
Design and Evaluation of a Compiler for Embedded Stream Programs

Ryan R. Newton Lewis D. Girod
Michael B. Craig Samuel R. Madden

MIT CSAIL
{newton, girod, mic, madden}@csail.mit.edu

J. Greg Morrisett
Harvard University

greg@eecs.harvard.edu

Abstract
Applications that combine live data streams with embedded, paral-
lel, and distributed processing are becoming more commonplace.
WaveScript is a domain-specific language that brings high-level,
type-safe, garbage-collected programming to these domains. This
is made possible by three primary implementation techniques, each
of which leverages characteristics of the streaming domain. First,
we employ a novel evaluation strategy that uses a combination of
interpretation and reification to partially evaluate programs into
stream dataflow graphs. Second, we use profile-driven compilation
to enable many optimizations that are normally only available in the
synchronous (rather than asynchronous) dataflow domain. Finally,
we incorporate an extensible system for rewrite rules to capture al-
gebraic properties in specific domains (such as signal processing).

We have used our language to build and deploy a sensor-
network for the acoustic localization of wild animals, in partic-
ular, the Yellow-Bellied marmot. We evaluate WaveScript’s per-
formance on this application, showing that it yields good perfor-
mance on both embedded and desktop-class machines, including
distributed execution and substantial parallel speedups. Our lan-
guage allowed us to implement the application rapidly, while out-
performing a previous C implementation by over 35%, using fewer
than half the lines of code. We evaluate the contribution of our
optimizations to this success.

Categories and Subject Descriptors:
D.3.2 Concurrent, distributed, and parallel languages;

Applicative (functional) languages; Data-flow languages

General Terms: Design, Languages, Performance
Keywords: stream processing language, sensor networks

1. Introduction
This paper presents the design and implementation of the Wave-
Script programming language. WaveScript supports efficient pro-
cessing of high-volume, asynchronous data streams. Data stream
processing applications—which typically process data in real time
as it arrives—arise in a number of domains, from filtering and min-
ing feeds of financial data to extracting relevant features from con-
tinuous signals streaming from microphones and video cameras.

We have used WaveScript in several applications requiring high-
volume stream-processing, including water pipeline leak detection
and road surface anomaly detection using on-board vehicular ac-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
LCTES ’08 6/13/2008, Tucson, AZ.
Copyright c© 2008 ACM . . . $5.00

celerometers. In this paper, however, we focus on our most ma-
ture application: a distributed, embedded application for acoustic
localization of wild Yellow-Bellied marmots which was deployed
at the Rocky Mountain Biological Laboratory in Colorado during
August, 2007.

1.1 Application: Locating Yellow-Bellied Marmots
Marmots, medium-sized rodents native to the southwestern United
States, make loud alarm calls when their territory is approached by
a predator, and field biologists are interested in using these calls to
determine their locations when they call. In previous work, we de-
veloped the hardware platform for this application (10), performed
pilot studies to gather raw data, and developed signal processing
algorithms to perform the localization (3). During our recent de-
ployment, we used WaveScript to accomplish the next stage of our
research—building a real-time, distributed localization system that
biologists can use in the field, while also archiving raw-data for
offline analysis.

The marmot localization application uses an eight-node VoxNet
network, based on the earlier acoustic ENSBox nodes (10), using an
XScale PXA 255 processor with 64 MB of RAM. Each sensor node
includes an array of four microphones as well as a wireless radio
for multi-hop communication with the base station (a laptop). The
structure of the marmot application is shown in Figure 1. The major
processing phases implemented by the system are the following.

• Detect an event. Process audio input streams, searching for the
onset of energy in particular frequency bands.
• Direction of arrival (DOA). For each event detected, and for

each possible angle of arrival, determine the likelihood that the
signal arrived from that angle.
• Fuse DOAs. Collect a set of DOA estimates from different

nodes that correspond to the same event. For every location
on a grid, project out the DOA estimates from each node and
combine them to compute a joint likelihood.

For this application, WaveScript met three key requirements:

1. Embedded Operation: A compiled WaveScript program yields
an efficient, compact binary which is well suited to the low-
power, limited-CPU nodes used in the marmot-detection appli-
cation. WaveScript also includes pragmatic necessities such as
the ability to integrate with drivers that capture sensor data, in-
terfaces to various operating system hooks, and a foreign func-
tion interface (FFI) that makes it possible to integrate legacy
code into the system.

2. Distribution: WaveScript is a distributed language in that the
compiler can execute a single program across many nodes in a
network (or processors in a single node). Typically, a Wave-
Script application utilizes both in-network (embedded) com-
putation, as well as centralized processing on a desktop-class
“base station”. On base stations, being able to parallelize across
multiple processors is important, especially as it can speed up
offline processing of batch records in after the fact analysis.

