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Abstract
As SAT and SMT solvers have improved, it has become common
to reduce difficult search problems to satisfiability queries in an
appropriate logic. While expressing the queries is often straight-
forward at the high-level of the problem domain, converting to
low-level logical formulae can be tedious, difficult, time consum-
ing, and error prone. In addition, there are many data types, like
bounded queues and trees, that are common enough to warrant
distributing the conversion from data type to logical formula as a
library so that they can be reused by others. Toward addressing
these issues we introduce HaskSAT, a Domain-Specific Embed-
ded Language (DSEL) in Haskell leveraging both Generalized Ab-
stract Data Types and Template Haskell to ease the construction of
type safe queries. HaskSAT gives a prescribed method for convert-
ing high-level data types to logical formulae and the results back
to those same data types. This framework not allows us to define
the conversion compositionally, it also makes the queries portable.
Data types are extensible in the sense that their conversion to log-
ical formulae can be built one upon another, and even polymor-
phically. Additionally, we can define functions on convertible data
types for use in queries in a natural way.

1. Introduction
An effective approach to reasoning about complex dynamic pro-
cesses, such as program execution, is to represent the process sym-
bolically as a formula in the logic of an efficient satisfiability solver.
The solver can then be called to prove properties, e.g., bounded
safety properties, or to resolve concrete values exhibiting an im-
portant device behavior, e.g., a bug. As these SAT (satisfiability,
for propositional logic) and SMT (satifiability modulo theories, for
a wide set of richer logics) solvers are highly optimized, this ap-
proach is often more efficient than any specialized solver which can
be generated with reasonable effort. This reduction to SAT/SMT
approach has been used successfully in many contexts like program
verification, testing, and bug finding (e.g., [1–3]).

While leveraging such solvers is conceptually straightforward,
there is a significant amount of work to translate from the original
problem to an efficiently understandable result. A key concern in
this is expressing high-level concerns in the representation. Repre-
sentations which concisely express the high-level sharing or expose
common patterns can result in orders of magnitude speed up.

In addition to being of high importance the translation itself can
be a lot of work. SAT solvers reason about propositional formulae
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and most require the input in conjunctive normal form. Translating,
for instance, a snippet of C code to its individual bits as proposo-
tional variables is substantial change of representation. This issue
is somewhat mitigated by SMT solvers (e.g., [4–7]) which provide
richer data types (adding more theories). For instance, STP [5], the
main SMT solver we use as the backend for HaskSAT provides bit
vectors and bounded arrays as data types, along with a number of
arithmetic and bitwise operations on bit-vectors.

It is natural to think that the best approach to this is to select
an SMT solver which has direct representations for as many the
types that one needs to represent their query and to translate the
unrepresentable types into representable expressions. The issue
with this approach is that it locks us into a particular set of theories
as our representation. If a better solver comes along and it does not
accept necessary theories we have to redo our translation. Even if it
does, if the relative efficiencies of theories change, exploiting this
requires how we represent our data types (e.g.,we can represent a
bounded FIFO naturally using an array with a head and tail pointer
or as two unbounded FIFOs, one representing values, the other
empty spaces).

To realize the full benefit of these solvers, users must be able
to easily adapt and integrate them into their system. This means
we must be able to pose questions from a source domain in a
natural way and have it translate automatically into the backend
query domain. This translation must maintain sufficient flexibility
that retargeting is not onerous.

A natural solution for this to define the query language as an
embedded language in a general purpose language. This gives us
the not only the standard benefits of sharing much of the parsing
and typing infrastructure but also the foreign function interface
which is key for such a tool.

In this paper, we present HaskSAT our DSL embedded in
Haskell aimed at expressing queries to SMT solvers. HaskSA-
Tallows the introduction of user-defined data types and functions.
Using HaskSAT one can represent SAT/SMT queries using Haskell
expressions (leveraging both Haskell’s powerful pattern-matching
syntax and function declaration capabilities) and have the query
have the query automatically translated to a input for the backend
solver, capture the output and translate the result back to original
Haskell-level data types. A principle of HaskSAT is that adding
data types should be straightforward, modular, and easily sharable.

