
Designinga Reorder Buffer in Bluespec

Nirav Dave
ComputerScienceandArtificial IntelligenceLab

MassachusettsInstituteof Technology
Cambridge, Massachusetts02139

Email: ndave@mit.edu

Abstract

Production capabilities for complex VLSI chips have
outpacedtheability of currentgeneration CAD toolsto de-
signandverify such chipseffectively. Bluespecis designed
to synthesizehigh-level descriptionsin theform of guarded
atomicactionsinto highqualitystructural RTL.Whilemuch
work hasbeendoneon verifying both the correctnessand
synthesizabilityof Bluespecdescriptions, the work on re-
alistic large scaledesignsis in early stages. This paper
exploresthedesignof thereorderbuffer for anout-of-order
superscalar processorwith a MIPS I ISA. We discussthe
designmethodologieswhich aresuitedfor largescaleBlue-
specdesignanddiscusssomeof thedifficulties weencoun-
tered. Eventhoughthe work is still in progress,we show
what level of performanceis achievableunderthe current
Bluespeccompiler and what problemsneedto be solved
to make thetool viablefor commercial production environ-
ments.

1. Intr oduction

Previous work hasshown that designsdescribedusing
TRS, the underlyingformalismof Bluespecareamenable
to formal verification[1]. Beforelow-level timing andarea
concernscanbe considered,oneneedsto seeif the high-
level description capturesthe inherentconcurrency of the
designappropriately.

In thispaperwepresentthedesignprocessof a2-wayre-
orderbuffer (ROB) in Bluespecaspartof a processorsup-
porting the MIPS I ISA. The focusof this work is to de-
terminewhetherthis complex hardwaredesigncanbe de-
scribedin Bluespecsuchthatits cycle-level performanceis
equivalentasits handwrittenVerilogcounterpart.

0-7803-8509-8/04/$20.00c©2004IEEE

1.1 RelatedWork

Thereis a lot of interestin high-level hardwaredescrip-
tion languageswhich make use of behavioral modeling,
while still allowing for efficient hardwaresynthesis.Most
commercialwork in thisfield is focusedontwo approaches.
The first is to increasethe complexity level of RTL lan-
guagesto bemoresuitable for modeling,suchasBehavioral
Verilog. Thesecondis to modify a standardlanguage(e.g.
C or Java) to bemoreappropriatefor describinghardware.
In the latter case,Control DataFlow Graphsareextracted
from the sourcedescriptionand techniquesfor compiling
vector architecturesare usedto generateregister transfer
logic[4][6]. Neitherof thesetechniqueshasyet to produce
a widely acceptedhardwaredescription languagefor syn-
thesis.

One type of researchhas a focus on specialized
programmableprocessors[6][10]. This effort is only
marginally associatedwith theproblemof generalpurpose
hardwaredescriptionlanguages,asmostof its emphasisis
on processorspecificissues,suchasinstructionencoding,
andtheautomaticallygeneratedassemblers.

Two other types of languageshave beenexplored by
the researchcommunityto becomean effective high-level
HDL. The first of thesetypes usesa synchronousspecifi-
cationlanguagelike Esterel,Signal,or Lustre. Theselan-
guagesdealwith real-time issues[2]. Methodsto compile
Esterelinto hardwarehave beenwritten, but theresultsare
not comparableto handwritten Verilogdesigns.

The secondtype usesan asynchronouslanguagewith
atomic actions such as Dill’ s Murphi[3], Sere’s Action
Systems[9], Staunstrup’s SynchronizedTransitions[11],
andArvind andShen’s TRS[1]. The primary principle of
theselanguagesis that all hardware systemscan be de-
scribedin two parts: a physical state(e.g. registersand
storage)andasetof guardedatomicactionswhichdescribe
the state-changetransitions. It hasbeenshown that these
atomicdescriptionscanbetranslatedinto efficienthardware
if rulesareassumedto take onecycle[7][8]. Bluespecis a

memberof this secondgroupof languages.

1.2 Paper Organization

Section2 of this papergivesa descriptionof Bluespec’s
syntaxandscheduling. Section3 describestheroughdesign
of theprocessorandthereorderbuffer’s function. Section4
discussestheinitial implementationof thereorderbuffer in
Bluespec.A discussionof thedebuggingprocessis detailed
in Section5. Wewrite aboutoptimizationsdoneto improve
cycle performancein Section6, andotheroptimizationsin
Section7. Finally, in Section8 we discussthe findingsof
thiswork, generalBluespecdesigntips,andareasfor future
work for Bluespec.

2 Bluespec

Bluespecis anobjectorientedHDL whichcompilesinto
TRS. In Bluespec,a module is the actualunit which gets
compiledinto hardware.Eachmoduleroughlycorresponds
to a Verilog module. A moduleconsistsof threethings:
state,rules which modify that state,and interfaceswhich
allow theoutsideworld to interactwith themodule.

2.1 BluespecSyntax

A moduleis therepresentationof acircuit in Bluespec.It
canbeaprimitivemodulewhichis justawrapperaroundan
actualVerilog module,or a standardmodulewith stateel-
ementsincludingothermodules,rules,andinterfacemeth-
ods.

