Designinga Reorder Buffer in Bluespec

Nirav Dave
ComputerScienceandArtificial IntelligenceLab
Massatusettdnstituteof Technology
Cambridge, Massatiusett02139

Email: ndave@mit.edu

Abstract

Production capabilities for complex VLSI chips have
outpacedheability of currentgeneation CAD toolsto de-
signandverify sudh chips effectively Bluegecis designed
to syrthesizehigh-level descriptionsn theform of guarded
atomicactionsinto high quality structural RTL.Whilemud
work hasbeendoneon verifying both the correctnessand
synthesizabilityof Bluespeadescriptbns, the work on re-
alistic large scaledesignsis in early stages. This paper
exploresthe designof thereader buffer for an out-of-oder
supescalar processorwith a MIPS | ISA. We discussthe
designmethodolgieswhich are suitedfor large scaleBlue-
specdesignand discusssomeof the difficulties we encoun-
tered. Eventhoughthe work is still in progress,we show
whatlevel of performances achievable underthe current
Bluespecconpiler and what problemsneedto be solved
to male thetool viablefor commecial production erviron-
ments.

1. Intr oduction

Previous work hasshavn that designsdescribedusing
TRS, the underlyingformalism of Bluespecare amenable
to formal verification[1]. Beforelow-level timing andarea
concernscan be consideredpne needsto seeif the high-
level desciption capturesthe inherentconcurreng of the
designappropriately

In this papewe presenthedesignprocesof a2-way re-
orderbuffer (ROB) in Bluespecaspartof a processosup-
porting the MIPS | ISA. The focus of this work is to de-
terminewhetherthis complex hardware designcan be de-
scribedin Bluespecsuchthatits cycle-level performances
equialentasits handwritenVerilog counterpart.

0-7803-8509-8/04/$20.0@)20041EEE

1.1 RelatedWork

Thereis alot of interestin high-level hardwaredescrip-
tion languageswvhich make use of behaioral modeling,
while still allowing for efficient hardware synthesis.Most
commercialwork in thisfield is focusedontwo approaches.
The first is to increasethe compleity level of RTL lan-
guagedo bemoresuitable for modeling,suchasBehavioral
Verilog. The seconds to modify a standardanguagee.g.
C or Java) to be moreappropriatefor describinghardvare.
In the latter case,Control DataFlow Graphsare extracted
from the sourcedescriptionand techniquesor compiling
vector architecturesare usedto generateregister transfer
logic[4][6]. Neitherof thesetechniquesasyetto produce
a widely acceptechardware descripton languagefor syn-
thesis.

One type of researchhas a focus on specialized
programmableprocessors[6][10]. This effort is only
mauginally associatedvith the problemof generalpurpose
hardwaredescriptionlanguagesasmostof its emphasiss
on processospecificissues,suchasinstructionencoding,
andthe automaticallygeneatedassemblers.

Two other types of languageshave beenexplored by
the researclcommunityto becomean effective high-level
HDL. Thefirst of thesetypes usesa synchronouspecifi-
cationlanguagdik e Esterel,Signal, or Lustre. Theselan-
guageddealwith real-time issues[2]. Methodsto compile
Esterelinto hardware have beenwritten, but the resultsare
notcomparabléo handwritten Verilog designs.

The secondtype usesan asynchronousanguagewith
atomic actions such as Dill' s Murphi[3], Seres Action
Systems[9], Staunstru® Synchronized Transitions[11],
andArvind and Shens TRS[1]. The primary principle of
theselanguagess that all hardware systemscan be de-
scribedin two parts: a physical state(e.g. registersand
storageanda setof guardedatomicactionswhich describe
the state-changéransitions. It hasbeenshavn that these
atomicdescriptionganbetranslatednto efficienthardware
if rulesareassumedo take onecycle[7][8]. Bluespeds a

memberof this secondgroupof languages.
1.2 Paper Organization

Section2 of this papergivesa descriptionof Bluespecs
syntaxandscheluling. Section3 describesheroughdesign
of theprocessoandthereorderbuffer’'s function. Sectiord
discussesheinitial implementatiorof thereorderbuffer in
BluespecA discussiorof thedebuggingprocesss detailed
in Section5. We write aboutoptimizationsdoneto improve
cycle performancen Section6, andotheroptimizationsin
Section?. Finally, in Section8 we discussthe findings of
thiswork, generaBluespedalesigntips, andareador future
work for Bluespec.

2 Bluespec

Bluespeds anobjectorientedHDL which compilesinto
TRS. In Bluespec,a moduleis the actualunit which gets
compiledinto hardware.Eachmoduleroughlycorresponds
to a Verilog module. A module consistsof threethings:
state,rules which modify that state,and interfaceswhich
allow the outsideworld to interactwith themodule.

2.1 BluespecSyntax

A moduleis therepresentatioof acircuitin Bluespeclt
canbea primitive modulewhichisjustawrapperaroundan
actualVerilog module,or a standardnodulewith stateel-
ementsncluding othermodules rules,andinterfacemeth-
ods.