Specifically, HaskSAT:

• Allows end users to write queries using their own data types
and functions. This makes queries more compact and natural.
• Provides a clean higher-level abstraction for queries which

SMT developers can leverage
• Provides a way to easily share reduction machinery (expressed

at the type-level) between distinct projects.
• Is a Haskell DSEL making interfacing to Haskell-based tools

easy. Haskell’s FFI gives a natural vector for other systems.
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2. Background: SAT and SMT Queries
To better understand the task at hand let us consider exactly what
a query contains and how one might represent a query and show
how raising the abstraction level simplifies both expression and
increases efficiency. We also include a brief description of the
execution strategies used by SAT and SMT solvers.

2.1 A Base Representation: Propositional Satisfiability (SAT)
SAT sovlers determine the satisfiability/unsatisfiability of proposi-
tional formula. Loosely speaking, a formula ϕ is satisfiable when
there exists a substitution ρ : vars(ϕ) −→ {0, 1} such that ρ(ϕ)
evaluates to true. When a formula is unsatisfiable the solver will
simply return this fact, but when a formula is satisfiable not only is
that fact reported, most solvers also return a substitution witnessing
it. While most SAT solvers require input to be in conjunctive nor-
mal form, below we take for granted that the wider set of proposi-
tional formulas can be easily translated to CNF (e.g., see [8]).

To give a concrete example of how to solve another problem us-
ing SAT, consider the N queens problem, where the goal is to place
N queens on an N ×N chessboard such that no queen lies on the
same row, column, or diagonal. A very simple way to encode this
into SAT is to have N2 propositional variables (n{i,j}) which rep-
resent whether a queen exist on each square. The formula we want
to create will encode the restriction on placements. Specifically we
have to check exactly 1 of the N booleans in each row and column
is true and that at most 1 square in the diagonal is true.

For example, the row constraint could be encoded as follows:

^
1≤r≤N

2424 ^
1≤c,c′≤N,c 6=c′

¬(x{r,c} ∧ x{r,c′})

35 ∧
24 _

1≤c≤N

x{r,c}

3535
The column constraints are symmetric and while slightly more
complicated, the diagonal constraints are also straightforward.

SAT solvers are efficient due to a huge amount of research on
methods and algorithms, such as non-chronological backtracking
and clausal learning, e.g., see [9, 10].

2.2 Adding Types: Satisfiability-Modulo-Theories (SMT)
SMT solvers work in a richer world than pure propositional logic,
typically including additional non-logical symbols (e.g., +,≤) as
well as types/sorts (e.g., bitvectors, natural numbers). As input
an SMT solver accepts a well-formed formula, ϕ, in whatever
language it reasons in. As output, the solver reports whether it is
satisfiable or unsatisfiable, and if so, giving a witness. For most
SMT solvers, satisfiability means the existence of a substitution
ρ : vars(ϕ) −→ M , where M is the carrier of some canonical
model M, such that M |= ρ(ϕ). To be completely precise, one
would need to define exactly what ρ(ϕ) is, but we avoid such a
tangent here.

To understand how this affects our queries, consider the previ-
ous N-queens problems encoded to work with a bit vector solver.
Now that we have bitvectors, we’d again exploit the property that
we know exactly one square in each row has a queen. Instead of
using a boolean for each square we can represent the position as
a mapping from row position to the unique column where a queen
lies. Thus we need N log2(N) numbers. Unlike the SAT expres-
sion we can encode the constraints using properties of bitvectors.
Specifically:

• Validity of placement of queens by asserting that the column
values lie between 0 and N − 1.
• Rows have a unique queen is preserved by construction
• Columns have a unique queen by asserting that each of the
N(N − 1) queen pairs are on different pairs

• Keeping the queens of the same diagonal can be done by noting
that one set of diagonal can be indexed by the difference in
row and column values, and the other by the sum of the row
and column values. Thus we can assert the uniqueness of these
values as we did for the columns. This requires we increase the
representation of bitvectors to prevent overflow.

