
High-level Synthesis: An Essential Ingredient for Designing
Complex ASICs

Arvind Rishiyur S. Nikhil Daniel L. Rosenband Nirav Dave
MIT Bluespec, Inc. MIT MIT

arvind@mit.edu nikhil@bluespec.com danlief@mit.edu ndave@csail.mit.edu

Abstract
It is common wisdom that synthesizing hardware from

higher-level descriptions than Verilog will incur a per-

formance penalty. The case study here shows that this

need not be the case. If the higher-level language has

suitable semantics, it is possible to synthesize hardware

that is competitive with hand-written Verilog RTL. Dif-

ferences in the hardware quality are dominated by ar-

chitecture differences and, therefore, it is more impor-

tant to explore multiple hardware architectures. This ex-

ploration is not practical without quality synthesis from

higher-level languages.

INTRODUCTION
Five to ten million-gate ASICs are commonplace today.
Their design typically takes 18 to 24 months and costs from
$10M to $20M. An ASIC has a selling window of 6 to 8
months in the marketplace and, consequently, if the chip is
delayed by much more than six months the customer is likely
to leapfrog to the next generation chip, which is likely to be
cheaper, faster, or have more features. Currently, in spite of a
myriad of verification tools, three verification engineers are
needed for each designer in typical ASIC teams. The veri-
fication task is exacerbated rather than abated by the use of
pre-existing IP blocks. Only a small fraction of ASICs com-
plete development in time to make money. Consequently,
ASIC development has come to be viewed as an expensive
and highly risky proposition.

Another casualty of the increasingly compressed devel-
opment timeline is a thorough exploration of architectural
alternatives. An alternative microarchitecture, perhaps in-
spired by a different algorithm, can often result in far greater
time and area savings than any tweaking of a specific archi-
tecture. Consider adding a pipeline stage or functional unit,
multiplexing an expensive resource, or doubling the datapath
width while halving the clock rate. Determining the impact
of these alternatives would require such a massive redesign
as to be impractical using current methodologies. Although
adding or removing datapaths and memories is relatively
straightforward, the subsequent redesign and reverification
of the control logic is not.

Commercial developments in CMOS technology make
it likely that 50 million gate ASICs will be feasible by 2010.
Such large ASICs will be commonplace only if EDA tools
can keep up with the growing size and complexity of de-
signs. What is needed is a high-level design methodology
and accompanying tools that will allow complex digital sys-

tems to be realized by reasonably sized teams in a short time
frame. The central themes of any such methodology have
to be correctness by construction, predictable functional-

ity and predictable performance. The methodology should
make it as easy to use pre-existing IP blocks as it is to use pro-
cedural and data abstraction libraries in software, and should
provide a framework that will simplify exploration of a large
architectural design space by automatically generating cor-
rect control logic for any composition of instantiated library
elements. To be successful, the quality of hardware synthe-
sis from these high-level descriptions must approach that of
hand-designed blocks so that designers are not tempted to
break the abstractions.

This paper partially evaluates the Bluespec hardware
design methodology that purports to have most of the char-
acteristics described above. The methodology is based on
synthesis from high-level hardware descriptions expressed
as guarded atomic actions [11]. Bluespec [2] has been devel-
oped over the last four years, first at Sandburst Corporation
and, now at Bluespec Inc.

Our method of evaluation is to take a small but non-
trivial design problem and explore many different microar-
chitectures to implement it. We compare these microar-
chitectures in terms of area, clock cycle time, efficiency in
solving the problem, robustness to changes in component
characteristics and flexibility in dealing with changes in prob-
lem specification. We also compare the Bluespec generated
results against hand-coded Verilog. The problem we have
chosen is the much-studied “Longest Prefix Match” search
engines which are present in all Internet routers. A solution
must pass the same test suite on the same test bench to be
acceptable.

Based on our study we conclude: 1. The differences
in area and timing between different microarchitectural so-
lutions are far greater than the differences in hand-written
Verilog and Bluespec-generated Verilog. 2. If both Blue-
spec and Verilog are written by the same designer, the Blue-
spec compiler routinely generates code that is comparable
to hand-written Verilog. 3. If the Verilog design is cleverly
optimized, the Bluespec designer can usually imitate the Ver-
ilog designer to produce comparable results. 4. Architectural
exploration is easier and quicker in Bluespec than in Verilog
because the Bluespec methodology preserves correctness at
every step and encourages the use of modules. 5. Though
hard to quantify, Bluespec designs often take much less time
to develop the first working model than comparable Verilog
designs.