Thestateelementssuchasregisters,flip-flops,memories
areall specifiedexplicitly in a module.Thebehavior of the
moduleis representedby ruleswhicheachconsistof astate
changeon thehardwarestateof themodule(anaction) and
theconditionsrequiredfor therule to bevalid (apredicate).
It is valid to execute(fire) a rule whenever its predicateis
true.Thesyntaxfor a rule is:

"RuleName":
when predicate
==> action

The interfaceof a moduleis a set of methodsthrough
which the outside world interactswith the module. Each
interfacemethodhasa predicate(a guard) which restricts
whenthemethodmaybecalled.A methodmayeitherbea
readmethod(i.e. acombinationallookupreturningavalue),
or anactionmethod,or acombinationof thetwo, anaction-
Valuemethod.

An actionValueis usedwhenwe do not wanta valueto
bemadeavailableunlessanappropriateactionin themod-
ulealsooccurs.ConsiderasituationwherewehaveaFIFO

of valuesandamethodthatshouldgetanew valueoneach
call. From the outside of the module,we would want to
beableto look at thevalueonly whenit is beingdequeued
from the FIFO. Thuswe would write the following where
do is usedto signify anactionValue.

getVal = do
fifoVal.deq

return fifoVal.first

Theabstractmodelof execution of a Bluespeccircuit is
asfollows. For any initial hardwarestate,wehavesomeset
of executablerules.Each cycle,we randomlyselectoneof
theserulesandexecuteit therebychanging thestate.This
is of coursevery inefficient,andsowe allow multiple rules
to fire atonce,but requirethatany transitionfrom onestate
to anothermustbeobtainableby a valid sequenceof single
rulefirings.

2.2 Scheduling

Due to the possiblecomplexity of determiningwhena
rule will usean interfaceof a module,Bluespecassumes
conservatively that an action will useany methodthat it
might ever use. That is to say that if the action accesses
a methodonly whensomeconditionis met, the scheduler
will treatit asalwaysusingit. Using thissimplification,the
compilerscanstherulesfor two kindsof paralleloperations
on rule pairs. The first is conflict free, which meansthat
eachrule in thepairdoesnot readwhattheotherrulewrites
for either the predicateor the action,andthe rulesdo not
make the samemethodcalls (e.g. writes). The secondis
sequentialcomposition,whichmeansthatoneruledoesnot
readanything modifiedby thesecondandthey do not both
usethesamemethods.

Thesedefinitions miss someparallel operations. One
rule may write to a state element in the otherspredicate,
but not affect the predicate. In this case,the compiler in-
correctly considersthis a conflict. In general,thereis no
effectivesolutionfor thisproblem.

Describingthe compiler’s schedulingchoicesin detail
is beyond the scopeof this paper. For our purposes,it is
enoughto assumethatwe have someprioritizationson the
setsof rules,wherepropersubsetsof a setwill have lower
priority (i.e. the schedulingfavors firing asmany rulesas
possible).Whena choiceof which rule setmustbemade,
therulesetwith thehighestpriority thatcanbefiredwill be
chosen.

2.3 Verification

Oneof thekey benefitsof theBluespecmodelis theease
of verification. Thestatechangeeachcycle canbeviewed
asa sequentialfiring of rules. Thus,we canshow a design

is correctby verifying eachrule is correctin isolation. The
messyissueof concurrency is entirelyhandled for usby the
Bluespeccompiler.

RWires, an abstractwire modulewhich we describein
moredepthin Section 6 cancausethedesignto becomesen-
sitive to concurrency issues.However, wecaneasilyhandle
this in ourmodel aslongasprovide thatactionswhich read
from a RWire can always fire whenever an action which
writesto thatRWire canoccur.

3 DesignConsiderations

In this section,we go over the high-level designof the
processorandtherolesof thesubcomponents.Wethendis-
cusstheperformancerequirementswhichourreorderbuffer
mustmeet.

3.1 Structur eof the Processor

A reorderbuffer containsdecodedinstructionsin pro-
gram order. It is responsiblefor determiningwhen these
instructionsareexecutable,sendingthemto theappropriate
functionalunit, updatingthe stateof the register file, and
handlingbranchmispredictions.

Wecanview theprocessorabstractlyasshown in Figure
1. Eachunit must follow the following abstractrequire-
ments.

The Fetch/Decode Logic must sendthe ROB a string
of decodedinstructions in program order of a possible
branchpath. Theseinstructionsshouldbe all taggedwith
an “epoch” value definedbelow. It also must containan
interfacewhichtheROB canuseto notify it of thenew pro-
gramcounter(pc) andepochwhenever the ROB detectsa
branchmisprediction.

The epochis an integer valuewhich is incrementedon
every branchmiss. TheROB ignoresall incominginstruc-
tionswhoseepochvaluesdo not matchthecurrentvalueas
they arepartof themispredictedpath.

The ALU Unit must be able to take ready to execute
taggedinstructionsfrom theROB andexecutethoseinstruc-
tions. It musttheneventuallyreturneachresultwith theas-
sociatedtagof theinstruction. No restrictionsareplacedon
theorderingof thereplies.