It is clear that we could have done this encoding and transla-
tion in the SAT example instead of the SMT. The major difference
(beyond the ease of writing) in the ability for optimization. For in-
stance it’s much easier to exploit the associative property of ad-
dition and subtraction when the operators are directly represented
and not inferred. This means that the assertions that the queens on
the second and third row are on different diagonals:

(2− c2 6= 3− c3) ∧ (2 + c2 6= 3 + c3)
can be rewritten to:

(c3 − c2 6= 1) ∧ (c3 − c2 6= −1)
which is simpler and exposes the sharing of the c3− c2 expression.

As with SAT solvers, there is a substantial amount of work on
algorithms and techniques used in SMT solvers. For logics that are
easily reduced to SAT, it is sometimes most efficient to do high-
level rewriting followed by conversion to SAT, and possibly some
form of abstraction refinement (e.g., [5]). In more complicated
contexts, most solvers use methods based on DPLL(T) (e.g., [11]).

2.3 Haskell: Using Lambda functions, Tuples to construct
queries

Expressing the N queens problem leveraging bitvectors makes the
description significantly easier. However, there is still a great deal
of effort to generate the assertions which have a great deal of shared
structure. To see how we can make this easier, consider how one
might construct a SMT query in a Haskell-like language. First, If
we assume the queens are represented as pairs of integers we can
represent the assertion that two positions do not conflict as:

posValid (r,c) n = (0 <= r && r <= n-1) &&
(0 <= c && c <= n-1)

pairValid (r1,c1) (r2,c2) = (r1 /= r2) && (c1 /= c2) &&
(r1 + c1) /= (r2 + c2) && (r1 - c1) /= (r2 - c2)

and the assertions (using the pairs function) given a list of queens
positions as:

pairs (x:xs) = [(x,y) | y <- xs] ++ pairs xs
pairs [] = []
(all posValid queens) && (all pairValid (pairs queens))

This representation is concise and reflect a lot of the high-level
information. However, the problem is that we have no obvious way
of representing unconstrained variables, on which the whole idea
of constraint problems is predicated. To completely represent our
query in this form, let us add the concept of a “free” expression
which can take any possible value of the appropriate type. This
gives us the missing bit and we can generate our list of queen
positions.

queens = [(i,free) | i <- [0..n-1]]

At this point we almost all the pieces to ask a query. The only thing
left is how to interpret the result of the query, a point we’ve ignored
in the N queens problem so far. One obvious choice is the row-
column positions of the queens. For our example, let’s just return
the column values as the rows are already known. Now we can write
our query monadically as:

query :: Int -> Query [Int]
query n = do

let queens = [(i,free) | i <- [0..n-1]]
assert (all positionValid queens)
assert (all pairValid (pairs queens))
return $ map snd queens
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Here the assert clauses add the boolean assertions to the constraints
and the return types gives us the resulting expression (if one exists).
Conceptually our solver will be of type Query a -> Maybe a.
This query has the benefit of being highly readable as well being
parameterized by the board size. This is the inspiration for our
syntax for HaskSAT.

3. Expressing Queries
Since we encourage users to use their own types and leverage a
large set of Haskell we expect the type structure of a query to be
quite rich. Thus, it’s important for us to guarantee that some mea-
sure of type safety. A standard way of doing this in Haskell DSELs
is to leverage Haskell’s lets and lambdas and define the combina-
tors to work on Haskell typed representations of our distinct types.

Unfortunately, higher-order sharing is of paramount importance
in this translation. For example, exploiting the “functionality” of
functions (e.g., that x = y → fx = fy) can help expose dynamic
sharing in the query and thus reduce work for “mostly equivalent”
values. This necessarily requires us to be able to “see” the sharing
of higher-order objects. As a result, we cannot directly leverage
both Haskell’s lets and lambdas and need to build our own abstract
syntax data type.