Paper organization.
The following section provides some background on guarded
atomic actions as an HDL, and briefly explains automatic
synthesis from them. The next three sections discuss the
Longest Prefix Match problem, alternative design solutions,
and how they are coded in Bluespec. After a section present-
ing experimental results for designs using this methodology,
we discuss related work in high-level hardware design and
our conclusions.

GUARDED ATOMIC ACTIONS AS HDL

Guarded atomic actions and modules
In the Bluespec methodology, the designer first explicitly in-
stantiates the state elements of the system (registers, FIFOs,
memories, etc.). That is, in Bluespec there is no mysterious
or unpredictable “inferencing” of state from the program.
Every bit of state (even a register) is a module instance, and
clients of a module interact with it using interface methods.
A call to an interface method looks like a procedure call, but
every method also involves an implicit condition: a “ready”
wire that specifies if the module can currently perform the
requested method’s action. For registers, the methods are
the usual read() and write() operations, and the implicit con-
ditions are always true (and will be optimized away). For
FIFOs, the methods are the usual enq() and deq() operations.
The implicit condition for enq() is true if the FIFO is not
full; the implicit condition for deq() is true if the FIFO is
not empty. A FIFO module may be visualized as shown in
Figure 1.

FIFOs
enq deq first

en
q_

rd
y enq_en

enq_data de
q_

rd
y deq_en

fir
st

_r
dy

fir
st

_d
at

a

Figure 1. A FIFO Module.

Next, the designer describes the behavior of the sys-
tem using a collection of guarded atomic actions or rules,
which operate on the state of the system. Each rule specifies
the condition under which it is enabled, and a consequent
allowable (i.e., not compulsory) state transition. Two rules
may access and update common state, but rules are written
without regard to such interaction. In particular, rules have
atomic semantics, i.e., the effect of each rule can be ex-
pressed and reasoned about in isolation, as if the rest of the
system was frozen (see, for example, Arvind and Shen[1]).
A precise and useful semantics emerges from the fact that
any legitimate behavior of the system can be understood as a
series of atomic actions on the state. Indeed, this is key to the
high-level nature of rules: all the control circuitry and mux-
ing needed to manage potential interactions between rules

is produced by automatic synthesis as discussed in the next
section.

Synthesis from guarded atomic actions
We briefly outline the synthesis approach of Hoe and Arvind
[10, 11]. A rule consists of a guard and a body and may be
written in the following form:

Rule R : when π(s) ==> s := δ(s)

where π is the guard (predicate) and s := δ(s) is the body
of rule R. Function δ is used to compute the next state of
the system from the current state s. The execution model for
a set of rules is to non-deterministically pick a rule whose
predicate is true and then to atomically execute that rule’s
body. The execution continues as long as some predicate is
true:

while (some π is true) do
1) select any R, s.t. π(s) is true
2) s := δ(s)

There is a straightforward translation from rules into hard-
ware as shown in Figure 2. Assuming all state is accessible
(no port contention), each π and δ can be implemented easily
as combinational logic. A hardware scheduler and control
circuit then needs to be added so that in every cycle the sched-
uler dynamically picks one δ function whose corresponding
π condition is satisfied and the control circuit updates the
state of the system with the result of the selected δ function.
The cycle time in such a synthesis is determined by the slow-
est π and the slowest δ functions. Although correct, such
an implementation has unsatisfactory performance because
it is often possible to execute several rules simultaneously
such that the result of the execution matches an execution
in which the selected rules are applied in some sequential
order. Thus, the challenge in generating efficient hardware
from sets of atomic actions is to generate a scheduler which in
every cycle picks a maximal set of rules that can be executed
simultaneously.

Compute Predicates
for Each RuleS

T
A
T
E Compute Next State

for Each Rule

Read

Scheduler

Update

Selector

(Mux’s &
Priority

Encoders)

1

2

n

1

2

n

1

2

n

Figure 2. Synthesis from Guarded Atomic Actions.

