time after a new task T∗ appears (Fig. 4). In the static allocation, all four strategies perform with equal convergence
times as expected by the theory. When a new task is introduced and needs to be allocated by the team, all four strategies
require increased rounds of CBBA, ranging from no reset with the least bidding to a full reset which requires the most
rounds of CBBA. Between the local and team resetting, the local performs worse, in some simulations, requiring the
same number of rounds as a full reset. This is expected as only the worst case can be guaranteed when the lowest team
wide tasks are chosen for resetting. However, on average, the local bundle reset does perform faster than a full reset,
suggesting that there is still a speed up from a partial local reset.
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Fig. 3 Rounds of CBBA required for the static allocation of nt tasks before the new task T∗ arrives. In all four
replan strategies, the convergence time is the same, as expected by the theoretical convergence. In all cases, the
runtime is O(ntD) regardless of the full resetting or no resetting of bundles at each round of CBBA.

Fig. 4 Rounds of CBBA required for the dynamic allocation of nt tasks after the new task T∗ arrives. When a
new tasks arrives, the number of rounds on average and worst-case is highest for a full reset replan and shortest
for the no reset strategy. Choosing the lowest-n tasks to reset for a global replan converges faster than a fixed
number of tasks reset in each bundle and provides intermediate performance as a whole.
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Fig. 5 Performance of partial replanning compared to no replanning, measured by score increase after allo-
cating 8 new tasks. Partial replan improves the score quality, nearing the performance of full replan baseline.

C. Comparing Solution Quality
To understand the performance gains of partial replanning, we compare the replan strategies to the full reset strategy.

While the full reset is not an optimal solution, we will use it as a baseline for "best" performance since it does have
the 50% approximation of CBBA and intuitively has the highest level of coordination. In doing so, we compare the
convergence of CBBA-PR compared to the full reset CBBA. The performance of each algorithm is measured by the
increase on team score δ = ∑i∈I Si(p′i) −∑i∈J Si(p′i) caused by servicing the new task, where p′i is the solution after
all the new tasks are allocated. Figure 5 shows the performance of both no reset (top) and partial reset (bottom) in an
unconstrained setting, i.e., Ltnr > nt . As expected, the no reset and partial reset perform worse than the baseline full
reset, however, the faster partial reset algorithm outperforms no resetting and generally performs more similarly to a full
reset. Note that the high variance in solution quality is due to the full reset still being suboptimal due to its greedy
nature. However, in more constrained setting where the number of feasible solutions is fewer, partial and full reset will
more consistently outperform no reset approaches.
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VI. Conclusion
In this work, we presented a dynamic task allocation algorithm that trades off the team’s response time for solution

quality. By resetting the lowest bid tasks from previous rounds of CBBA, the team is able to get fast convergence
while still coordinating with other agents. In addition, if all original tasks are already allocated, the team can faster
guaranteed convergence by selecting the team-wide lowest bid tasks, reducing the tasks allocated and number of agents
involved. Finally, simulations showed that the team could in fact get faster convergence than re-solving the task allocation
problem and better solutions than no coordination. This framework, trading off the time to re-solve the problem with
new information, can be explored for other areas of optimization and planning. In addition, future work may include
responding to other levels of dynamics in the environment, such as the addition and loss of robots, outdated information,
and time-varying task information.
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