Despite not being able to directly leverage Haskell’s sharing
and lambda abstraction mechanisms, we’d still like to get the same
type guarantees which they enforce. We do this by representing our
queries in the following Generalized Abstract Data Type (GADT).

data (Expr n a) where
ETerm:: (RepValue n) -> Expr n a
EPrim:: Id -> Expr n a
EVar :: Id -> Expr n a
EApp :: Expr n (a -> b) -> Expr n a -> Expr n b
EIf :: Expr n Bool -> Expr n a -> Expr n a -> Expr n a
ELam :: (Expr n a -> Expr n b) -> Expr n (a -> b)
ELet :: Id -> Expr n a -> Expr n b -> Expr n b
EWhen:: Expr n a -> Expr n Bool -> Expr n a
EFree:: Expr n a

(<@>) x y = EApp x y

Here function application (EApp or <@> is assured to be type
safe as we insist by insisting that the applied functions match and
return the correct return value. Similarly by representing lambda
abstractions (ELam) in as Higher-Order Abstract Syntax (HOAS)
we guarantee that variables uses in the function body have the
correct type. What is not guaranteed is that variables represented by
the EVar construct have the same type as the associated expression,
defined in the ELet. This property will need to be guaranteed
by hiding the constructors from the user and only allowing joint
construction of variables and their bindings.

makeLet :: Id -> Expr a -> (Expr a -> Expr b) -> Expr b
makeLet i e f = ELet i e (f (EVar i))

For data types and functions to embedded in this type we need a
notion of what values that can be represented in the base solver.
This requires that the expression type also be parameterized by
the backend engine in addition to the corresponding Haskell type.
For instance consider the STP SMT solver [5] which supports the
theory of booleans, bitvectors, and arrays of bitvectors. We need
to have a notion of booleans, bitvectors, and arrays. Thus we can
represent a values as the type Value:

type BitVector = Bitval Int Integer
data Value = BV BitVector -- bitlength value

| Array [BitVector] --

This done by the type family Representation n which de-
fines the representations for both concrete values as well as the
backend level types.

class Representation n where
type RepValue n :: *
type RepType n :: *
tyArrow :: Maybe (RepType n) -> Maybe (RepType n)

-> Maybe (RepType n)

This defines both a representation for concrete values as well as
types of values in the backend. This notion of types is not necessary
but can be helpful when converting to the backend. Using this we
can represent symbolic values directly representable in the backend
using the ETerm constructor. For instance, in our STP backend, we
can represent the symbolic boolean expression representing true as:

eTrue = (ETerm (BV (BitVal 1 1))) :: (Expr Bool)

To introduce the concepts specific to our constraint problems,
we need two more constructs. First, EFree represents an uncon-
strained value. This may take any value of the appropriate type.

Second, is the notion of a boolean constraint, introduced by
the EWhen constructor. Unlike the constraints that we had used
previously, these constraints need not appear at the top-level only,
but can be sprinkled anywhere in our expression. This allows us to
construct higher-order values with partially unconstrained values.
(e.g., an Int to Int function which returns the input value plus a
non-zero number less than the input).

The expression EWhen e ew is valid only when the boolean
expression ew is true. When the guard is true it behaves exactly
like e. These When guards translated into boolean assertions in our
final SMT query. It is important for when guards to have the non-
strictness that we want we must be careful to only assert their truth
on the condition of their usage. For example the expression:

EIf x (EWhen y p) (EWhen z q)

uses the guarded expressions conditionally and so is the same as:

EWhen (EIf x y z) (EIf x p q)

As you can see the guards p and q only apply the x boolean
signifies that we would need to evaluate the associated expression.
The handling of these guards is similar to guards in the Bluespec
hardware description language [12].

3.1 Translating Haskell Types
One of the most important aspects of simplification is how to deal
with data types that do not have a direct analog in the backend
solver. If a type is not representable, the only way to deal with it
is inline the constructs which cannot be represented and rely the
system to remove the node.

