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Abstract— The safety of an autonomous vehicle not only
depends on its own perception of the world around it, but also
on the perception and recognition from other vehicles. If an
ego vehicle considers the uncertainty other vehicles have about
itself, then by reducing the estimated uncertainty it can increase
its safety. In this paper, we focus on how an ego vehicle plans
its trajectories through the blind spots of other vehicles. We
create visibility-aware planning, where the ego vehicle chooses
its trajectories such that it reduces the perceived uncertainty
other vehicles may have about the state of the ego vehicle.
We present simulations of traffic and highway environments,
where an ego vehicle must pass another vehicle, make a lane
change, or traverse a partially-occluded intersection. Emergent
behavior shows that when using visibility-aware planning, the
ego vehicle spends less time in a blind spot, and may slow down
before entering the blind spot so as to increase the likelihood
other vehicles perceive the ego vehicle.

I. INTRODUCTION

Autonomous vehicles provide a promise of safer driving
on roads. Recent research has focused on developing con-
trol and perception systems that ensure safe behaviors for
autonomous vehicles. This includes collision-free trajectory
generation, interacting with human drivers on the road, and
intent recognition of other drivers. However, a major chal-
lenge remains in ensuring safe drivers around other human
drivers. Autonomous vehicles must not only react to the
behaviors of surrounding vehicles, but also proactively plan
to encourage safe behaviors. When driving around human
drivers, it is imperative to consider their blind spots and
improve mutual safety. In this paper, we consider the problem
of generating trajectories that improve the visibility of the
ego vehicle among neighboring vehicles. Blind spots are one
example where visibility of the ego vehicle is reduced, and
the particular case we focus on in this paper. Other examples
of reduced visibility include driving at night, occlusions
from heavy fog or other weather, or sensor failures of
other vehicles. If an ego vehicle remains in a blind spot
of another vehicle for too long, this decreases the safety of
both vehicles and may lead to a dangerous situation, like
attempting to merge into an occupied lane. If the ego vehicle
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Fig. 1: For the ego vehicle (red), our approach considers
the uncertainty of other drivers when planning trajectories.
Specifically, we consider “visibility-aware” trajectories for
an ego vehicle traversing through blind spots, such that in
reduces the uncertainty other vehicles have about the ego
vehicle.

can proactively adjust its trajectory to minimize this time in
blind spots, it can increase its safety.

Our approach is to explicitly model the perception of
neighboring vehicles and use the uncertainty in their es-
timates to score the trajectories of the ego vehicles. We
generate the model of uncertainty for other vehicles from
the geometry of their blind spots, and assume that other
vehicles keep a temporal history of the ego vehicle’s position.
Thus, if an ego vehicle is visible prior to entering the
blind spot, it does not instantaneously disappear to the other
vehicle, rather, the uncertainty increases until the ego vehicle
becomes visible again. The ego vehicle modifies a baseline
trajectory to improve the estimates of other vehicles about its
position, increasing the safety of all vehicles. We utilize an
optimization approach which directly minimizes the variance
of the estimate, allowing the autonomous vehicle to choose
trajectories that balance its own comfort with increased
visibility.

A. Case Studies

We consider the following traffic scenarios to study. Each
of these scenarios demonstrates a situation where an ego
vehicle is occluded from a surrounding vehicle, posing a
potential risk of collision.

1) Lane Changing with Blind Spots: We consider a two-
lane driving environment, where vehicles must perform over-
taking maneuvers. Here, we study how an ego vehicle can



maneuver through the blind spots of other vehicles while
changing lanes. Visibility-aware trajectories minimize the
time in blinds spots and ensure the leading vehicle has
opportunities to reduce its uncertainty in its estimate of the
ego vehicle.

2) Case 2: Visual Obstructions at Intersections: In busy
intersections, cross traffic vehicles may have difficulty ob-
serving an ego vehicle due to visual obstructions (trees,
traffic signs, buildings, other vehicles). Without an accurate
estimate of the ego vehicle’s position, a cross-traffic vehicle
may need to brake abruptly once it see the ego vehicle or in
the worst case, dangerously cross traffic at the same time as
the ego vehicle.