It is easy to see that two rules can execute simultane-
ously if they are “conflict free”, that is, they do not update
the same state and neither updates the state accessed (i.e.,
“read”) by the other rule. Arvind and Hoe further observed

that two rules (R1 and R2) can execute simultaneously if one
rule (R2) does not read any of the state that the other rule
(R1) writes. In this case, simultaneous execution of R1 and
R2 appears the same as sequential execution of R1 followed
by R2. For this to hold, R2 writes must take precedence
over writes to the same state by R1 and the execution of
R1 must not disable R2. Such rules are called “sequentially
composable” in [10, 11]. Hoe showed that from these pair-
wise relationships between rules one can deduce if a group
of rules can be scheduled concurrently. Figure 2 shows the
circuit that is generated in Hoe’s synthesis flow. The predi-
cates (π’s) are computed for each rule using a combinational
circuit. The scheduler is designed to select a maximal subset
of applicable rules with the constraint that the outcome of a
scheduling step can be explained as atomic firing of rules in
some sequence. Based on which rules the scheduler chooses
to enable (φ’s), the selector block then combines the update
functions (δ’s) from the chosen rules and updates the current
state with the resulting values.

An aggressive “mutual exclusion” analysis of rules is
performed to eliminate scheduling cases that cannot arise
logically. Without such an analysis one may unnecessar-
ily commit resources, such as ports. One also needs a policy
for selecting among the maximal schedules because different
maximal sets can have different resource requirements. Con-
struction of good schedulers is the most important problem
in the synthesis of atomic actions. Recent work has made it
possible to provide much better control over scheduling via
modular composition and scheduling annotations (see, for
example, Rosenband and Arvind[16], Nordin and Hoe[13]
and Rosenband[15]).

A DESIGN PROBLEM: LONGEST PREFIX MATCH
FUNCTION
The Longest Prefix Match (LPM) function is used in Internet
Protocol (IP) packet routers to determine the output port to
which an input packet should be forwarded based on the
destination IP address (IPA) in the packet header. For IPv4
packets the IPA is 32 bits while for IPv6 it is 128 bits. We
will consider solutions for IPv4 packets with an eye towards
generalization to IPv6 packets.

LPM is based on a routing table which consists of a set
of prefixes, each associated with an output port. Each prefix
is a string of length ≤ 32 bits. High-end routers can contain
more than 100K prefixes. Since more than one prefix can
match an incoming IPA, the port associated with the longest
matching prefix is selected as the output port.

The router must maintain packet order between the same
source and destination. Packets must be processed at line
rate (10 Gb/s today). This leaves a budget of typically < 10
memory references per packet. Memory size must be kept
small for cost, board area, access rate and power reasons. A
flat table would contain 232 entries and is not feasible; sparse
data structures are necessary. Finally, routes may change
while the system is online.

Although many clever data structures have been devised
for the LPM function, we use a simple tree data structure to
illustrate our design approach. The lookup table is organized
into three levels as shown in Figure 3. The first 16 bits of
the IPA selects an entry from a root table containing 64K
entries. If we find a leaf (output port number), we are done.
Otherwise, we find a pointer to a 2nd-level table of 256
entries, which is indexed with the next 8 bits of the IPA.
Again, we either find a leaf or a pointer to a 3rd-level table of
256 leaves indexed by the remaining 8 bits of the IPA. Each
packet thus requires from 1 to 3 data dependent memory
accesses. The data structure can be computed offline from
any given routing table containing prefixes with lengths ≤

32 bits.

Figure 3. Data structure for Longest Prefix Match.

The following is a software implementation of LPM,
written in a variant of C, extended with a Verilog-like bit
extraction facility. Automatic generation of hardware from
such a specification is close to impossible if the hardware is
required to sustain 10 Gbps line rate.

int lpm(IPA ipa)
{

int p;
p = RAM [rootTableBase + ipa[31:16]];
if (isLeaf(p)) return p;
p = RAM [p + ipa [15:8]];
if (isLeaf(p)) return p;
p = RAM [p + ipa [7:0]];
return p; // must be a leaf

}

SOME ARCHITECTURAL ALTERNATIVES
We now describe three radically different architectural alter-
natives for a hardware implementation of LPM, and discuss
their attributes, strengths and weaknesses. A key architec-
tural restriction is that the entire data structure be kept in a
single memory because of pin limitations and memory man-
agement flexibility. Assume that the memory is pipelined,
and has a fixed latency of L cyles (> 1 cycle). Thus, in a
pipelined implementation, the memory port is a shared re-
source across different stages of the pipeline, and at any given

time the memory pipe will contain requests interleaved from
different packets.