Thestateelementsuchasregisters flip-flops, memories
areall specifiedexplicitly in amodule.Thebehaior of the
moduleis representebly ruleswhich eachconsistof a state
changeon the hardwarestateof the module(anaction) and
theconditionsrequiredfor theruleto bevalid (apredicatg.
It is valid to execute(fire) a rule wheneer its predicateis
true. Thesyntaxfor aruleis:

" Rul eNanme" :
when predicate
==> action

The interface of a moduleis a setof methodsthrough
which the outsde world interactswith the module. Each
interfacemethodhasa predicate(a guard) which restricts
whenthe methodmaybecalled. A methodmayeitherbea
readmethod(i.e. acombinationalookupreturningavalue),
or anactionmethod,or acombinatiorof thetwo, anaction-
Valuemethod.

An actionValueis used whenwe do not wanta valueto
be madeavailableunlessan appropriateactionin the mod-
ule alsooccurs.Considera situationwherewe have a FIFO

of valuesanda methodthatshouldgeta new valueon each
call. From the outside of the module,we would want to
beableto look atthevalueonly whenit is beingdequeued
from the FIFO. Thuswe would write the following where
do is usedto signify anaction\alue.

= do
fifoVval. deq
return fifoVval.first

get Vval

The abstracimodelof exeaution of a Bluespeccircuit is
asfollows. For ary initial hardwarestate we have someset
of executablerules. Ea cycle, we randomlyselectoneof
theserulesandexecuteit therebycharging the state. This
is of coursevery inefficient,andsowe allow multiple rules
to fire at once,but requirethatary transitionfrom onestate
to amthermustbe obtainableby a valid sequencef single
rulefirings.

2.2 Scheduling

Due to the possiblecompleity of determiningwhena
rule will usean interfaceof a module, Bluespecassumes
conseratively that an actionwill useary methodthat it
might ever use. Thatis to saythatif the actionaccesses
a methodonly whensomeconditionis met, the scheduler
will treatit asalwaysusingit. Using this simplification,the
compilerscangherulesfor two kindsof paralleloperations
on rule pairs. The first is conflict free, which meansthat
eachrulein thepairdoesnotreadwhatthe otherrule writes
for either the predcate or the action, andthe rulesdo not
male the samemethodcalls (e.g. writes). The secondis
sequentiatompositionwhich meanghatonerule does not
readarything modifiedby the secondandthey do not both
usethe samemethods.

Thesedefinitions miss some parallel operations. One
rule may write to a stae elemen in the otherspredicate,
but not affect the predicate. In this case,the compilerin-
correctly considershis a conflict. In generalthereis no
effective solutionfor this problem.

Describingthe compiler’s schedulingchoicesin detail
is beyond the scopeof this paper For our purposesit is
enoughto assumehatwe have someprioritizationson the
setsof rules,wherepropersubtsof a setwill have lower
priority (i.e. the schedulingfavorsfiring asmary rulesas
possible).Whena choiceof which rule setmustbe made,
therule setwith the highest priority thatcanbefiredwill be
chosen.

2.3 Verification
Oneof thekey benefitoof theBluespeanodelis theease

of verification. The statechangeeachcycle canbe viewed
asa sequentiafiring of rules. Thus,we canshowv a design

is correctby verifying eachrule is correctin isolation. The
messyissueof concurrenyg is entirelyhandlel for usby the
Bluespeaompiler
RWires, an abstractwire modulewhich we describein

moredepthin Sectim 6 cancausehedesignto becomesen-
sitive to concurrenyg issues However, we caneasilyhandle
thisin ourmodd aslong asprovide thatactionswhichread
from a RWire can always fire wheneer an action which
writesto thatRWire canocaur.

3 DesignConsiderations

In this section,we go over the high-level designof the
processoandtherolesof the subcomponentdNe thendis-
cusstheperformanceequirementsvhich ourreorderuffer
mustmeet.

3.1 Structure of the Processor

A reorderbuffer containsdecodedinstructionsin pro-
gramorder It is responsiblgfor determiningwhenthese
instructionsareexecutabé, sendinghemto theappropriate
functional unit, updatingthe stateof the registerfile, and
handlingbranchmispredictons.

We canview the processorbstractlyasshovn in Figure
1. Eachunit mustfollow the following abstractrequire-
ments.

The Fetch/Deode Logic must sendthe ROB a string
of decodedinstructionsin program order of a possible
branchpath. Theseinstructionsshouldbe all taggedwith
an “epoch” value definedbelawn. It also mustcontainan
interfacewhichthe ROB canuseto notify it of thenew pro-
gramcounter(pc) andepochwheneer the ROB detectsa
branchmisprediction.

The epochis aninteger value which is incrementecbn
every branchmiss. The ROB ignoresall incominginstruc-
tionswhoseepochvaluesdo not matchthe currentvalueas
they arepartof the mispredi¢ed path.

The ALU Unit must be able to take readyto execute
taggednstructiondrom theROB andexecutethoseinstruc-
tions. It musttheneventuallyreturneachresultwith the as-
sociatedagof theinstruction. No restrictionsareplacedon
theorderingof thereplies.