3) Case 3: Braking Into Blind Spot: We consider how a
vehicle plans a stopping maneuver when the desired final lo-
cation is within the blind spot of another vehicle. A visibility-
aware ego vehicle can modify its actions as it approaches a
blind spot to reduce the uncertainty of surrounding vehicles,
such as reducing its speed as it enters a blind spot. In turn,
neighboring vehicles will become more confident about the
ego vehicle’s, even if their view is completely obstructed.

B. Related Work
Much research has explored safe planners that consider

the risk and uncertainty of autonomous vehicles [1], [2],
[3], [4], [5]. In an effort to increase safety, prior work
considers how to design controllers that can interact with
human pedestrians and traffic [6], [7], [8] as well as methods
for interacting cooperatively with other robots [9], [10], [11],
[12], [13]. More recently, [14] incorporated the responses of
surrounding vehicles to generate game-theoretic trajectories.
In [15], the authors model the perception of human drivers
and use it to generate trajectories that communicate a vehicle
intent. In both, the trajectories are optimized using the
internal reward structure of the vehicles, whereas we focus
on the uncertainty of the vehicle’s position. If robots are
fully cooperative, information gathering can be achieved by
optimizing over the entire team’s mutual information [16] or
maintaining team observability [17]. However, unlike in team
settings, vehicles on the road act as independent, rational
agents who optimize their own cost function rather than
a team-wide cost. Furthermore, around human drivers, we
cannot rely on being able to directly communicate with those
other drivers.

Belief-space planning combines the estimation dynamics
with robot control to account for motion and sensing un-
certainty in partially-observable Markov decision process.
In [18], [19] an Extended Kalman Filter (EKF) is used
estimate the robot’s own state and incorporate it with a
linear quadratic regulator controller to optimally control the
robot. Similarly, [20] presents a rapidly-exploring random
tree approach where the robot’s belief is propagated through
the tree and used to generate collision-free motions for
the robot. To integrate visibility in the planning, [21] and
[22] address planning for occluded intersections and turns,
specifically considering the decision and risk of entering
an intersection rather than improving visibility of the ego
vehicle. Ref. [23] considers visibility optimization by using

Fig. 2: Frenet Frame

a geometric argument for maximizing visibility and directly
maximize the ego vehicle’s field-of-view using the geometry
of the relative car positions. Our approach optimizes the
estimate covariance directly, which accounts for both the
perception model of the other vehicles and the accumulation
of visibility throughout the trajectory.

In summary, the main contributions of this paper are:
• A trajectory generator that improves an autonomous ve-

hicle’s visibility by minimizing the estimate uncertainty
of surrounding vehicles,

• Covariance-based costs and perception model to quan-
tify a trajectory’s visibility, and

• Simulations of our method in lane change, intersection,
and braking traffic scenarios.

The remainder of the paper is organized as follows: in
Section II, we present our problem definition and baseline
trajectory optimization. Section III introduces our visibility-
aware optimization and perception models. Analysis of sim-
ulation results is presented in Section IV, and we present our
conclusions in Section V.

II. TRAJECTORY GENERATION

Consider a vehicle with position xt ∈ R2. Our goal is
to generate a trajectory of points ξ = {x1, x2, . . . , xT }
for an autonomous ego vehicle vi as it executes a traffic
maneuver. A higher-level planner provides a set of waypoints
w1, . . .wn that execute the traffic maneuver such as a lane
change, overtaking, or braking. Our goal is to generate
a trajectory that is both dynamically feasible (considering
maximum velocity, acceleration and curvature) and collision-
free with other vehicle trajectories while minimizing a given
cost function. Other vehicles exist on the road with the ego
vehicle, executing their own trajectories ξj and maintain
collision-free motions. Unless otherwise noted, we consider
a single vehicle vj that leads the ego vehicle.