To be able to distinguish these we define a type class ConvType
to tell us what type a symbolic expression has in the backend solver
if one exists. If the expression type does not have a direct analog. In
principle, we only require a boolean, not a full type representation,
but we also insist on the type to serve as a debugging aid in the
backend.

class (Representation n) => (ConvType n a) where
getRepType :: (Expr n a) -> Maybe (RepType n)

We insist that all symbolic expressions have a ConvType definition.
This requires we change all the GADT constructors to insist on the
appropriate context.

3.2 Embedding Haskell Values
Given the Expression Type and our restriction on construction the
only place of difficulty is how to deal with the representation of a
concrete Haskell value as a symbolic expression.

class (ConvType n a, Representation n) => (ConvValue n a)
where
pack :: a -> Expr n a
unpack :: Expr n a -> Maybe a
freeExpr :: Expr n a
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The ConvValue type class is responsible for converting Haskell-
types into our internal representation via the functions pack and
unpack. The unpack function is partial in that not all expressions
of the appropriate type will have corresponding values (for instance
a symbolic variable). At minimum the user is responsible for guar-
anteeing that at (unpack(pack x)) = Just x.

It is possible that we want the codomain of our pack function
may be larger than the domain. For instance translating a 3 valued
type to a 2-bit value leaves one value meaningless. As a result we
cannot directly infer the shape of a free variable and need the user
to provide a definition (freeExpr) as part of the translation.

3.3 Writing a Query
By using our GADT approach, and structured let constructor we
can fairly represent our queries in a relatively straightforward way
while maintaining type safety. However, to write something the
query represented by this:

let x = free :: Maybe Int
y = free :: Int
z = case x of

Nothing -> y
Just p -> p + y

in when x (y == z)

we have to write something like:

query :: (Expr n (Maybe Int))
query =
makeLet "x" (freeExpr :: Expr n (Maybe Int))$ \x ->
makeLet "y" (freeExpr :: Expr n Int) $ \y ->
makeLet "z"
(EIf ( symbolic isNothing <@> x) <@> y <@>
(EIf ( symbolic isJust <@> x)

(makeLet "p" ( symbolic GetJust<@>x) $ \p ->
symbolic plus <@> p <@> y)

(EWhen freeExpr (pack False)) $ \z ->
EWhen x ( symbolic eq y z)

Not only did we have to use a less natural let and if notation, but we
also needed to desugar the the case representation into lets and ifs,
which is significantly more verbose and hard to manage. While an-
noying, the structure the translation is quite mechanical enough to
write a syntax-to-syntax translation to take our description of a ex-
pression of type a, using the nonexistent functions free and when
to the corresponding symbolic expression of type Expr a. We im-
plement such a function in Template Haskell to serve as a function.
To do this we need to establish a global naming correspondence be-
tween functions and their corresponding symbolic form. The new
templated query look like:

query :: (Expr n Bool)
query = $(makeSymbolic[|

let x = free :: Maybe Int
y = free :: Int
z = case x of

Nothing -> y
Just p -> p + y

in x when (y == z) |])

This gives us the syntactic benefits of the “ideal” representation,
with only a small messiness difficulty in debugging as Template
Haskell error messages can be harder to understand than error
messages from untemplated code. But If we define correctly typed
versions of when and free, the untemplated version can be type
checked with a guarantee that the templated version will also be
correct (modulo the existence of needed type class instances).

While it is clear how simple polymorphic code is done, dealing
with type contexts is a bit more tricky. For each type class in our
input language (e.g., Eq a) we need to a corresponding symbolic
type class which contains the corresponding symbolic expressions.
For instance the symbolic equality type class looks like:

class (SymbEq n a) where
symbolic eq :: (Expr n (a -> a -> Bool))
symbolic neq :: (Expr n (a -> a -> Bool))

4. Compilation: Going from Query to Result
Conceptually, the idea of our embedded language is quite straight-
forward. The user can write queries with relative ease in Template
Haskell and they can solve a query using the function:

askQuery :: (ConvValue n a) => Query n a) -> IO (Maybe a)

which is the previously stated high-level conceptual type in the IO
monad to allow external calls.