The Memory Unit takesmemoryinstructionsfrom the
ROB with all operandsresolved(theaddressandthevalue).
To simplify thecomplexity of theMemory Unit, werequire
thatthememory instructionsmustbesent in programorder,
and only after all previous branchinstructionshave been
resolved. It is equallyeasyto expressothermorerelaxed
memorymodelsin Bluespec.TheMemory Unit makesany
necessarymemoryaccessesand returnsthe resultsto the
ROB. Speculative storesmustbe kept until they areeither

invalidatedor committedvia two interfacesaccessibleby
theROB.

The ROB keepstrack of the orderingof instructionsit
receives.It keepstrackof which instructionsaredependent
on eachother, andpassesthevaluesto instructionswaiting
for them. Whenever possiblethe ROB commitsthe oldest
instructionswhichhavebeenexecutedby writing theresults
backinto theregisterfile.

In this design,ROB unit alsocontains theBranchUnit.
On branchmissesit marksall thefalsepathinstructionsas
killed and incrementsthe ROB’s currentepochvalue. It
alsonotifiestheFetch/DecodeLogic of thecorrectprogram
counterandthenew epoch.Subsequentinstructionswhich
do not have thecorrectepochwill bethrown away whenit
is enqueuedinto theROB.

We make theassumptionthatresponsesfrom functional
unitsmaynotoccurthesamecycleasa requestto thefunc-
tionalunit (i.e. therearenopurelycombinationalfunctional
units).Therearenoothertiming requirementsplacedonthe
designingof theFetch/DecodeLogic.

3.2 PerformanceGoals

A reorderbuffer shouldbe able to simultaneouslyen-
queueinstructions, commit instructions,sendinstructions
to the functional units, and receive responsesfrom each
functionalunit. Whendesigningin Verilog, this comesat
thepriceof a horrific verificationtask. By usingBluespec,
we caneasilygeneratea correctcircuit, but it maynot ini-
tially performall thesetasksconcurrently. As our design
mustbe able to achieve the samelevel of performanceas
is possiblewith handwrittenRTL to achieveacceptableper-
formancelevels,additionalchangestohelpthecompilerno-
ticeandmakeuseof theavailableconcurrency in thedesign
will have to bemade.

4 The Initial Design

This sectiondetailsthework doneto generatetheinitial
design. The first implementation wasthe simplestnatural
waywecouldexpressthedesign in Bluespec.

Thoughtheemphasisof this work is on cycle time per-
formance,to be relevant the designmust be realizablein
hardware. As such,our designreflectsappropriate high-
level circuit considerations but ignorescircuit-level opti-
mizations,which can be performedafter the RTL is gen-
erated.

4.1 RepresentationConsiderations

First we consideredhow the ROB was going to inter-
facewith the restof the processor. Therearetwo general
modelsfor interaction.Thefirst is a pushmodelwherewe

Reorder
Buffer

Fetch/Decode
Logic

Fetch Unit

Instruction

Decoder

Memory

Data
Memory

Mem Unit

BTB

ALU

Figure 1. High Level Design of Processor

expect the moduleproducingthe datato passit to the re-
ceiver. Thesecondisapull model,wherethereceivergrabs
the result from the sender. The main differencebetween
thesefunctionsis in which modulethe rule describingthe
datatransferwill reside.Bothmethodswill generatenearly
identicalhardwareasthe only changeis in which module
thatparticularactionis placed.

To make the ROB ableto be compiledseparatelyfrom
therestof theprocessor andtherebygreatlyimprove com-
pile time,we hadto adopta combinationof thetwo, where
all interactionswith theROB weredoneby theothermod-
ules. For example,theALU will grabreadyALU instruc-
tions from the ROB and processthem. Whenit hascom-
pletedan instructionit checksif theROB canhandlea re-
sponseandif so,sendsit to theROB.

This sort of style handlesin a modularfashion all the
interactionbetweentheROB andtheoutsideworld. How-
ever, the ROB muststill notify the Fetch/DecodeLogic of
a branch miss.To accomplishthis without having theROB
usean interfaceon theFetch/DecodeLogic we hadto add
anotherinterfaceto the ROB wherewe madethe branch
resolutionavailable. We also addedthe requirement that
theFetch/DecodeLogic mustcheckfor updatesitself. That
is to saythaton a branchmisswe write to a registerwhich
canbeaccessedby thedesignthroughaninterface.Thusthe
Fetch/DecodeLogic canlook at thisvalue,determinewhen

the ROB hada branchmiss andupdatethe pc andepoch
registersaccordinglyWe decidedto keeptrackof thespec-
ulative statevia a combinationallookup throughthe slots.
This couldalsobedonewith anadditional structurewhich
kept the speculative value or tag reference of eachregis-
ter. The statewould get copiedduring branchinstructions
andrestoredif thebranchwasmispredicted.Althoughthis
doesoffer a fastercircuit lengthfor insertions,wechosethe
combinationallookup, becausethe addedcircuitry would
greatlyincrease thecomplexity of thedesignwhile only of-
fering animprovementin theclock periodwhich is not the
mainfocusof thispaper.