The Memory Unit takes memoryinstructionsfrom the
ROB with all operandsesoled(the addressandthevalue).
To simplify thecomplity of the Memory Unit, we require
thatthemenory instructionsmustbesentin programordet
and only after all previous branchinstructionshave been
resohed. It is equally easyto expressothermorerelaxed
memorymodelsin BluespecThe Memay Unit makesary
necessarynemory accesseand returnsthe resultsto the
ROB. Speculatre storesmustbe kept untl they areeither

invalidatedor committedvia two interfacesaccessibleoy
the ROB.

The ROB keepstrack of the orderingof instructionsit
receves.|t keeparackof which instructionsaredependent
on eachother andpasseshe valuesto instrudionswaiting
for them. Wherever possiblethe ROB commitsthe oldest
instructionswhichhave beenexecutedoy writing theresults
backinto theregisterfile.

In this design,ROB unit alsocontans the BranchUnit.
On branchmissedt marksall the falsepathinstructionsas
killed andincrementsthe ROB’s currentepochvalue. It
alsonatifiesthe Fetch/Decodé&ogic of thecorrectprogram
counterandthe new epoch.Subsequerinstructionswhich
do not have the correctepochwill bethrovn away whenit
is enqueuednto the ROB.

We make the assimptionthatresponsefrom functional
unitsmay not occurthe samecycle asarequesto thefunc-
tionalunit (i.e. thereareno purelycombinationafunctional
units). Thereareno othertiming requirementplacedonthe
designingof the Fetch/Decod Logic.

3.2 Performance Goals

A reorderbuffer shouldbe ableto simultaneouslyen-
gueueinstructions, commit instructions,sendinstructions
to the functiond units, and receve responsedrom each
functionalunit. Whendesigningin Verilog, this comesat
the price of a horrific verificationtask. By usingBluespec,
we caneasilygeneratea correctcircuit, but it may not ini-
tially performall thesetasksconcurrently As our design
mustbe ableto achieve the samelevel of performanceas
is possiblewith handwrittenRTL to achieve acceptablger
formancdevels,additionalchangeso helpthecompilerno-
ticeandmalke useof theavailableconarreng in thedesign
will have to bemade.

4 The Initial Design

This sectiondetailsthe work doneto generateheinitial
design. The first implementabn wasthe simplestnatural
way we couldexpresshedesgnin Bluespec.

Thoughthe emphasif this work is on cycle time per
formance,to be relevant the designmust be realizablein
hardware. As such,our designreflectsappropride high-
level circuit consideratins but ignorescircuit-level opti-
mizations,which can be performedafter the RTL is gen-
erated.

4.1 RepresentationConsiderations
First we consiceredhow the ROB was going to inter-

facewith the restof the processaor Therearetwo general
modelsfor interaction. Thefirst is a pushmodelwherewe

3 BTB $ﬁ\

| Vo h Data

! ! Memory

| 4 N |

| | N Y,
i Fetch Unit - Decoder ‘ v A

: : e Y
AN / | -

; * A ; Mem Unit

| | Reorder -

Lo h | Buffer

| | N J
| Instruction |

! Memory ! (h
! l -

: L J | ALU

! Fetch/Decode | —

| Logic |

1 b) N J

Figure 1. High Level Design of Processor

expectthe moduleproducingthe datato passit to the re-
ceiver. Thesecondsapull model,wheretherecever grabs
the resultfrom the sender The main differencebetween
thesefunctionsis in which modulethe rule describingthe
datatransferwill reside.Both methodswill generataearly
identical hardware asthe only changeis in which module
thatparticularactionis placed.

To make the ROB ableto be compiledseparatelyfrom
therestof the processpandtherebygreatlyimprove com-
pile time, we hadto adopta combinationof the two, where
all interactionswith the ROB weredoneby the othermod-
ules. For example,the ALU will grabreadyALU instruc-
tions from the ROB and procesghem. Whenit hascom-
pletedaninstructionit checksif the ROB canhandleare-
sponseandif so,sendst to the ROB.

This sort of style handlesin a modularfasion all the
interactionbetweernthe ROB andthe outsideworld. How-
ever, the ROB muststill notify the Feth/Decodd_ogic of
abrand miss. To accomplishthis without having the ROB
useaninterfaceon the Fetch/Decodé.ogic we hadto add
anotherinterfaceto the ROB wherewe madethe branch
resolutionavailable. We also addedthe requiremat that
the Fetch/Decodéogic mustcheckfor updatestself. That
is to saythaton a branchmisswe write to a registerwhich
canbeacessedy thedesignthroughaninterface. Thusthe
Fetch/Decodéogic canlook atthis value, determinewhen

the ROB had a branchmiss and updatethe pc and epoch
registersaccordinglyWe decidedto keeptrack of the spec-
ulative statevia a combinationallookup throughthe slots.
This could alsobe donewith anadditioral structurewhich

kept the speculatie value or tag reference of eachregis-

ter. The statewould get copiedduring branchinstructions
andrestoredf the branchwasmispredicted Althoughthis

doesoffer afastercircuit lengthfor insertionswe chosethe
combinationallookup, becausahe addedcircuitry would