Statically scheduled pipeline.
The first design, whose schema is shown in Figure 4 and
Figure 5, is a “rigid” pipeline architecture. For the first

Figure 4. Statically scheduled memory references

Figure 5. Rigid pipeline architecture

L cycles, we launch the first memory requests from each of
the first L IPAs (assuming packets are available). Since each
packet makes up to three memory accesses, no new packet
is injected for the next 2L cycles. This guarantees that when
the first memory response arrives, we can launch the second
memory request for the first IPA (if it needs a second access),
and so on. In summary, we completely statically schedule the
pipeline, knowing the memory latency L and the maximum
number of memory requests (three) for each IPA.

There are several issues with this design. The memory
is fully utilized only if packets arrive at the highest rate
(minimum-sized packets at line rate) and if they all need
three memory references. Thus, the memory bandwidth is
sized for the worst case, instead of the expected case. The
latency and throughput in processing packets is fixed at the
worst case (the length of the pipe) even if the actual workload
contains packets requiring fewer memory references. The
whole pipeline must be replanned if we are given a memory
with a different latency. Finally, additional complex control
is required to insert memory accesses for routing software to
update the data structure online.

As we shall see in the Expermental Results section,
even for statically scheduled pipelines there are several alter-
natives for organizing the state elements with very different
implications for area and timing.

Flexible pipeline.
Figure 6 shows the second design, which has a “flexible”

pipeline architecture. As each IPA arrives in ififo, Stage0

Figure 6. Flexible pipeline architecture.

launches its first memory request into mport0 and keeps the
IPA in fifo0. Stage1 collects this IPA and the correspond-
ing response from mport0. If done, it places the result and
a “done” bit into fifo1, else it launches the second memory
request into mport1 and places the IPA and a “not done”
bit into fifo1. Stage2 and Stage3 act in a similar manner
to Stage 1 with final results in ofifo. Notice, all FIFOs
except ififo and ofifo must be of size L for full memory
utilization.

The single memory is accessed through a “port replica-
tor” module that takes requests as they arrive in any order on
mport0,mport1 andmport2and forwards them to the mem-
ory. Results from the memory are distributed back to these
ports. Since the order of request arrivals is unpredictable,
book-keeping circuitry (e.g., tagging) is required to return
memory responses to the correct ports.

Although this design possibly requires more hardware
and control logic (FIFOs, a port replicator with tagging, etc.),
in many ways it is more robust than the previous design. For
example, it would work correctly, though with reduced per-
formance, if the memory latency is increased. It is relatively
straightforward to extend it to a fourth port for updating
the routing data structure online. Packets that require fewer
memory accesses can traverse the pipeline faster, and so the
design can exhibit a better latency and throughput than the
worst case.

Circular pipeline.
Finally, Figure 7 shows a circular pipeline architecture,which
is a folded version of the flexible pipeline. The Input stage
takes an arriving IPA from ififo and a “ticket” from the
Completion Buffer and launches a memory request using the
high 16 bits of the IPA and places a (ticket,IPA[15:0],State0)
tuple into cfifo. Based on the memory response p and the
first tuple (ticket,IPA,Statej) in cfifo, either the Comple-

tion or Circulate stage executes. If the lookup is done
the Completion stage forwards (ticket,p) to the Completion
Buffer else theCirculate stage places (ticket,IPA,Statej+1)
into cfifo and launches another memory request based on

Figure 7. Circular pipeline architecture.

p and IPA.
Thus, each IPA goes around the pipe as many times

as the number of needed memory references, and the result
finally goes to the Completion Buffer. Since IPAs need vary-
ing numbers of memory references, results may arrive at the
Completion Buffer out of order; the tickets allow it to output
them into ofifo in the right order. In the worst case, for
100% memory utilization, the size of the Completion Buffer
must be 2L, though in practice a smaller buffer may suf-
fice. To avoid deadlocks, the number of IPAs in the circular
pipeline must not exceed the capacity of cfifo and a new
IPA should have a lower priority to enter cfifo than an IPA
already in the pipeline. The size cfifo must be L for 100%
memory utilization.

This last design arguably has the simplest memory ar-
chitecture (single port, no interleaving issues), but the most
complex control (Completion Buffer with tickets and reorder-
ing). On the other hand it is very robust to different memory
latencies and it generalizes easily to LPM on IPv6 (128-bit)
addresses which require more memory references.