4.2 Storage

Instructionsarekept in an orderedlist of N slots. The
slotscontainthe instructionandassociatedvaluesrequired
for execution,aswell astheoperandvalues,theresult,and
the slot’s state.We usea headTag anda tailTag pointerto
representrespectively, the oldestslot usedandthenext slot
in which anincominginstructionwill beplaced. To differ-
entiatehaving theslot list full andemptyweassertthatone
slotmustremainempty.

struct Slot =
tag :: ROBTag --the Slot’s tag
state :: Reg State

ia :: Reg IA
insType :: Reg InstrType
opcode :: Reg (Bit osz)--opcode size
tv1 :: Reg TagOrValue --operand 1
tv2 :: Reg TagOrValue --operand 2
imm :: Reg Imm -- immediate field
dval :: Reg Value -- result
destReg :: Reg RegOrHiLo
predIa :: Reg PredIA --for branches

Eachslot consistsof a numberof registersasshown be-
low whichrepresentaninstructiontemplate:theInstruction
address(IA), thepredictedinstructionaddress(predIA),the
slot’s state,andtwo operandregisters(tv1 & tv2) thatstore
eitherthe tagof theslot generatingthevalue,or theactual
valueof theoperand.We couldhave representedeachslot
asa single register, but by usinga multiple registerdesign,
we help thecompilerpartition thedataandgeneratebetter
schedules.

Dispatched

Empty

Waiting Done

Killed

Figure 2. High Level Design of Processor

Thestateof a slot is either Empty, Waiting,Dispatched,
Killed or Done. The statetransitiondiagramis shown in
Figure 2. Empty signifiesthat the slot hasno instruction
in it. Empty instructionsonly exist in the region that the
headTagandtailTagdenoteasnon-active. Uponhaving an
instructioninsertedinto it, a slot entersthe Waiting state
whereit will wait for its inputsto be resolved into actual
values.Af terbothinputshavebeenresolvedtheinstruction
in theslot canthenbeplaced in theDispatchedstatewhen-
evertheinstructionis sentto theappropriatefunctional unit.
Whentheresultis sentbackto theROB andwritten into the
slot,theslotenterstheDonestatewhereit canbecommitted
andmadeEmptyagain. At any time, thebranchresolution
rulecansetnon-emptyslot’s stateto Killed.

Instructionsleave the ROB in the order they were in-
serted.To remove aninstruction,oneincrementsthehead-
Tagandwritestheassociatedslot’s stateregisterasEmpty.
To insertan instruction,oneincrementsthe tailTag,places
theinstructioninto theslotatwhich thetailTagpointed.

4.3 DesignComplications

TomatchtheMIPSI ISA weneedto addafew additional
complicationsto ourdesign.

First, thereis a branchdelayslot. This meansthatwhen
a branchinstructionis killed we mustkeepthe instruction
directlyafterit. If weresolvethebranchbeforethis instruc-
tion hasbeeninserted,the delayslot instructionwill have
thewrongepoch.To preventthis from happeningweassert
that branchinstructionscannotbe resolved until the next
instructionhasbeeninserted into theROB.

Secondly, someinstructionsgenerate64-bit results(i.e.
multiply anddivide instructions).To keepfrom having to
doublethesizeof theresultin theslots,we placethesein-
structionsinto consecutive slotswith thehigh orderbits in
thefirst slot, andthelow orderbits in thesecond.Theslots
will thenbetreatedasanatomicunit until theslotsarecom-
mitted.

4.4 The ROB Module

Below is a stylizeddescription of our initial design.The
sz valueis a integer which the ROB is passedat instantia-
tion. It representsthenumberof slotsin theROB. We can
changethis numberto any valuelargerthan2 andmaintain
correctness.

mkROB :: Module (ROB sz)
mkROB sz = -- sz is # of slots
module
let
minTag = 0
maxTag = fromInteger sz
--auxiliary functions
--(e.g. mkSlot & incrTag)
-- state elements
rf :: RegFile <- mkRegFile
curEpoch :: Reg Epoch <- mkReg 0
headTag :: Reg ROBTag

<- mkReg minTag
tailTag :: Reg ROBTag

<- mkReg minTag
handlemissReg :: Reg (IA,PC,Epoch)

<-mkReg (0,0)
slotList :: List Slot
<- mapM (mkSlot) (upto minTag maxTag)
rules

<rules>
interface

enqueueInst inst = ...
getALUInstr = ...
getMEMInstr = ...
updateALU tag result = ...

updateMEM tag result = ...
missvalues = ...

The enqueueInst interface does two combinational
lookupsto seeif the two operands weregeneratedby an-
other instruction in the ROB and writes either the tag of
theassociatedslot, or thevaluefrom theregisterfile asap-
propriateinto the operandregistersand marks the slot as
waiting to bedispatched(i.e. thestateis Waiting).

enqueueInst inst =
let

--slot to write into
slotJ = getSlot tailTag
--structure with values to write
slotVals = (getSlotValues inst)

in
action

tailTag := incrTag tailTag
writeSlot SlotJ slotVals

when (not slotListFull)

Thereare two separaterulesper slot which updatethe
taggedvalueswith theactual values.They look asfollows:

"update TagOrValue 1":
when

(T tag) <- slotJ.tv1
==> let

slotTag = (getSlot tag)
in
action
if (slotTag.state == Done) then

slotJ.tv1 :=(V slotTag.dval)
else
noAction

This checksto seeif the instruction in the slot (slotJ)
associatedwith thegiventaghasbeenexecutedandif so,it
writesthevalueinto theoperandregister.