A. Quintic Spline Trajectory Optimization

Following [24], we employ a Frenet Frame method for op-
timizing over lateral and longitudinal deviations from a given
centerline trajectory. A centerline ξc is first computed from
the waypoints, beginning at the vehicle’s current position p0
and ending at the terminal point on the centerline, pf , and
parameterized by arc length s(t). The lateral deviations are
parameterized by a distance d(t) in the nr normal direction
and longitudinal deviations in the tr direction such that
trajectory from the root point r is

x(s(t), d(t)) = r(s(t)) + d(t)nr(s(t)). (1)



Figure 2 shows the Frenet Frame that is used for generat-
ing and scoring trajectories. Quintic splines are generated
for both dimensions and are each uniquely specified by
the initial position P0 = [p0, ṗ0, p̈0] and terminal position
Pf = [pf , ṗf , p̈f ] over the duration of time T = tf−t0. Thus
by varying the terminal conditions, allowing for lateral and
longitudinal deviations, and duration of the maneuver T , we
can generate multiple candidate trajectories. Each candidate
trajectory is checked for constraints and collisions.

An advantage of using quintic candidate splines is that it
has been to shown [25] to optimally minimize the squared
jerk of the trajectory JT (p(t)), where

JT (p(t)) =

∫ t0+T

t0

...
p 2(τ)dτ. (2)

Minimizing the squared jerk is a common proxy for driver
comfort. An overall baseline trajectory cost is formed by
adding costs on the terminal state pf , ṗf and duration of the
maneuver T . We focus on lateral tracking, which utilizes a
baseline cost

Cd(ξ) = kJJT (d) + kTT + kpd
2
f , (3)

where the lateral displacement at df at the final point is
penalized. Similarly, the longitudinal cost can be formulated
to encourage the ego vehicle to maintain terminal conditions
with the following longitudinal cost

Cs(ξ) = kJJT (s)+kTT +kṡ[ṡf − ṡ∗f ]2 +ks[sf −s∗f ]2, (4)

with desired final position s∗f and final speed ṡ∗f . The final
baseline cost is a linear combination of each spline cost

Cbaseline(ξ) = klatCd(ξ) + klonCs(ξ). (5)

A set of candidate trajectories is computed by varying termi-
nal conditions for the quintic splines and then the baseline
score is computed for each trajectory. Finally, the minimum
cost trajectory is chosen and executed by the vehicle.

B. Perception & Prediction Model

A key insight of this work is that the ego vehicle should
consider the perception of the vehicles surrounding it. We
assume that all the vehicles on the road make a prediction
of the ego vehicle’s position x̂j

i based on local measurements
yj
t such that

x̂j
i,t = h(yj

t , x̂
j
i,1, . . . , x̂

j
i,t−1). (6)

Importantly, the ego vehicle will consider x̂j
i,t in generating

its own trajectories by ensuring that vj’s uncertainty is mini-
mized throughout the trajectory. In addition, if the perception
model is known, the ego vehicle can compute the covariance
of the estimate E[x̂j2

i ] and use it as an optimization metric
to minimize vj’s uncertainty

min g(E[x̂j2
i,t]), (7)

which will be combined with baseline cost (5).
We consider two perception models that may be main-

tained by the leading vehicles. In the first scenario, the
ego vehicle’s dynamics are known to vj and an Extended

Kalman Filter (EKF) is used to update the estimate, where
the measurement noise is depends on the ego vehicle being
visible to the leading vehicle. In the second scenario, we
relax the dynamics assumption and assume purely limits on
the control inputs of the ego vehicle.

In both perception models, the ego vehicle must maintain
a prediction of the other vehicle’s motion. Specifically,
vehicle i can predict the future positions of the vj : ξ̂j =
{xj,1, . . .xj,T } over some planning horizon T . These future
positions can then be used to predict blinds spots and sensor
limits when considering the perception of vj . While predict-
ing other vehicle’s positions may not always be possible,
we consider this a reasonable assumption for the purpose of
collision-avoidance and perception.

III. VISIBILITY OPTIMIZATION

In this section, we describe the visibility optimization
which selects trajectories that minimize the estimate uncer-
tainty of surrounding vehicles, summarized in Algorithm 1
and illustrated in Fig. 3.