Internally, the compilation from our Query formulation, to SMT
query, to solution, to a result as Haskell type takes a number of
steps. There is insufficient space to describe all task in full detail,
so we will highlight only the paramount aspects.

4.1 Dealing with Free Expressions
Unlike the lambda calculus, one cannot inline arbitrarily in the
context of free expressions. For instance:

let x = free in x + x

should only allow even results. Inlining x causes us to forget this.
To deal with this all primitive free expressions should be given a
fresh variable name. This is made slightly more complicated by
lambda expressions with internal free expressions as each call must
refer to a fresh free expression.

4.2 Dealing with Functions
If the backend solver does not directly represent functions, the only
interpretation for function is to inline their definition. However, we
can exploit the fact that: x = y → fx = fy
One approach is to treat f as an uninterpreted function [13] and
abstract away f’s properties save for this point. This can drastically
simplify the complexity of questions in cases where this is all
that is needed, but can result in solutions where the relationship
between inputs to f and its outputs are not obeyed. A safer, but
less abstract way is to encode dynamic sharing. For example, in a
system with v1=f x and v2=f x’ to replace v2 with if x==x’
then v1 else v2.

4.3 Simplifying Expressions
Part of the task of reducing a query to something the SMT solver
can understand requires that we be able to simplifications on ex-
pression. For instance we should be able to do the following reduc-
tions:

(\ x -> b) e = b[e/x]
if True x else y = x
isJust (Just x) = True
fromJust (Just x) = x

We can easily simplify the first two cases have explicit syntax
(EApp, ELam, and EIf) in our expression type and as such we have
a deep understanding of the semantic meaning of these expressions
and can do these simplifications However, the later example involve
primitive functions which are understood only at the user level. If
the user defined these functions in terms of functions we understand
then we are good, but if not (e.g., they are represented using as
EPrim) we do not know what to do.

A partial fix for this problem is to use a smart constructor which
can apply the optimization if we understand the input. For instance
we can write isJust as:

isJust = ELam $ \ x -> case (unpack x) of
Just -> (pack True)

-> (EPrim "isJust") <@> x
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However, if we do not know enough about the input at construc-
tion we forget this simplification. As we inline (and thus expose
more information) during our translation, we are losing opportuni-
ties. What we’d like to have is when a simplification fails, for it to
be remembered, and then retry later when more information may
be available. To do this we change the definition of EPrim to store
this information:

EPrim :: (Expr n a) -> Id -> (Expr n a)

Now, the primitive isJust refers to itself for construction.

isJust = ELam $ \ x -> case unpack x of
Just -> (pack True)

-> (EPrim isJust "isJust") <@> x

Our simplification pass can just replace primitive with the original
smarter expression and rely on beta reduction retry the simplifica-
tion.

simplify (EApp (ELam f) x) = simplify (f x)
simplify e@(EIf p t e) = case unpack p of

Just v -> simplify (if v then t else e)
-> EIf (simplify p) (simplify t) (simplify e)

simplify (EPrim sc i) = sc
simplify ...

4.4 Querying the Solver
Having removed all unrepresentable types from the boolean con-
straints and local variable definitions, we can directly call our SMT
solver. As a result all backend-uninterpretable primitive functions
have been removed from our query (save for the return expression
which we do not pass). We translate each let binding x = e into
a constraint asserting that the variable x is equal to the expression
e. Each constraint is then conditionally asserted given its context
and passed to the solver. The solver gives back a list of variable
name, RepValue n pairs. which are then inlined back into the re-
turn value. Now we have enough information to finish simplifying,
simplifying the remaining primitive functions, until we can unpack
to a concrete Haskell value.

5. Adding New Types
To add a type to our system such that it can be used, we need to
essentially perform the same task that one would do in an SMT
solver, e.g., add a new theory. In addition to defining instances of
ConvValue and ConvType for that type, we must also define how
functions on those types can be simplified.

To get a better idea of this consider the encoding of a directly
representable type (32-bit integers), and indirectly understandable
product type (a 2-tuple) and a union type (the Either type) to our
bitvector solver STP. These form a basis for all bounded ADTs we
might wish to implement.