greatlyincreag thecompleity of thedesignwhile only of-

fering animprovementin the clock periodwhich is not the
mainfocusof this paper

4.2 Storage

Instructionsare keptin an orderedlist of N slats. The
slotscontainthe instructionandassociatedaluesrequired
for execution,aswell asthe operandvalues theresult,and
the slot’s state. We usea headfig and a tailTag pointerto
representespectiely, the oldestslot usedandthe next slot
in which anincominginstructionwill beplaced To differ-
entiatehaving theslotlist full andemptywe asserthatone
slot mustremainempty

struct Slot =
tag :: ROBTag --the Slot’s tag
state :: Reg State

ia:: Reg IA

insType :: Reg InstrType

opcode :: Reg (Bit o0sz)--opcode size
tvl :: Reg TagOrValue --operand 1
tv2 :: Reg TagOrVval ue --operand 2

imm:: Reg Imm-- inmediate field
dval Reg Value -- result

destReg :: Reg RegOrHiLo

predla :: Reg Predl A --for branches

Eachslot consstsof a numberof registersasshavn be-
low whichrepresenaninstructiontemphte:thelInstruction
addresglA), thepredicedinstructionaddresgpredIA), the
slot’s state ,andtwo operandegisters(tvl & tv2) thatstore
eitherthetag of the slot generatinghe value, or the actual
valueof the operand.We could have represente@achslot
asasingle register but by usinga multiple registerdesign,
we helpthe compilerpattition the dataandgeneratéetter
schedules.

Figure 2. High Level Design of Processor

The stateof aslotis either Empty, Waiting, Dispatched,
Killed or Done. The statetransitiondiagramis shown in
Figure2. Empty signifiesthat the slot hasno instruction
in it. Empty instructionsonly exist in the region that the
headBgandtailTagdenoteasnon-actve. Uponhaving an
instructioninsertedinto it, a slot entersthe Waiting state
whereit will wait for its inputsto be resolhed into actual
values.After bothinputshave beenresolhedtheinstruction
in the slot canthenbeplaced in the Dispatchedstatewhen-
evertheinstructionis sentto theappropriatéunctioral unit.
Whentheresultis sentbackto theROB andwritteninto the
slot,theslotenterghe Donestatewhereit canbecommitted
andmadeEmpty again. At ary time, the branchresolution
rule cansetnon-emptyslot’s stateto Killed.

Instructionsleave the ROB in the order they werein-
serted.To remove aninstruction,oneincrementgshe head-
Tagandwritesthe associatedslot’s stateregisterasEmpty,
To insertaninstruction, oneincrementghe tailTag, places
theinstructioninto the slot at which thetailTag pointed.

4.3 DesignComplications

To matchtheMIPS| ISA we needto addafew additional
complicationgo our design.

First, thereis a branchdelayslot. This meanghatwhen
a branchinstructionis killed we mustkeepthe instruction
directly afterit. If weresohethebranchbeforethisinstruc-
tion hasbeeninserted,the delay slot instructionwill have
thewrongepoch.To preventthis from happeningve assert
that branchinstructionscannotbe resohed until the next
instructionhasbeeninsertal into the ROB.

Secondly someinstructionsgenerates4-bit results(i.e.
multiply anddivide instructions). To keepfrom having to
doublethe size of the resultin the slots,we placethesein-
structionsinto consecutie slotswith the high orderbits in
thefirst slot, andthelow orderbitsin thesecond.Theslots
will thenbetreatedasanatomicunit until theslotsarecom-
mitted.

4.4 The ROB Module

Below is a stylizeddescriptian of ourinitial design.The
szvalueis aintegerwhich the ROB is pasedat instantia-
tion. It representshe numberof slotsin the ROB. We can
changethis numberto ary valuelargerthan2 andmaintain
correctness.

nkROB :: Modul e (ROB sz)
nkROB sz = -- sz is # of slots
nodul e
| et
mnTag = 0
maxTag = from nteger sz

--auxiliary functions
--(e.g. nkSlot & incrTag)
-- state elenents

rf :: RegFile <- nkRegFile
cur Epoch :: Reg Epoch <- nkReg 0O
headTag :: Reg ROBTag

<- nkReg mi nTag
tail Tag :: Reg ROBTag

<- nkReg m nTag
handl em ssReg :: Reg (I A PC, Epoch)
<-nkReg (0, 0)

sl ot Li st Li st Sl ot
<- mapM (nkSlot) (upto mi nTag maxTag)
rul es
<rul es>
interface

enqueuel nst inst = ...

get ALU nstr = ...

get MEM nstr = ...
updateALU tag result = ...

updateMEM tag result = ...
nm ssval ues = ...