Algorithm 1 Visibility-Aware Trajectory Generation

1: Initialize mincost =∞, ξmin = ∅
2: for T ∈ Tsample, df ∈ dsample, ṡf ∈ ssample do
3: d(t), s(t)← Generate quintic splines(T, df , ṡf )
4: ξ ← Convert splines to global coord(ξc, d(t), s(t))
5: if ξ feasible and collision-free then
6: Σt ← Compute covariance along trajectory
7: cost = Cbaseline(ξ) + kmCvariance(Σt)
8: if cost < mincost then
9: mincost← cost, ξmin ← ξ

10: end if
11: end if
12: end for
13: return ξmin

A. Variance Cost Functional

We augment the cost functional proposed in [24] with a
cost associated with the visibility of each trajectory. For
visibility, the autonomous vehicle is concerned not with
its own estimate of position but rather the other vehicle’s
estimate of its position x̂j

i,t. To capture the uncertainty of
this estimate, we propose a cost associated with covariance
of vj’s estimate, Σt = E[x̂j2

i,t]. In contrast to other methods
which indirectly minimize uncertainty (by minimizing time
in blind spot or maximizing geometric field of view for the
car), we explicitly model the covariance Σt and minimize the
covariance cost through the trajectory. Importantly, since the
covariance is a cumulative metric of uncertainty, we account
for trajectories that enter and exit blind spots and consider
the entire time-varying nature of uncertainty.

We propose two different cost metrics related to the
estimate covariance, an average variance cost and terminal
variance cost. In the first, we penalize the average covariance



(a) Generate trajectories (b) Covariance computation and scoring (c) Trajectory selection

Fig. 3: Visibility-aware optimization. First, multiple trajectories are generated by specifying terminal conditions for quintic
splines (Fig. 3a). The estimate covariance is calculated for each point along the trajectory (Fig. 3b), where position in blind
spot leads to missed measurements by the leading vehicle (red). Trajectories are scored on a baseline comfort Cb and mean
or terminal covariance cost Cm. The trajectory with lowest cost while remaining collision-free and dynamically feasible is
returned to be executed by the vehicle (Fig. 3c).

Fig. 4: Candidate trajectories generated during optimization.
The centerline is specified by traffic maneuver waypoints.

over the entire trajectory

Cmean(ξ) = Cbaseline(ξ) + km
∑
tj

E[x̂j2
i,tj

]. (8)

In the second cost functional, only the terminal covariance
is considered

Cterminal(ξ) = Cbaseline(ξ) + kmE[x̂j2
i,T ]. (9)

The benefit of considering only the terminal positional
variance is that the terminal position may be the position
of maximal interaction with the other vehicle, for example
at the end of a lane change. On the other hand, during an
overtaking maneuver when two vehicles interact at multiple
points along the trajectory, an averaging approach is more
appropriate. Additionally, by computing the covariance at
each time step, thresholds can be added to the feasibility
check during the initial generation of candidate trajectories
(Fig. 4) to ensure that at no point does the covariance surpass
a safety threshold.

The selection of weighting factor km determines the trade-
off between a vehicle’s own comfort and its visibility to
other vehicles. As km increases, the trajectory generator
biases towards trajectories that minimize time in blind spots.
Having a variable weight allows users to choose the value
of visibility (with respect to comfort) and level of desired
proactiveness in planning. A safety conscious planner could
choose a very high value for km whereas an aggressive driver
may consider low values of km.

B. Modeling Blind Spot with Known Dynamics

The main type of occlusions that we consider is blind spots
of other vehicles in traffic. Blind spots lead to asymmetric
perception: the leading vehicle is unable to perceive the
following ego vehicle while the ego vehicle can perceive the
leading vehicle (and its blind spots). The asymmetry means
that the leading vehicle will not sufficiently consider the ego
vehicle’s position in its motion planning, requiring that the
ego vehicle take actions to improve its own visibility.

In the case where vj knows vi’s dynamics, the system can
be written as

xi,t+1 = f(xi,t,ui,t) + ωt, ωt ∼ N(0,Qt),

yt = h(xi,t,ui,t) + νt, νt ∼ N(0,Rt), (10)

where ωt and νt are Gaussian process and measurement
noises, respectively. We assume the system can be linearized
about a known trajectory

xi,t+1 = Atxi,t +Btui,t + ωt, ωt ∼ N(0,Qt),

yt = Ctxi,t + νt, νt ∼ N(0,Rt), (11)

allowing vj to use an EKF to estimate the position of the
ego vehicle x̂j

i,t

x̂j
i,t = xi,t +Lt(yt −Ctxi,t). (12)

This estimate can then be used by the leading vehicle vj to
plan safe trajectories without colliding with vi.