CODING IN BLUESPEC: CORRECTNESS BY CON-
STRUCTION
We now give example fragments of Bluespec code for the
three designs. These fragments have been edited due to
space limitations, and use an earlier syntax for Bluespec (the
current Bluespec product is based on SystemVerilog). These
examples illustrate how designing with guarded atomic ac-
tions frees designers from worrying about global coordina-
tion allowing them to focus on the much simpler task of
local correctness. The Input stage in the Circular Pipeline
is expressed as follows:
Input:

when (True) {

ipa = ififo.pop;

tkt = compBuf.getTicket;

cfifo.enq({tkt, ipa[15:0], State0});

RAM.readReq(base_addr + ipa[31:16]);

}

Although the explicit condition in the rule is True, the rule is
not enabled until all the implicit conditions are also true, i.e.,

until ififo contains an IP address, the completion buffer is
willing to yield a ticket, and cfifo has room (is not full). In
one succinct rule we have expressed a conceptual operation
controlled by a complex set of conditions. The completion
and recirculate rules are expressed as follows:
p = RAM.readResult;

Complete:

when (isLeaf(p)) {

{tkt,ipa,s} = cfifo.pop;

compBuf.done({tkt, p});

RAM.readAck;

}

Circulate:

when (!isLeaf(p)) {

{tkt,ipa,s} = cfifo.pop;

cfifo.enq({tkt, ipa, s+1});

RAM.readReq(compute_addr(p,s,ipa));

RAM.readAck;

}

Both the Input and the Circulate rules enqueue into
cfifo. To avoid deadlocks, the Circulate rule has to be
given priority, or some other mechanism (such as an up-down
counter) is needed to ensure that no more than L requests
are enqueued into the circular pipeline. Given the prior-
ity between the rules, the Bluespec compiler automatically
synthesizes the appropriate control logic. Similarly, con-
trol circuitry to manage the concurrent access to the shared
completion buffer by the Input and Complete rules is au-
tomatically generated.

Atomicity of the actions in a rule plays a crucial role in
avoiding races between enqueuing and dequeuing of cfifo
and sending a request to the memory. The designer can
reason about each rule in isolation to ensure that it is doing the
right thing, without worrying about interactions with other
rules. The synthesis method is guaranteed to preserve these
atomic semantics while producing highly concurrent clocked
synchronous hardware.

As another example, we consider the port replicator for
shared access to a RAM from the Flexible Pipeline architec-
ture of Figure 6. Figure 8 shows the organization of a 2-way
port replicator. When a request arrives on port0 and port1,

Figure 8. 2-way port replicator.

respectively, the In0 or In1 stages forward it to the shared
port and place the tag “0” or tag “1” into the FIFO. When a
response arrives from the shared port and “0” is at the head
of the FIFO, the Out0 stage forwards the result to port0. If
“1” is at the head of the FIFO, the Out1 stage forwards the
result to port1. The behavior of In0 and Out0 are expressed
as follows (In1 and Out1 have similar rules):
In0:

when (True) {

req0 = port0.pop;

sharedPort.enq(req0);

fifo.enq(Tag0);

}

Out0:

when (fifo.first == Tag0) {

resp0 = sharedPort.pop;

fifo.deq;

port1.enq(resp0);

}

Note that In0 and In1 can conflict: if requests arrive
simultaneously on ports 0 and 1, both attempt to forward their
requests into the shared port, and both attempt to enqueue a
tag into the FIFO. Similarly, Out0 and Out1 both examine
the shared port response and the head of the FIFO, and one
of them dequeues from the FIFO. All the control circuitry
for managing this interaction is synthesized automatically.

How does the designer assure himself that the identity
of memory requests is accurately reflected in the tag FIFO,
i.e., that In0 and In1 don’t send requests to the memory in
one order and enqueue their tags in the opposite order? Once
again, atomicity comes to the rescue. It ensures that the
order in the FIFO is exactly the same as the order of memory
requests.

Now suppose we wish to generalize the port replicator
to have the following features:
• N -way replication (not just 2 or 3)
• Requests of arbitrary type T1
• Responses of arbitrary type T2
• Parameterized by memory latency L

Bluespec solves this by allowing powerful composition of
circuit elements which include Actions, Rules, Interfaces
and Modules. Although not illustrated in this paper, Blue-
spec permits arbitrary programming with these objects and,
thus, uses software expressivity primarily to describe circuit
structure; behavior is specified entirely by Atomic Rules.
In this approach, software expressivity does not face any ad
hoc limits such as “synthesizable subsets.” This is in sharp
contrast with Behavioral Verilog and other C-based high-
level synthesis approaches which use software expressivity
to describe behavior.