5.1 The Int Type
The first type we will deal with is the Int type which has a direct
implementation in our bitvector solver, a 32-bit value. The first
task is the straightforward definition of the conversion classes from
Haskell types to the concrete results.

instance (ConvType STP Int) where
getRepType x = BitVectorT 32 -- 32-bit bitvector

instance (ConvValue STP Int) where
pack x = ETerm (BV (Bitval 32 (toInteger x)))
unpack (ETerm (BV (Bitval 32 x)))=Just $ fromInteger x
unpack =Nothing
freeExpr = EFree --direct notion of unconstrained value

Now all that is left is to define the primitive functions on Int. Since
the functions have a direct implementation in the backend, one
might initially think we can leave the result as abstract primitives.

However, we need to do basic constant propagation on these func-
tions so that the strategy of inlining a solution from the backend is
guaranteed to simplify. For instance, the addition function is:

instance (SymbNum STP Int) where
symbolic plus = ELam $ \ x -> ELam $ \ y ->
case (unpack x, unpack y) of

(Just x, Just y) = pack (x + y)
-> (EPrim symbolic plus "bvplus") <@> x <@> y

5.2 Record Types: Tuple2
The Tuple2 type (a,b) is the simplest “record” joiner type. There
are three abstract functions which completely cover all functions
we can do on tuples, the constructor tup2 (or (,) as defined in
the Haskell prelude), and the first and second projections (fst
and snd). If we have complete definitions of these functions we
can transliterate the Haskell definitions of other functions into the
symbolic domain.

Abstractly the only axioms we need to understand how to sim-
plify tuple is the definition of the projections, namely:

fst (tup2 x y) = x and snd (tup2 x y) = y

To implement this type we new three new primitives symbolic tup2,
symbolic fst, and symbolic snd for each backend.

class (SymbTup2 n a b) where
symbolic tup2 :: Expr n (a -> b -> (a,b))
symbolic fst :: Expr n ((a,b) -> a)
symbolic snd :: Expr n ((a,b) -> b)

We also need instances for our bitvector backend. First we
define ConvType and ConvValue.

instance (ConvType STP (a,b) where
getRepType x = Nothing

instance (ConvValue STP a, ConvValue STP b
,SymbTup2 STP a b) => (ConvValue STP (a,b)) where

pack (a,b) = symbolic tup2 <@> (pack x) <@> (pack y)
unpack (EApp (EApp tup2 x0) y0) | isTup2 tup2 = do

x <- unpack =<< (cast x0) -- Maybe Monad
y <- unpack =<< (cast y0)
return (x,y)

freeExpr = symbolic tup2 <@> freeExpr <@> freeExpr

This done all that is left is to define the three functions. Given
our simplification strategy based on smart constructors, we need
to exploit the tuple axioms when defining the projections. The
constructor can remain abstract.

instance (ConvType STP a, ConvType STP b)
=> (SymbTup2 STP a b) where

symbolic tup2 = EPrim symbolic tup2 "tup2"
symbolic fst = ELam $ \ x -> case x of
((EApp (EPrim tp) a) b) | tp == "tup2" -> a
-> (EPrim symbolic fst "fst") <@> x

symbolic snd = ELam $ \ x -> case x of
((EApp (EPrim tp) a) b) | tp == "tup2" -> b
-> (EPrim symbolic fst "fst") <@> x

Now all that is left is to define the non-primitive functions on
tuple (==, <, etc.) by transliterating the appropriate class instances
and functions.