The EKF gain and estimate covariance can be calculated
as

Σ̄t = AtΣt−1A
T
t +Qt, (13)

St = CtΣtC
T
t +Rt, (14)

Lt = Σ̄tC
T
t S

−1
t , (15)

Σt = Σ̄t −LtCtΣ̄t, (16)

where Σ̄t is the a priori covariance, St the innovation, Lt the
optimal Kalman gain and Σt the estimate covariance after
assimilating measurement yt.

Blind spots are modeled as regions Ξblind ∈ R2 with high
variance measurements, Rt,blind = ∞ whereas, when the
vehicle is visible, measurements are received with covari-
ance Rt,seen. Effectively, vj misses measurements and must
propagate its estimates and corresponding variance from
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Fig. 5: Visibility aware trajectories for a vehicle changing
lanes while avoiding a stationary leading vehicle (red). For
higher uncertainty score weights, the ego vehicle attempts
to exit the blind spot earlier by either increasing velocity or
deviating laterally from the baseline trajectory.

previous measurements. In addition, since both vehicles may
be moving, the measurement covariance is computed as a
function of both vehicles positions, Rt ∼ R(xi,t,xj,t) for
each point along the trajectory.

C. Modeling Blind Spots with Unknown Dynamics

In scenarios where vj does not have access to vi’s dynam-
ics it is unlikely to formulate an estimate based on a Kalman
filter. Instead, we consider a scenario where a range of
control inputs is known by vj . For example, in the case of an
agent executing a braking trajectory, agent vj may not know
the dynamics of the car but can assume that the velocity is
bounded umin ≤ |ẋi| ≤ umax. The distribution of x̂j

i,t is then
calculated by integrating the possible range of velocities over
the duration of the trajectory. We assume that the variance is
minimal before the blind spot E[x̂j2

i,t] ≈ 0 ∀t < tblind where
tblind is the time that vi enters the blind spot. In which case,
x̂j
i,t ∼ Uniform(Tblindumin, Tblindumax) and the estimate

covariance is

E[x̂j2
i ] =

1

12
T 2
blind(umax − umin)2, (17)

where Tblind = T − tblind is the time during which the agent
is in the blind spot.

IV. RESULTS

We simulate traffic scenarios for an ego vehicle vi execut-
ing three different traffic maneuvers: changing lanes, entering
an occluded intersection, and braking alongside a vehicle.
In all scenarios, we consider both the baseline cost Cb and
visibility cost Cm for each trajectory. The code utilizes the

(a) Baseline Cost (b) Covariance Cost

Fig. 6: Mean cost relative to the baseline trajectory over
25 experiments. As the visibility weight km increases, tra-
jectories are generated with reduced mean and terminal
covariance costs as visibility is prioritized over the baseline
cost (comfort and efficiency) of the trajectory.

the Python Robotics library [26] for initial implementation
of [24] and polynomial spline solvers.

In all scenarios, the trajectory baseline cost is formulated
as (5) with klat = klon = 1, kJ = kT = 0.1 and kṡ =
1.0 (ks = 0) and ks = 1.0 (kṡ = 0) for speed following and
position following, respectively. Unless otherwise specified,
the following constraints are checked when generating trajec-
tories: maximum speed ṡ ≤ 13m/s, maximum acceleration
s̈ ≤ 2.0m/s2, and maximum trajectory curvature κ ≤ 11/m.

A. Lane Change

In Fig. 5, the ego vehicle begins a lane change for
overtaking a stopped green vehicle while minimizing a mean
covariance cost (Fig. 5a) and terminal covariance cost (Fig.
5b). We randomly vary the initial and final position of the
ego vehicle over 25 experiments. The ego vehicle begins
with velocity ṡ0 = 2.77 m/s and a final desired velocity of
ṡ∗f = 8.33m/s. The uncertainty of vj’s perception is modeled
assuming linear dynamics (11) with At = 0, Bt = I, Ct =
I , and corresponding covariances Qt = 10I , Rseen,t =
2000I , and Rblind,t = ∞. Combining the known dynamics
with the EKF covariance (16) leads to an expression for the
estimate covariance at each time step of the trajectory

Σt =
Rt(Σt−1 +Qt)

Σt−1 +Qt +Rt
, (18)

where Σt−1 is the estimate covariance at the previous time
step.