The enqueuelns interface does two combinational
lookupsto seeif the two operamls were generatedy an-
otherinstructionin the ROB and writes either the tag of
theassociatedlot, or thevaluefrom theregisterfile asap-
propriateinto the operandregistersand marks the slot as
waiting to be dispatchedi.e. the stateis Waiting).

enqueuel nst inst =

| et
--slot to wite into
slotJ = getSlot tail Tag
--structure with values to wite
slotVals = (getSlotVal ues inst)

in
action

tail Tag : = incrTag tail Tag
witeSlot SlotJ slotVals
when (not slotListFull)

Therearetwo separateules per slot which updatethe
taggedvalueswith theactua values.They look asfollows:

"update TagOrValue 1":

when
(T tag) <- slotJ.tvl
==> | et
slotTag = (getSlot tag)
in
action
if (slotTag.state == Done) then
slotJ.tvl :=(V slotTag. dval)
el se
noAct i on

This checksto seeif the instructionin the slot (slotJ)
associateavith the giventaghasbeenexecutedandif so, it
writesthe valueinto the operandregister

Additionally, for eachslotthereis aslotdispatctrule per
functionalunit type which takesreadywaiting instructions
andplacestheminto the FIFOswhich thendispatchto the
appropriatgunctionalunits

"Di spatch to ALU":
when (slotJ.state Wi ting),
(V vl <- slotJd.tvil,

(V v2) <- slotJd.tv2,
(ALUTYPE == sl otJ.instType)
==> | et
alulnst = (alulnstfronsl ot slotJ)
in
action

slotJ.state := Dispatched
fifo2ALU. enq al ul nst

As a side note, it may appearinitially that generating
theserulesfor eachslot canbe quite difficult and restric-
tive, but dueto Bluespec’s goodstatic elaborationthe task
is easilydone.We do this by writing a functionto generate
rulesfor a single given slot. Thenwe canmap this func-
tion over theslotListandconcatente thelist of rulesto our
currentlist of rulesfor the ROB. This also givesusthe ad-
ditional benefitof not limiting the numberof slotsin the
ROB.

| et
nkRules i = --
rul es
<rul es>

makes a slot’s rul es

in
mapM nkRul es (upto m nTag nmaxTag)

The interfacesto getthe instructionfrom the ROB and
handit to thefunctionalunit wasa simpledequeudrom the
associatedrIFO.

= do --actionVal ue
fifo2ALU. deq
return fifo2ALU. first

get ALUI nst r

Branchinstructionsare executedby checkingthe result
andkilling all instructonsafterthe branchandwriting the
register which is readby the FetchUnit with the new pc
andepochvalue. Thesekilled instructionsareleft in thelist
to be removed by the commitrule (i.e. thetailTagis not
modifiedon abranchmiss).

"Resol ve Branch":
when canFi reBranch
==> | et
inst = fifo2branch.first
correctl A = (cal cNew A inst)

slotJ = (getSlot inst.tag)
in

fifo2branch. deq

slotJ.state : = Done

if (correctlA /=
inst.predl A) then
action
--send information on
--branchm ss
handl em ssReg: =
(correctl A inst.|A nextEpoch)
cur Epoch: =next Epoch
el se
noActi on

Theinterfaceto getthe new branchinformationjust re-
turnsthevalueassociatedn the handlemissRgregister

m ssval ues = handl em ssReg

Writebacksfrom the functional units write into the ap-
propriateslotor slots.

updateMEM tag result =

| et
slotJ = getSlot tag
in
action
slotJ.state : = Done
slotJd.err = result.err
sl ot J. dval = result.val ue

Commits are done by remaoving the oldestinstruction
from the slot list and writing back ary unkilled valuesto
theregisterfile.

"Conmit":

when headTag /= tail Tag,
slotJ <- getSlot headTag,

slotJ. state == Done,
not slotJ.err
==> action
headTag : = incrTag headTag

slotJ.state := Enpty
(rf.wite slotJ.destReg
sl otJ. dval)

5 Debuggingthe Design

After abouta weekof designanddeluggingwe hadthe
designcompleted. By this we meantha we were ableto
simulatethe entire processorunning MIPS | codeusing
VCS.

After a 20 minutecompilewe foundthatthe designhad
a CPl of 5 for a singledependeng chainof ALU instruc-
tions. The reasonfor this is that it took one cycle for an
instructionto beinsertedinto the ROB, onefor aninstruc-
tion to be committed,oneto enterthe instructioninto the
gueueto the ALU, oneto actuallyexecutetheinstructionin
the ALU, andoneto propagtetheexecutedvaluefrom one
instructionto thoserequiring it.

This CPl is clearly unaceptable. Theseactionswere
designedo be completelydisjoint (i.e. conflict free) from
eachother As such,all therulesshouldbe ableto fire in
parallel.

To deermine why theserules conflict, we made use
of the Bluespeccompilers rule conflict analysisfunction.
First, we usedthe - dschedul e flag to geta list of rule
conflicts. This list shavs which rules conflict with each
otherandwhich rule will be chosento fire if bothrulesare
enabled.

Oncewe have deerminedwhichrulesconflict,we check
to seewhetherthe conflict wasintentional.In theinitial de-
signresolvinga branchmissconflictedwith fetchinga new
instruction. This conflict is sypposedo exist, aswe do not
wantto fetchdown a wrong pathoncewe know we areon
the wrong path. Other conflicts should not exist like the
conflict betweenwriting valuesbackto the reorderbuffer
into two differentslotsfrom two differentfunctionalunits.
After identifying a pair of ruleswhich we wantto not con-
flict, we usethecompilers- show r ul e-r el flagto get
alist of statewritesandreadseachrule performs.Fromthis
list we candeterminewhy the compiler believes the two
rulesto be conflicting. From therewe can formulate the
appropriatechangeto avoid the conflict.