Additionally, for eachslot thereis aslotdispatchruleper
functionalunit typewhich takesreadywaiting instructions
andplacestheminto theFIFOswhich thendispatchto the
appropriatefunctionalunits.

"Dispatch to ALU":
when (slotJ.state == Waiting),

(V v1) <- slotJ.tv1,
(V v2) <- slotJ.tv2,
(ALUTYPE == slotJ.instType)

==> let
aluInst = (aluInstfromSlot slotJ)

in
action

slotJ.state := Dispatched
fifo2ALU.enq aluInst

As a side note, it may appearinitially that generating
theserules for eachslot canbe quite difficult andrestric-
tive, but dueto Bluespec’s goodstatic elaboration,thetask
is easilydone.We do this by writing a functionto generate
rules for a singlegiven slot. Thenwe canmapthis func-
tion over theslotListandconcatenate thelist of rulesto our
currentlist of rulesfor theROB. This alsogivesusthead-
ditional benefitof not limiting the numberof slots in the
ROB.

let
mkRules i = -- makes a slot’s rules
rules
<rules>

in
mapM mkRules (upto minTag maxTag)

The interfacesto get the instructionfrom the ROB and
handit to thefunctionalunit wasasimpledequeuefrom the
associatedFIFO.

getALUInstr = do --actionValue
fifo2ALU.deq
return fifo2ALU.first

Branchinstructionsareexecutedby checkingthe result
andkill ing all instructionsafter thebranchandwriting the
register which is readby the FetchUnit with the new pc
andepochvalue.Thesekilled instructionsareleft in thelist
to be removed by the commit rule (i.e. the tailTag is not
modifiedonabranchmiss).

"Resolve Branch":
when canFireBranch
==> let

inst = fifo2branch.first
correctIA = (calcNewIA inst)
slotJ = (getSlot inst.tag)

in
fifo2branch.deq
slotJ.state := Done
if (correctIA /=

inst.predIA) then
action
--send information on
--branchmiss
handlemissReg:=
(correctIA,inst.IA,nextEpoch)
curEpoch:=nextEpoch

else
noAction

The interfaceto get thenew branchinformationjust re-
turnsthevalueassociatedin thehandlemissReg register.

missvalues = handlemissReg

Writebacksfrom the functionalunits write into the ap-
propriateslot or slots.

updateMEM tag result =
let

slotJ = getSlot tag
in
action

slotJ.state := Done
slotJ.err := result.err
slotJ.dval := result.value

Commits are done by removing the oldest instruction
from the slot list and writing back any unkilled values to
theregisterfile.

"Commit":
when headTag /= tailTag,

slotJ <- getSlot headTag,
slotJ.state == Done,
not slotJ.err

==> action
headTag := incrTag headTag
slotJ.state := Empty
(rf.write slotJ.destReg
slotJ.dval)

5 Debugging the Design

After abouta weekof designanddebuggingwe hadthe
designcompleted.By this we meanthat we wereable to
simulatethe entire processorrunning MIPS I codeusing
VCS.

After a 20 minutecompilewe foundthatthedesignhad
a CPI of 5 for a singledependency chainof ALU instruc-
tions. The reasonfor this is that it took onecycle for an
instructionto be insertedinto theROB, onefor an instruc-
tion to be committed,oneto enterthe instructioninto the
queueto theALU, oneto actuallyexecutetheinstructionin
theALU, andoneto propagatetheexecutedvaluefrom one
instructionto thoserequiring it.

This CPI is clearly unacceptable. Theseactionswere
designedto becompletelydisjoint (i.e. conflict free) from
eachother. As such,all the rulesshouldbe ableto fire in
parallel.

To determine why theserules conflict, we made use
of the Bluespeccompiler’s rule conflict analysisfunction.
First, we usedthe-dschedule flag to get a list of rule
conflicts. This list shows which rules conflict with each
otherandwhich rule will bechosento fire if bothrulesare
enabled.

Oncewehavedeterminedwhichrulesconflict,wecheck
to seewhethertheconflictwasintentional.In theinitial de-
signresolvingabranchmissconflictedwith fetchinganew
instruction.This conflict is supposedto exist, aswe do not
want to fetchdown a wrongpathoncewe know we areon
the wrong path. Other conflicts shouldnot exist like the
conflict betweenwriting valuesback to the reorderbuffer
into two differentslotsfrom two differentfunctionalunits.
After identifying a pair of ruleswhich we want to not con-
flict, we usethecompiler’s-show-rule-rel flag to get
a list of statewritesandreadseachruleperforms.Fromthis
list we can determinewhy the compiler believes the two
rules to be conflicting. From therewe can formulate the
appropriatechangeto avoid theconflict.