EXPERIMENTAL RESULTS
All the Bluespec and Verilog codes for various designs were
written by the authors. All designs were simulated using
a shared testbench. The memory is fully pipelined with a

latency of 4 cycles. Requests are inserted into the LPM
design whenever possible, results are dequeued whenever
possible. A simple compiler was used to translate prefix
tables into appropriate data structures. The test data consisted
of 9920 requests with an average of 1.908 memory references
per request.

Bluespec designs were compiled using the Bluespec
Compiler version 3.8.12, available from Bluespec Inc. The
generated Verilog was compiled to the TSMC 0.18µm li-
brary using Synopsys Design Compiler version 2003.12. So
as to achieve accurate timing and area results, the timing
constraints were tuned to be within 500ps of the timing that
the design could achieve. The worst case (slow process, low
voltage) timing model was used. We divide area results by
the area of a two input NAND2X1 gate (9.98µm2) to obtain
the reported gate counts.

Bluespec vs. hand-written Verilog synthesis com-
parison
The table in Figure 9 shows the best Bluespec and Verilog
synthesis results for each of the three previously described
longest prefix match architectures. The designs are nearly
identical in both area and cycle times. The number of reg-
ister bits varies slightly between the Verilog and Bluespec
implementations because of small design choice differences
and because the Bluespec compiler generates slightly differ-
ent data and state machine encodings. The total gate count
(combinational logic and registers) is within 8% in all de-
signs, cycle time is within 7%, and as expected, simulation
results between the Bluespec and Verilog designs match ex-
actly.

The differences are within the noise margin of variations
from repeated compilation with Synopsys Design Compiler
with slightly different timing constraints. In general, the
Bluespec results indicate slightly faster designs and slightly
larger area (this is consistent with a study by Interra Systems
of 25 small Bluespec and Verilog designs [4]). This can be
explained through the generation of lower level code by the
Bluespec compiler which in some cases makes the designs
slightly faster and, because of different logic structuring,
marginally larger. In comparison to the Verilog vs. Blue-
spec tradeoffs, area, cycle time and execution performance
vary far more between designs with differing high-level and
micro-level architectural choices.

Comparing the architectures we find that the smallest
design, the static pipeline, is one seventh the size of the
largest design, the flexible pipeline. Also, as expected, both
the flexible and circular pipeline execute more efficiently than
the static pipeline. In our test case 99.9% of the available
memory bandwidth is utilized by the flexible and circular
pipeline whereas the static architecture achieves only 63.5%
memory utilization. These results are not entirely surprising,
but we were impressed with how much smaller the circular
pipeline is than the flexible pipeline. Our initial expectation
was that they would be roughly equal in size. Because an
optimized circulating loop and more efficient register alloca-

Language
Timing
cons-
traint

Reg
bits

Comb
gates % diff Total

gates % diff
Cycle
time
(ns)

% diff

Through-
put
(cycles/
lookup)

Avg.
latency
(cycles)

Memory
utili-
zation

Static BS 3.3ns 252 837 2% 2391 5% 3.32 -7% 3.001 17.0 63.5%
Static Verilog 3.3ns 240 818 2271 3.56 3.001 17.0 63.5%
Flexible BS 4.7ns 1219 6190 9% 15910 8% 4.7 0% 1.908 20.972 99.9%
Flexible Verilog 4.7ns 1144 5685 14759 4.7 1.908 20.972 99.9%
Circular BS 3.6ns 778 2391 3% 8170 1% 3.67 2% 1.908 14.814 99.9%
Circular Verilog 3.6ns 778 2331 8103 3.62 1.908 14.814 99.9%

Figure 9. Results table 1

Comments Reg
Bits

Comb
Gates

% diff
from
best

Total
Gates

% diff
from
best

Cycle
Time
(ns)

% diff
from
best

Static BS; Initial; 3.3ns 252 1719 105% 3375 41% 3.69 11%
Static BS; Data alignment; 3.3ns 252 1038 24% 2606 9% 3.48 5%
Static BS; No type conversion; 3.3ns 252 948 13% 2478 4% 3.61 9%
Static BS; Nest case (BEST); 3.3ns 252 837 0% 2391 0% 3.32 0%
Static Verilog; Replicated; 3.3ns 243 7151 775% 8898 292% 3.60 1%
Static Verilog; BEST; 3.3ns 240 818 0% 2271 0% 3.56 0%

Figure 10. Results table 2

tion could be used in the circular design, using the Bluespec
language we were quickly able to determine that the circu-
lar pipeline is the superior design compared to the flexible
pipeline. Through simulation the designer can then choose
whether the static pipeline provides sufficient performance,
or whether an area penalty should be incurred and the circular
design be chosen.