6 DesignChanges

Fromtheinitial designtherewereanumberof problems
which limited the performanceof the design. Theseprob-
lemsandtheir solutionsare describedn detailbelow.

6.1 Removing FalseReads

Themostcommoncauseof falseconflictsbetweerrules
was due to redundah clausesn the predicate An exam-
ple of this is the conflict betweendispachesandtheinsert
rule. All the dispatchrules hadas part of their predicatea
clausewvhichchecledto seeif theslotwasin theactive area.
ThisrequiredthatthetailTagneededo beread.Thiscaused
theserulesto nolongerbe mutuallyexclusive with theinsert
rule which changedhe tailTag value andlimits sequential
composabilitysothatthe insertrule would have to be sim-
ulatedsecondIf theruleswereonly ableto besequentially
composedn the oppositeorder naturally it would cause
falseconflicts. The predicatesvereall rewritten to remove
unnecessargeferences.

6.2 Improving Value PropagationTiming

In the original desgn, it took onecycle to propagtean
executedvalue after executionfrom the generatingslot to
the slotswaiting for the value. This wasbecausdhe tags
(tvl & tv2) cannotbe updateduntil the value hasreached
the slotsthey arereferringto. For performance we must
remove this 1 cycle delay

We needto write into all the slots’ operandregisters
whenwe arewriting backtheresult. However, this cawsesa
hugenumberof possiblewrites which preventtwo updates
from beingfired concurrently This is alsoclearly not ac-
ceptable.

We would like to be ableto split this rule into arule per
slotandthusavoid the unrealizableconflicts However, be-
causethis is an interfacemethodwe cannotdo so. For a

Slot 1 i Scheduling Logic 3
Slot 2 .| ALU Writeback | |
Slot3 " |MEM Writeback | !
Slot 4 37 777777777777777777 1

Figure 3. Conflict from Initial Design

Bluespeamoduleto be ableto be compiledmodularly, the
interfacecannotbe changeddependingon its implementa-
tion.

To work aroundthis restrictionwe needto use RWires.
RWiresaresimilar to Verilog wires, but with the addeden-
ablingbit for the signalexposed.That is we canview it asa
registerwherewrites aredonebeforereadsin a cycle with
no ability to sare values which allows usto seewhenit has
valid data. Using this allows us to know whenvaluesare
beingwritten andby doingsoallows usto tailor whatarule
doesbasedon the otherrulesfiring at the time. This must
be usedwith caution,asit demandghatyou will now need
to worry aboutsomne timing issueshut allows usto emulate
someVerilog tricks which would otherwisebe difficult.

Slot 1 ' 3 Scheduling Logic

Slot 2

Slot 3

!

Slot 4 ' !

Figure 4. Solution with Mult. Update Ports

Theinitial solutionwasto make a specialoperandregis-
termodulewhichwould actasaregisterwith multiple write
ports(asin Figure4). Writing into oneof theseportswould
write into an RWire. Then every cycle, arule in the mod-
ule would fire andlook at all the RWiresin somefixed or-
der, selectthe enabledvalueandwrite thatinto the register
Theneachupdateunit could write into a differentport and
therewould be no conflicts. We canguaranteehat this is
ascorrectasbefore,becausehereis only onevaluewhich
an operandregister will ever be written with, so it is not
possibleto missary signalssentto the operandegisters.

Anothersolution,shavn in Figure5, wasdevisedto im-
prove the designs readability Insteadof having a separate
RWire perslotperupdaterule, we only needoneperupdate
rule. Thenthe updaterules caneachreadthesevaluesand
do the updatedo theregister This not only simplifiesthe
description,but alsoallows us to make more complicated

ALU Writeback

MEM Writeback

,,,,,,,,,,,,,,,,,,,,

Figure 5. Solution Using RWires

rule logicsdependenbn the stateof the ROB moreeasily
6.3 Removing State Register Conflicts

Anotherproblemwith theinitial designwasthata num-
ber of rules hadfalse conflictswith eachother Analysis
revealedthatall the conflictswerecausedy theruleswrit-
ing to the slots’ stateregisters. Automaticsequentiatom-
position by the compiler fails here,becausehe rulesboth
neededo readandwrite the conflicting register socompo-
sitionis notpossible. The only solutionis to malke therules
parallelin someway.

A naturalthing to do is to addmultiple prioritized write
portsto eachof theseregisters.However, we mustbe care-
ful to give priority to the appropriateuleswhentwo rules
fire together

Theupdategdispatchjnsert,commit,branchrulesall up-
datetheslots’ statevalues.Uponinitial inspectionit is clear
that the branchrule will be part of every rule conflict pair
andthatit mug be prioritized higherthanall otherrulesor
possiblyresultin false pathinstructionsnot being killed.
Thuswe shouldonly needtwo portsfor the stateregisters.