6 DesignChanges

Fromtheinitial designtherewereanumberof problems
which limited the performanceof the design.Theseprob-
lemsandtheir solutionsaredescribedin detailbelow.

6.1 Removing FalseReads

Themostcommoncauseof falseconflictsbetweenrules
wasdue to redundant clausesin the predicate. An exam-
ple of this is theconflict betweendispatchesandthe insert
rule. All thedispatchruleshadaspartof their predicatea
clausewhichcheckedto seeif theslotwasin theactivearea.
ThisrequiredthatthetailTagneededto beread.Thiscaused
theserulestonolongerbemutuallyexclusivewith theinsert
rule which changesthe tailTag valueandlimits sequential
composabilitysothat the insertrule would have to besim-
ulatedsecond.If theruleswereonly ableto besequentially
composedin the oppositeorder naturally, it would cause
falseconflicts.Thepredicateswereall rewritten to remove
unnecessaryreferences.

6.2 Impr oving ValuePropagationTiming

In theoriginal design, it took onecycle to propagatean
executedvalueafter executionfrom the generatingslot to
the slotswaiting for the value. This wasbecausethe tags
(tv1 & tv2) cannotbe updateduntil the valuehasreached
the slots they are referring to. For performance we must
remove this1 cycledelay.

We needto write into all the slots’ operandregisters
whenwearewriting backtheresult.However, thiscausesa
hugenumberof possiblewriteswhich prevent two updates
from beingfired concurrently. This is alsoclearly not ac-
ceptable.

We would like to beableto split this rule into a rule per
slot andthusavoid theunrealizableconflicts. However, be-
causethis is an interfacemethodwe cannotdo so. For a

Slot 4

Slot 3

Slot 2

Slot 1 Scheduling Logic

MEM Writeback

 ALU Writeback

Figure 3. Conflict from Initial Design

Bluespecmoduleto beableto becompiledmodularly, the
interfacecannotbechangeddependingon its implementa-
tion.

To work aroundthis restrictionwe needto use RWires.
RWiresaresimilar to Verilog wires,but with theaddeden-
ablingbit for thesignalexposed.That is wecanview it asa
registerwherewritesaredonebeforereadsin a cycle with
noability to savevalues,whichallowsusto seewhenit has
valid data. Using this allows us to know whenvaluesare
beingwrittenandby doingsoallowsusto tailor whatarule
doesbasedon theotherrulesfiring at the time. This must
beusedwith caution,asit demandsthatyou will now need
to worry aboutsometiming issues,but allowsusto emulate
someVerilog tricks whichwouldotherwisebedifficult.

Slot 4

Slot 3

Slot 2

Slot 1 Scheduling Logic

 ALU Writeback

MEM Writeback

Figure 4. Solution with Mult. Update Por ts

Theinitial solutionwasto makeaspecialoperandregis-
termodulewhichwouldactasaregisterwith multiplewrite
ports(asin Figure4). Writing into oneof theseportswould
write into an RWire. Then every cycle, a rule in the mod-
ule would fire andlook at all theRWires in somefixedor-
der, selecttheenabledvalueandwrite thatinto theregister.
Theneachupdateunit could write into a differentport and
therewould be no conflicts. We canguaranteethat this is
ascorrectasbefore,becausethereis only onevaluewhich
an operandregister will ever be written with, so it is not
possibleto missany signalssentto theoperandregisters.

Anothersolution,shown in Figure5, wasdevisedto im-
prove thedesign’s readability. Insteadof having a separate
RWire perslotperupdaterule,weonly needoneperupdate
rule. Thentheupdaterulescaneachreadthesevaluesand
do the updatesto the register. This not only simplifiesthe
description,but alsoallows us to make morecomplicated

Slot 4

Slot 3

Slot 2

Slot 1 Write1 Rule

Write2 Rule

Write3 Rule

Write4 Rule

R
W

ir
e

R
W

ir
e Scheduling Logic

 ALU Writeback

MEM Writeback

Figure 5. Solution Using RWires

rule logicsdependenton thestateof theROB moreeasily.

6.3 Removing StateRegisterConflicts

Anotherproblemwith theinitial designwasthata num-
ber of rules had falseconflicts with eachother. Analysis
revealedthatall theconflictswerecausedby theruleswrit-
ing to theslots’ stateregisters.Automaticsequentialcom-
positionby the compiler fails here,becausethe rulesboth
neededto readandwrite theconflicting register, socompo-
sition is notpossible.Theonly solutionis to make therules
parallelin someway.

A naturalthing to do is to addmultiple prioritizedwrite
portsto eachof theseregisters.However, we mustbecare-
ful to give priority to theappropriateruleswhentwo rules
fire together.

Theupdate,dispatch,insert,commit,branchrulesall up-
datetheslots’statevalues.Uponinitial inspectionit is clear
that the branchrule will be part of every rule conflict pair
andthat it must beprioritizedhigherthanall otherrulesor
possiblyresult in falsepath instructionsnot being killed.
Thusweshouldonly needtwo portsfor thestateregisters.