Tweaking the Bluespec code
We also created two Verilog implementations of the static
pipeline: one replicated much of the computation by un-
folding the feedback of Fig. 5 into a linear pipe, the other
(BEST) was highly optimized. Figure 10 shows that even in
Verilog it is easy for two reasonable implementations to have
dramatically different results. In this example the replicated
implementation uses almost 9 times the combinational logic!
The replicated design could easily have been the implemen-
tation of choice by a non-expert designer, and encourages
the notion that microarchitecture is far more important than
language results.

The initial Bluespec implementation of the static pipeline
had over two times the combinational logic of the optimized
Verilog implementation. Although better than the replicated
design, a factor of two is usually an unacceptable penalty to
pay knowingly for the use of a higher-level language. They
illustrate that in some cases the abstractions that the language
provides can introduce an overhead, but that this overhead
can be overcome by carefully crafting the code. Our steps: 1)
By carefully laying out data types several muxes and adders
were removed. 2) By simplifying types we eliminated type-
conversion logic. 3) A case statement was restructured to
clarify that it was exhaustive. The circular pipeline took
similar optimizations to achieve comparable performance to
the Verilog implementation.

RELATED WORK

Designing using atomic actions
The approach advocated in this paper was first used for verifi-
cation by Arvind and Shen [1]. Synthesis was later explored
by Hoe and Arvind [10, 11]. Augustsson developed the Blue-
spec language [2] which introduced the notion of modules
and a two-level language. In addition to internal work at
Sandburst and Bluespec, this approach has been used by Hoe
and Wunderlich at Carnegie Mellon, in cooperation with In-
tel. They have developed a version of the Itanium microachi-
tecture running at 100 MHz on a 6M-gate FPGA. The FPGA
board plugs into a processor socket in a dual-processor PC
chassis and can exchange data with the other processor over
the system bus at the rate of 800 MBytes/s. In another ef-
fort, Dave has used Bluespec in the design and synthesis of
a reorder buffer [6].

Though the use of guarded atomic actions in verification
has been much explored [5, 12, 7, 17, 3], there are only a few
attempts at synthesis [14].

Modelling using C-based HDLs
There are several approaches to synthesis based on sequen-
tial and parallel C, e.g., [18, 8, 9], but they have rarely been
competitive with hand-coded Verilog. There are myriad rea-
sons for this. As one example, consider the difficulty of
synthesizing control from parallel C. Suppose we code the
circular pipeline of Figure 7 in some dialect of parallel C,
i.e., C extended with processes together with some constructs
for process synchronization such as semaphores, events and
channels (e.g., SystemC). Each of the stages— input, cir-
culation, and completion— becomes a separate sequential
process. However, two major sources of complexity remain.

First, there is the issue of managing concurrent access
to shared resources, such as the enqueues into cfifo by
the Input and Circulate rules. When writing just for
simulation, a simple lock will suffice. But when writing

for synthesis, data paths must be properly multiplexed and
controlled.

Second, there is the issue of complex control. Both the
input and circulate/completion stages interact throughcfifo
and the Completion Buffer. The input stage is active only if
ififo is not empty, cfifo is not full, and the Completion
Buffer can issue a ticket. The circulate/completion stage is
active only if a result from the RAM is available, if cfifo is
not empty, and, depending on the RAM result, if either the
Completion Buffer is ready to accept a result or if cfifo is
not full. It is easy to make synchronization errors when using
low-level primitives like semaphores, events and channels.
Furthermore it is not clear if such complex synchronization
code in C can be synthesized automatically. These synchro-
nization issues are handled automatically in our approach
based on guarded atomic actions.

In summary, while parallel C can be a fine medium to
express behavior for simulation and perhaps for HW/SW co-
verification, we believe it is not a good vehicle for expressing
high-quality synthesizable hardware designs.