In Fig. 5c, the estimate covariance is plotted at each
position along a relevant portion of the trajectory for one
experiment. When the vehicle loses visibility (x = 6m) the
covariance increases due to missed measurements. Higher
visibility weights lead to lower variances over the entire
trajectory. Figure 6 plots the mean baseline trajectory cost
Cbaseline and covariance cost Cm relative to a baseline
trajectory (km = 0) for 25 experiments. In Fig. 6a, as km
increases, the baseline cost (jerk, lateral deviations, duration)
increases to allow for increased visibility. Figure 6b shows
the reduction in covariance cost for both the mean and
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Fig. 8: Displacements of trajectories in Frenet Frame for
various visibility weights km in an occluded intersection
scenario.

terminal covariance costs, with an improvement of over 10%
when the optimization uses a terminal cost and km = 10.

B. Occluded Intersection

We also consider static obstacles such as shrubbery that
may occlude part of the intersection as a vehicle approaches
an intersection as shown in Fig. 7. The ego vehicle simulates
a cross-traffic vehicle (pink) that enters at the same time
as the ego vehicle. The ego vehicle attempts to minimize
its lateral displacement while maintaining a final speed of
ṡf = ṡ0 = 3.7m/s. For lower values of km, the ego vehicle
increases its speed to reduce time in the blind spot (Fig.8b)
and for higher values, the ego vehicle departs laterally from
the centerline to exit the occluded region earlier in its
trajectory (Fig.8a).

C. Braking with Unknown Dynamics

In Fig. 9, an ego vehicle is braking before a vehicle
while considering the visibility of a vehicle to its side.
The specific dynamics of the ego vehicle are not known to
the side vehicle but rather assumes that the ego vehicle’s
maximum speed is the speed at entering the blind spot
(ẋi,max = ẋi,tblind

) where tblind is the time at which the
ego vehicle loses visibility. The estimate covariance used for
the visibility cost is calculated using (17) with ui,min = 0
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Fig. 9: In (a), the ego vehicle (blue) must brake to avoid
colliding with a preceding vehicle (black). (b) Longitudinal
speeds for the different weights, where slower speed profiles
correspond to reduced uncertainty in position.

and ui,max = ẋi,tblind
leading to variance cost

Cm = E[x̂j2
i,T ] =

1

12
ẋ2
tblind

(T − tblind)2. (19)

Figure 9a shows visibility-aware trajectories for vari-
ous levels of visibility weighting km. Initial candidate
trajectories are generated by sampling terminal conditions
[sf , ṡf , s̈f , T ]ij corresponding to the ego vehicle stopping
before the vehicle in front with desired terminal speed ṡf =
s̈f = 0, terminal position sf ∈ [s∗f − ∆s, s∗f + ∆s] and
Tj ∈ [T ∗ − ∆T, T ∗ + ∆T ] where s∗f and T ∗ are desired
braking distance and time, respectively. The quintics are
checked for a maximum acceleration s̈max = 4m/s2 and then
scored using (19). Varying km leads to emergent behaviors of
the ego vehicle such as lateral deviations from the centerline
and slower longitudinal speed trajectories so as to decrease
the possible future positions within the blind spot (Fig. 9b).

V. CONCLUSIONS

In this work, we consider optimizing trajectories of an ego
vehicle to increase its visibility. Blind spots and obstacles
are modeled as regions with missed measurements, leading
to high variance estimates. By incorporating this variance
into the trajectory cost, we can reduce the final estimate
uncertainty by upwards of 10%. One limitation of the current
approach is that we require an accurate model of the vehicles’
motion for calculating the estimate uncertainty. Future work
could consider incorporating the uncertainty of the leading
vehicle’s trajectory and future vehicle actions into the opti-
mization.
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