Sinceduringschedulingslot rulesaretreatedasthough
they areusingamethod,if it is possiblethatthey mightuse
thatmethod,we needto addmoreportsto handlethecases
wherethe rulesoverlaps(e.g. a commit rule which takes
theoldestN slots,anda insertrule which takesthenext N
slots,whentherearelessthanN availableslots,wouldhave
anoverlapof at leastoneslot). We chosetheorderof high-
estprecedence:thebranchresolverule,thecommitrule,the
update/writebackrules,thedispatchrulesandlastly thein-
sertrule. To makesurethatany instructionsinsertedduring
a branchmissarenot keptalive in theslot list we changed
theresolve branchrule to alsowrite thestateof Empty into
any slot which shouldnot containan active instructionto
overridetheinsertrule’s values.

6.4 ReducingDispatchLatency

In theinitial design,aninstructionhad to first beput into
a FIFO beforeit wasdispatchedinto the associatedfunc-
tional unit. This introducesanextra cycle for eachinstruc-
tion to beableto passits resultalong.Weneedthiscycle to

beremoved.
To do this we mustremove the intermediateFIFO. This

meanshaving somesort of combinationallogic to get the
slot which we want to take the instructionfrom so we can
changeits state. For eachfunctional unit, we do a scan
throughthelist of slotsfor valid instructionsto sendto that
functionalunit andpick the first oneavailable. We do not
attemptto searchfor the oldestexecutableinstruction,be-
causethehardwarefor this is very large. In Verilogdesigns,
asimilar simplestaticbiasis usedfor instructionselection.

slotALU = findALUInst2Dispatch

getALUInstr =
do
-- write in 3rd port to avoid conflict
slotALU.state._write3 Dispatched
return (makeALUInstfromSlot slotALU)

when validALUInst2Dispatch

This changeintroducesa conflict with the stateregister
for eachslotasnow it is possibly writing into eachstatereg-
ister. However, by addinganotherport to thestateregister
asdetailedin Section6.3wecanavoid this conflict.

6.5 ReducingBranch Miss Penalty

When we addedthe extra interface to allow the ROB
to be compiledseparatelyfrom the restof the design,we
had to add a register on the path from the ROB to the
Fetch/DecodeLogic. This causedan increaseof one cy-
cle in thebranchpenalty. By replacingtheregisterwith an
RWire wewereableto remove thisextracycle.

7 Other Optimizations

In addition to the above improvementsto the concur-
rency of the design,therearemany simple improvements
we cando which will reduceredundanthardware,andim-
prove compilation. This sectiondiscussesthe changesof
this kind thatwemadeto thedesign.

7.1 Reducingthe Instruction Window Size

The first of suchimprovementswe can make involves
how wepreferwhichrulesfire whengivenachoicebetween
them. The bestmethodis to favor completionof instruc-
tionsoverstartingthem.Thiswill tendto reducetheamount
of misspeculatedinstructionssentto thefunctional unit and
reducethenumberof cyclesspentreclaimingkilled slots.

Unfortunately, there is nowaycurrentlyto explicitly en-
codea rule priority; the compiler selectswhat it believes
to be a betterpreferenceweighting. However, in the case

wherethe compilerhasno preferenceit will tendto favor
therulefirst listedin themoduledescription.By reorganiz-
ing theruleswith this in mind we canachieve moreappro-
priateprioritizationsfor the rules.

7.2 ReducingConflicts

Somerulesshouldnever fire together, but they still are
testedto seeif they conflict. This canbequiteexpensive if
therulesin questionarebothsplit into many pieces.

For instance,therule to insertan instruction into a slot,
andtherule whichupdatesoneof thetagvaluesin thatslot
conflict asthey both write to the sameregister(tv1 or tv2
dependingon theparticularrule). However, at a high level
it is clear that the ruleswill never fire. By explicitly stat-
ing thattheinsertrule only operateson emptyslotsandthe
updateon waiting slots,thecompiler can very quickly de-
terminethetwo rulesaremutuallyexclusive. Whenthiswas
doneto thereorderbuffer design,thecompilationtime was
reducedby a factorof 20.

7.3 Impr oving Compilation

To removesomeof theremainingissues,weneedto split
the interfacerules(i.e. the insertrule). However, this can-
notbedoneif wewantavariable-lengthROB. It wouldalso
exposetheinternalsof theROB modules,whichwewantto
avoid. We hand-splittheinsertrule to operateon a perslot
basisby having a rule for eachslot which readsthe input
valuefrom anRWire. TheRWire is written to by theinsert
interface. We alsoneededto adda guardon interfaceby
handto make surethat it would only fire whentherewas
a rule which would actuallytake the instructionsput in the
RWire. Thismayseemlikeacyclesensitivechange,but be-
causewe have alreadyaddedmultiple portsto theslot state
registers,no additionalconflicts are removed by this rule
splitting. Insteadit reducestheamountof checksthecom-
piler hasto do to determinethattherulesdonot conflict.