CONCLUSIONS
This study shows that high-level synthesis from guarded
atomic actions as embodied in Bluespec provides a use-
ful tool for microarchitectural exploration in the design of
complex ASICs. The differences in area and time between
different microarchitectures dominate differences between
Bluespec-generated Verilog and hand-written Verilog.

Bluespec also provides a way of capturing the idioms
commonly used in hardware design in a form that allows
pervasive reuse. Existing hardware description languages
only allow reuse at the level of fixed RTL modules with
interfaces defined by sets of wires and cycle-level timing.
Bluespec supports factoring of concepts such as buffered
pipelines, completion buffers, and arbiters, into standard li-
braries. A designer can then instantiate these concepts with
application-specific data types and connect them arbitrarily.
The compiler will then synthesize an optimized design, in-
cluding automatic generation of control logic. This approach
raises the level of abstraction in hardware design without sac-
rificing hardware efficiency and may turn out to be the most
crucial ingredient in designing large and complex ASICs in
the future.

Acknowledgements.
Daniel Rosenband was supported by a grant from Compaq,
Nirav Dave by DARPA contract NBCH3039004. Thanks
to Ravi Nanavati and Jacob Schwartz for their assistance in
Bluespec coding, to Jacob Schwartz for his assistance with
LATEX, and to Winnie Cheng for help in coding an early
version of the circular pipeline in Verilog. Krste Asanovic
proposed the circular pipeline architecture.

REFERENCES
[1] Arvind, and Shen, X. Using Term Rewriting Systems to

Design and Verify Processors. IEEE Micro 19, 3 (1998),
36–46.

[2] Augustsson, L., Schwarz, J., and Nikhil, R. S. Bluespec
Language Definition, 2001. Sandburst Corp.

[3] Back, R., and Kurki-Suonio, R. Decentralization of
Process Nets with Centralized Control. In Proc. 2nd. Ann.
ACM Symp. on Principles of Distributed Computing
(1983), pp. 131–142.

[4] Bluespec, Inc. Interra Systems’ Benchmarking of Bluespec
Compiler Uncovers No Compromises in Quality of Results
(QoR), May 3 2004. www.bluespec.com/news/press.htm,
www.bluespec.com/images/pdfs/InterraReport042604.pdf.

[5] Chandy, K., and Misra, J. Parallel Program Design: A
Foundation. Addison Wesley, 1988.

[6] Dave, N. Designing a Reorder Buffer in Bluespec. In Proc.
MEMOCODE’04 (June 2004).

[7] Dill, D. L. The Murphi Verification System. In Proc. 8th
Intl. Conf. on Computer Aided Verification (1996),
Springer Verlag LNCS 1102, pp. 390–393.

[8] Gajski, D. High-level Synthesis: Introduction to Chip and
System Design. Kluwer Academic, Boston, 1992.

[9] Gajski, D. SpecC : Specification Language and
Methodology. Kluwer Academic, Boston, 2000.

[10] Hoe, J. C. Operation-Centric Hardware Description and
Synthesis. PhD thesis, MIT, June 2000.

[11] Hoe, J. C., and Arvind. Synthesis of Operation-Centric
Hardware Descriptions. In IEEE/ACM Intl. Conf. on
Computer Aided Design (ICCAD) (2000), pp. 511–518.

[12] Lamport, L. Specifying Systems: The TLA+ Language
and Tools for Hardware and Software Engineers.
Addison-Wesley Professional (Pearson Education), 2002.

[13] Nordin, G., and Hoe, J. C. Synchronous Extensions to
Operation-Centric Hardware Description Languages. In
Proc. MEMOCODE’04 (June 2004).

[14] Plosila, J., and Sere, K. Action Systems in Pipelined
Processor Design. In Proc. 3rd. Intl. Symp. on Adv. Res. in
Asynchronous Circuits and Systems (1997), pp. 156–166.

[15] Rosenband, D. L. The Ephemeral History Register:
Flexible Scheduling for Rule-Based Designs. In Proc.
MEMOCODE’04 (June 2004).

[16] Rosenband, D. L., and Arvind. Modular Scheduling of
Guarded Atomic Actions. In Proc. 41st DAC (June 2004).

[17] Staunstrup, J., and Greenstreet, M. From High-Level
Descriptions to VLSI Circuits. BIT 28, 3 (1988), 620–638.

[18] Synopsys. Behavioral Compiler/Behavioral Synthesis.
www.synopsys.com/products/beh syn/beh syn.html.