5.3 Union Types: Either
The Either a b type can either be a Left a value or a Right b
value. Unlike products, choice cannot directly be implemented in
a SAT solver. Instead we need to encode this as product by mod-
elling Either a b as the type (Bool, a, b) where the boolean
signifies if we have a Left or a Right and therefore which field is
meaningful; the unused field is left unconstrained. represent the ei-
ther type we need to define primitives for construction(Either), tag
matching(isLeft and isRight), and projection(getLeft and getRight).
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instance (ConvType STP (Either a b) where
getRepType x = Nothing

instance (ConvValue STP a, ConvValue STP b
,SymbEither STP a b) => (ConvValue STP (Either a b)) where
pack (Left a) = symbolic Either <@> (pack False)

<@> (pack a) <@> freeExpr
pack (Right a) = symbolic Either <@> (pack True)

<@> freeExpr <@> (pack b)
unpack (EApp (EApp (EApp f x) y) z) | isEither f =

case unpack x of
Just p -> if p then (unpack =<< cast y)

else (unpack =<< cast z)
-> Nothing

freeExpr = symbolic Either <@> freeExpr
<@> (pack a) <@> freeExpr

Defining the primitives is exactly like the tuple case, save that we
have the following axioms:

isLeft (Left x) = True isLeft (Right x) = False
isRight (Left x) = False isRight (Right x) = True
getLeft (Left x) = x getLeft (Right x) = free
getRight (Left x) = free getRight (Right x) = x

6. Discussion and Future Work
There has been a fair amount of work in embedding SAT/SMT
solvers in Haskell. Many are simple frontends to SMT solvers,
the most relevant being Yices [14] which has direct support for
lambdas and record types. Satchmo [15] is a project very much in
line with our goal. It provides a mechanism of encoding some data
types in a way that allows containers and associated functions to
be used on “symbolic” expressions and passed into a backend SMT
solver. Unfortunately, there is no sugar to deal symbolic union types
which makes this approach difficult.

For our purposes, HaskSAT has been successful in expressing
the problems which were the inspiration for this work. Perhaps
more important, when we showed our tool to others who were con-
sidering using SMT solvers for their own work, they immediately
saw the value provided here; some even volunteered to help im-
prove HaskSAT themselves to make it more efficient, to port the
backend to different SAT and SMT solvers, or even to just define
useful library types. This is exactly what we wanted; sharing and
interaction between tool users.

In terms of improving the system, there are a few important
places where HaskSAT stands to improve. Most obviously is the
amount of work required to define add a new type into the system.
Assuming we are merely simplifying the type away there is no
reason which the definitions cannot be automatically generated
from the type definition and/or function definitions.

A small technical problem is an issue with unrolling recursive
data types and functions. As we need to completely unroll the
symbolic expression to be able to query the solver, this may involve
infinite work. One solution is to provide a partial unrolling and
iteratively unroll the query until a solution is found r we have a
proof that further unrolling will not help. Incremental SMT solvers
may provide a partial solution to this by allowing use to pass part
of the query into the solver and wait for a partial solution before
providing (or removing) more variables and constraints.

The Template Haskell parser is proving to be a hefty but rela-
tively clean approach to getting the full sharing information. A lot
of thinking was put forth in making sure that the transformation
scheme could handle such things as monadic code (which we do
by desugaring to the underlying binds and returns) as well as all
of the pattern matching (which are desugared into if conditionals).
However, the Haskell parsed expression type is quite complex and
the code is quite long. The current parser is about 50% of the total
HaskSAT project and many corner cases are still not handled. This
task is likely to continue as more syntax additions are tried. One

possible improvement would be to provide a “diet” parsed expres-
sion type with all of the sugar removed which could be easier to
cover and remain fairly stable.

Another concern about the current system is that the optimiza-
tion engine is relatively naive. There is a large body of work on
simplifying rewrites which we could implement despite the back-
end solver not supporting the optimization or even the type. For in-
stance for an array type, you can rewrite read(y, upd(arr, x, val))
as read(y, arr) when x 6= y. Currently, when we introduce a
new type we do nothing beyond translating it down to our back-
end solver, because we do not know a priori, any non-trivial opti-
mizations for user-defined types. A natural way to get this infor-
mation would be to augment HaskSAT, to allow users to provide
their own hand-determined rewrites. If we could construct some-
thing like GHC’s rewrite optimization engine we would cover the
majority of optimizations which a user might expect of their SMT
solver engine.
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