8 Findings

Within 100 man-hourswe wereableto generateour ini-
tial design,which was slow, but provably correct. After
another300 man-hourswe were able to optimize our de-
sign so that it had a maximumtheoretical CPI of 1 with
a 2 wide insert/commitof the processor. This is 50% of
what we shouldbe able to achieve. This inefficiency was
dueentirely to theoneconflict we were unableto remove,
whichwasbetweenthecommitrulesandtheinsertinstruc-
tion rules.

Our initial belief wasthat this was dueto the problems
with changing the headTag andthe tailTag at once. How-
ever, theactualissuewaswith theregisterfile andthehead-

Tag. The insert rule needsto readtheheadTag to verify if
insertingis valid andthecommit rule updatestheheadTag.
Also, the commit rule writes backany unkilled rules it is
committingandtheinsertrule readstheregisterfile.

Thuseachrule is writing somethingtheothermustread
andsotherulesconflict. Nevertheless,this is a falsedepen-
dency. Firing the rulestogetheralwaysresultsin thesame
stateasfiring themon separatecycles,sinceany valuebe-
ing written into theregisterfile is still containedin anactive
slotonthatcycle. Thusthemostcurrentvaluewouldstill be
foundby theinsertrule if theruleswererunconcurrently.

In thecourseof our work, it wasdiscoveredthatby lim-
iting or splitting rulesto actonaslittle stateaspossibleand
reducingthenumberof methodconflictsbetween rules,we
achievebetterperformance.

Unfortunately, this techniquedoesnot avoid this false
read-writeconflict for the currentcompiler. The Bluespec
compileris underrevisionwith thisproblemin mind.

Bluespechas made much progressinto making large
scaledesigns.Many of the difficulties encounteredin this
work weredue to needingto make changesin the design
processto suit thelanguagemindset,andunderstandingthe
conflict analysisof thecompiler.

While our final CPI valuewas lessthancorresponding
handwrittenRTLs, stepsto allow for directedrelaxationof
theconflict criteriawill easily bridgethisgap.

Work into theBluespeccompilershouldnow bedirected
towardsautomaticallyfinding andsafely integratinghigh-
level knowledge into designs. Additionally, designinga
conciseway for thedesignerto describehow to handletwo
conflictingruleswouldbeworthwhile task.

Acknowledgements

Funding for this researchby the DefenseAdvanced
Research Projects Agency under the IBM Contract
NBCH3039004.Thanksis given to ProfessorArvind and
DanielRosenbandfor usefulcommentsfor boththedesign
and paper;Mieszko Lis, Ravi Nanavati, JacobSchwartz,
andtherestof theBluespecInc. engineeringteamfor their
prompthelpandcompilerupdates;andKarenBrennanfor
hereditorialassistance.

References

[1] Arvind andX. Shen,UsingTermRewriting Systems to
DesignandVerify Processors, IEEE,Micro SpecialIs-
sueon Modelling andValidationof Micro-processors
Vol. 19(3): pp.36-46,1999.

[2] A. Benvensitee,P. Capsi,S.A. Edwards, N. Halbalb-
wachs, P. Le Guernic, and R. de Simone.The Syn-
chronousLanguages12YearsLater. Proceedingsof the
IEEE,91 (1). 64-93.

[3] D. L. Dill, The Murphi Cerification System, in Pro-
ceedingsof theInternationalConferenceonComputer-
AidedDesign,Springer-Verlag,1996.

[4] D. D. Gajski, High Level Synthesis: Introduction to
Chip and SystemDesign, Kluwer Academic,Boston,
1992.

[5] S. Gupta,N. D. Dutt, R. K. Gupta,and A. Nicolau,
SPARK“A High-LevelSynthesisFrameworkfor Apply-
ing Parallelizing Compiler Transformations”, in Inter-
nationalConferenceof VLSI Design,(2003).

[6] G. Hajjiyiannis, S. Hanono,andS. DevadasISDL: An
InstructionSet DescriptionLanguageFor Retargetabil-
ity, in Proceedingsof the34thDesignAutomationCon-
ference(DAC), (1997),299-302.

[7] J. C. Hoe, Operation-Centric Hardware Description
and Synthesis, in Dept. of Electrical Engineeringand
ComputerScience:MassachusettsInstituteof Technol-
ogy, 2000,p. 139.

[8] J. C. Hoe,andArvind, Synthesisof Operation-Centric
HardwareDescriptions, presentedat IEEE/ACM Inter-
nationalConferenceon ComputerAided Design(IC-
CAD), 2000.

[9] J.Plosila,andK. Sere,ActionSystemsin PipelinedPro-
cessorDesign, in ProceedingsThird InternationalSym-
posiumon AdvancedResearchin AsynchronousCir-
cuitsandSystems,(1997),156-166.

[10] O. Schliebusch,A. Hoffman,A. Nohl, G. Braun,and
H. Mayr, Architecture ImplementationUsing the Ma-
chine DescriptionLanguage LISA, in Proceedings7th
Asia and SouthPacificDesignAutomationConference
(ASP-DAC), (2002),156-166.

[11] J. Straunstrup,and M. R. Greenstreet,From High-
Level Descriptionsto VLSI Circuits, BIT, 28 (3). 620-
638.