Sinceduring schedulingslot rulesaretreatedasthough
they areusingamethodi|f it is possiblethatthey mightuse
thatmethodwe needto addmoreportsto handlethe cases
wherethe rulesoverlaps(e.g. a commit rule which takes
the oldestN slots,anda insertrule which takesthe next N
slots,whentherearelessthanN availableslots,would have
anoverlapof atleastoneslot). We chosethe orderof high-
estprecedencethebranchresoherule,thecommitrule, the
update/writebackules,the dispatchrulesandlastly thein-
sertrule. To make surethatary instructionsnseredduring
a branchmissarenot keptalive in the slot list we changed
theresole branchrule to alsowrite the stateof Empty into
ary slot which shouldnat containan active instructionto
overridetheinsertrule’s values.

6.4 ReducingDispatch Latency

In theinitial designaninstructionhad to first be putinto
a FIFO beforeit wasdispatchednto the asociatedfunc-
tional unit. Thisintroducesan extra cycle for eachinstruc-
tion to beableto passts resultalong. We needthis cycle to

beremoved.

To do this we mustremove the intermediate=IFO. This
meanshaving somesort of combinationallogic to getthe
slot which we wantto take the instructionfrom sowe can
changeits state. For eachfunctional unit, we do a scan
throughthelist of slotsfor valid instructionsto sendto that
functionalunit and pick the first one available. We do not
attemptto searchfor the oldestexecutableinstruction,be-
causdghehardwarefor thisis verylarge. In Verilog designs,
asimilar simplestaticbiasis usedfor instructionselection.

sl ot ALU = findALUl nst 2Di spat ch

get ALU nstr =
do

-- wite in 3rd port to avoid conflict

sl ot ALU. state. wite3 D spatched
return (nmakeALU nstfronSl ot sl ot ALU)
when val i dALUI nst 2Di spat ch

This changeintroducesa conflict with the stateregister
for eachslotasnow it is posdbly writing into eachstatereg-
ister However, by addinganothermort to the stateregister
asdetailedin Section6.3we canavoid this conflict.

6.5 ReducingBranch Miss Penalty

When we addedthe extra interfaceto allow the ROB
to be compiledseparatelyfrom the restof the design,we
had to add a register on the path from the ROB to the
Fetch/Decodd.ogic. This causedan increaseof one cy-
clein thebranchpenalty By replacingtheregisterwith an
RWire we wereableto remove this extra cycle.

7 Other Optimizations

In addition to the above improvementsto the concur
reng/ of the design,thereare mary simple improvements
we cando which will reduceredundantardware,andim-
prove compilation. This sectiondiscusseshe changesof
thiskind thatwe madeto the design.

7.1 Reducingthe Instruction Window Size

The first of suchimprovementswe can make involves
how we preferwhichrulesfire whengivenachoicebetween
them. The bestmethodis to favor completionof instruc-
tionsover startingthem. Thiswill tendto reducehe amount
of misspeculatedhstructionssentto thefunctiond unitand
reducethe numberof cyclesspentreclaimingkilled slots.

Unfortunatelythere is noway currentlyto explicitly en-
codea rule priority; the compiler selectswhat it believes
to be a betterpreferenceneighting. However, in the case

wherethe compilerhasno preferenceat will tendto favor
therulefirst listedin themoduledescription By reomganiz-
ing the ruleswith thisin mind we canachieve moreappro-
priateprioritizationsfor the rules.

7.2 ReducingConflicts

Somerulesshouldnever fire togethey but they still are
testedto seeif they conflict. This canbe quite expensve if
therulesin questionarebothsplitinto mary pieces.

For instancetherule to insertaninstructian into a slot,
andtherule which updatesoneof thetagvaluesin thatslot
conflict asthey both write to the sameregister (tv1 or tv2
dependingon the particularrule). However, ata high level
it is clearthatthe ruleswill never fire. By explicitly stat-
ing thattheinsertrule only operatesn emptyslotsandthe
updateon waiting slots, the compiler can very quickly de-
terminethetwo rulesaremutuallyexclusive. Whenthiswas
doneto thereorderbuffer designthe compilationtime was
reducedby afactorof 20.

7.3 Improving Compilation

To remove someof theremainingissuesyve needto split
theinterfacerules(i.e. theinsertrule). However, this can-
notbedoneif wewantavariable-lengtiROB. It would also
exposetheintemalsof the ROB moduleswhich we wantto
avoid. We hand-splittheinsertrule to operateon a perslot
basisby having a rule for eachslot which readsthe input
valuefrom anRWire. The RWire is written to by theinsert
interface. We also neededo add a guardon interfaceby
handto malke surethatit would only fire whentherewas
arule which would actuallytake the instructons putin the
RWire. Thismayseenlik e acycle sensitve changebput be-
causewe have alreadyaddedmultiple portsto the slot state
registers,no additional conflicts are removed by this rule
splitting. Insteadit reduceshe amountof checksthe com-
piler hasto doto determinghattherulesdo not conflict.

8 Findings

Within 100 man-hoursve wereableto generateur ini-
tial design,which was slow, but provably correct. After
another300 man-hourswe were ableto optimize our de-
sign so that it had a maximumtheoretial CPI of 1 with
a 2 wide insert/commitof the processar This is 50% of
whatwe shouldbe ableto achieve. This inefficiengy was
dueentirelyto the oneconflict we were unableto remove,
whichwasbetweerthe commitrulesandtheinsertinstruc-
tionrules.

Our initial belief wasthatthis was dueto the problems
with changng the headfig andthe tailTag at once. How-
ever, theactualissuewaswith theregisterfile andthehead-

Tag. Theinsert rule needsto readthe head®gto verify if
insertingis valid andthe commit rule updateghe head&g.
Also, the commit rule writes backarny unkilled rulesit is
committingandtheinsertrule readstheregisterfile.

Thuseachrule is writing somethinghe othermustread
andsotherulesconflict. Neverthelessthisis afalsedepen-
deng. Firing therulestogetheralwaysresultsin the same
stateasfiring themon separateycles,sinceary valuebe-
ing writteninto theregisterfile is still cortainedin anactive
slotonthatcycle. Thusthemostcurrentvaluewouldstill be
foundby theinsertrule if theruleswererunconcurrently

In the courseof our work, it wasdiscoveredthatby lim-
iting or splittingrulesto acton aslittle stateaspossble and
reducingthe nunber of methodconflictsbetwea rules,we
achieve betterperformance.

Unfortunately this techniqguedoesnot avoid this false
read-writeconflict for the currentcompiler The Bluespec
compileris underrevision with this problemin mind.

Bluespechas made much progressinto making large
scaledesigns.Many of the difficulties encounteredn this
work were dueto needingto make changesn the design
procesgo suitthelanguageanindsetandunderstandinghe
conflictanalysisof the compiler.

While our final CPI valuewas lessthan corresponding
handwrittenRTLs, stepsto allow for directedrelaxationof
theconflictcriteriawill easily bridgethis gap.

Work into the Bluespeccompilershouldnow bedirected
towardsautomaticallyfinding and safely integrating high-
level knowledge into desgns. Additionally, designinga
conciseway for the designetto describehow to handletwo
conflictingruleswould be worthwhile task.

Acknowledgements

Funding for this researchby the Defense Advanced
Research Projects Ageng/ under the IBM Contract
NBCH3039004. Thanksis givento ProfessorArvind and
DanielRosenbandor usefulcommentdor boththe design
and paper; Mieszlo Lis, Ravi Nanavati, JacobSchwartz,
andtherestof the BluesgecInc. engineeringeamfor their
prompthelp andcompilerupdatesand KarenBrennanfor
hereditorialassistance.

References

[1] Arvind andX. Shen,Using Term Rewriting Systerato
Designand \erify Processos, IEEE, Micro Specialls-
sueon Modelling and Validation of Micro-processors
Vol. 19(3): pp. 36-46,1999.

[2] A. Bervensitee,PCapsi,S.A. Edwards, N. Halbalb-
wachs, P. Le Guernic, and R. de Simone.The Syn-
chronousLanguaes1? Years Later. Proceeding®f the
IEEE, 91(1). 64-93.

[3] D. L. Dill, The Murphi Cerification Sysem in Pro-
ceeding®f thelntermationalConferenceon Computer
Aided Design,SpringefVerlag,1996.

[4] D. D. Gajski, High Level Synthesis: Introductionto
Chip and SystenDesign Kluwer Academic,Boston,
1992.

[5] S. Gupta,N. D. Dutt, R. K. Gupta,and A. Nicolau,
SFARK"A High-Level Synthesigramavorkfor Apply-
ing Parallelizing Compler Transformations; in Inter-
nationalConferencef VLSI Design,(2003).

[6] G. Hajjiyiannis, S. Hanono,andS. DevadasISDL: An
InstructionSe DescriptionLanguaye For Retagetabil-
ity, in Proceedingsf the 34th DesignAutomationCon-
ference(DAC), (1997),299-302

[7] J. C. Hoe, Operation-Centric Hardware Description
and Synthesisin Dept. of Electrical Engineeringand
ComputerScience Massachusettinstituteof Technol-
ogy, 2000,p. 139.

[8] J.C.Hoe,andArvind, Synthesi®f Opemation-Centric
Hardware Descriptions presentedt IEEE/ACM Inter
national Conferenceon ComputerAided Design (IC-
CAD), 2000.

[9] J.Plosila,andK. Sere ActionSystem# Pipdined Pro-
cessomDesign in Proceeding hird InternationalSym-
posiumon AdvancedResearchn AsynchronousCir-
cuitsandSystems(1997),156-166.

[10] O. Schlielusch,A. Hoffman, A. Nohl, G. Braun,and
H. Mayr, Architectue ImplementationJsing the Ma-
chine DescriptionLanguage LISA in Proceeding§'th
Asia and SouthPacific DesignAutomation Conference
(ASP-DAC), (2002),156-166.

[11] J. Straunstrup,and M. R. GreenstreetFrom High-
Level Descriptionsto VLSI Circuits, BIT, 28 (3). 620-
638.