Ultimately, distribution of programs is possible because Wave-
Script, like other languages for stream-processing, divides the
program into distinct stream operators (functions) with explicit
communication and separate state. This dataflow graph struc-
ture allows a great deal of leeway for automatic optimization,
parallelization, and efficient memory management.

3. Hybrid synchronicity: WaveScript assumes that streams are
fundamentally asynchronous, but allows elements of a stream to
be grouped (via special windowing operations) into windows—
called Signal Segments, or “Sigsegs”—that are synchronous.
For example, a stream of audio events might consist of windows
of several seconds of audio that are regularly sampled, such that
each sample does not need a separate timestamp, but where
windows themselves arrive asynchronously, and with variable
delays between them. Support for asynchronicity is essential in
our marmot-detection application.

Our research addresses how these requirements can be met ef-
fectively by a high-level language. Execution efficiency is accom-
plished by three key techniques, each of which is enabled or en-
hanced by domain-specificity. First, the compiler employs a novel
evaluation strategy that uses a combination of interpretation, reifi-
cation (converting objects in memory into code), and compilation.
Our technique partially evaluates programs into stream dataflow
graphs, enabling abstraction and modularity with zero performance
overhead. Second, WaveScript uses a profile-driven optimization
strategy to enable compile-time optimization and parallelization of
stream dataflow graphs in spite of their asynchronicity. Specifically,
WaveScript uses representative sample data to estimate stream’s
rates and compute times of each operator, and then applies a num-
ber of well-understood techniques from the synchronous dataflow
world. Third, WaveScript incorporates extensible algebraic rewrite
rules to capture optimizations particular to a sub-domain or a li-
brary. As we show in this paper, providing rewrite rules with a li-
brary (e.g. DSP operators) can enable the user to compose func-
tionality at a high-level, without sacrificing efficiency.

The rapid prototyping benefits of high-level, polymorphic,
garbage-collected languages are widely recognized. WaveScript
merely removes certain performance barriers to their application
in the embedded domain by exploiting a domain-specific program-
ming model. Several subcomponents of the marmot application
were previously implemented by different authors (using MAT-
LAB or C). These provide a natural point of comparison for our
approach. As we demonstrate in this paper, WaveScript enabled us
to rapidly develop the application, writing less code, while improv-
ing runtime performance versus previous implementations.

In previous work, we argued the need for WaveScript, and
evaluated Sigseg implementations and scheduling policies for the
single-node runtime engine (11). In this paper, we present the
WaveScript compiler for the first time, including the implementa-
tion of the above features. Finally, we evaluate the performance the
WaveScript marmot application, and the contribution of optimiza-
tions to that performance—examining CPU usage for embedded
computation and parallelization for desktop/server computation.

2. Related Work
Stream processing (SP) has been studied for decades. In a typi-
cal SP model, a graph of operators communicate by passing data
messages. Operators “fire” under certain conditions to process in-
puts, perform computation, and produce output messages. Many
SP models have been proposed. For example, operators may exe-
cute asynchronously or synchronously, deterministically or nonde-
terministically, and produce one output or many.

In this section, we briefly review these major tradeoffs, and then
discuss how existing stream processing systems are inappropriate

Marmots

http://wavescope.csail.mit.edu/

1. Detect 2. DOA 3. Fuse

On Node On ServerNode or Server

Direction of arrival

Snippet of
4-channel

Audio

Probability Map

Fuse

Detection
Stream

Probablity Map
Visualization

Remote
Direction of

Arrival
Streams

Sample Detect DOA
Raw, 44Khz

Data
Filtered

Detections
Analog
Signal

Sample Detect DOA
Raw, 44Khz

Data
Filtered

Detections
Analog
Signal

Sample Detect DOA
Raw, 44Khz

Data
Filtered

Detections
Analog
Signal

http://wavescope.csail.mit.edu/

1. Detect 2. DOA 3. Fuse

On Node On ServerNode or Server

Direction of arrival

Snippet of
4-channel

Audio

Probability Map

http://wavescope.csail.mit.edu/

1. Detect 2. DOA 3. Fuse

On Node On ServerNode or Server

Direction of arrival

Snippet of
4-channel

Audio

Probability Map

http://wavescope.csail.mit.edu/

1. Detect 2. DOA 3. Fuse

On Node On ServerNode or Server

Direction of arrival

Snippet of
4-channel

Audio

Probability Map

Server

Acoustic ENS Box 1

Acoustic ENS Box 2

Acoustic ENS Box 3

Figure 1. Diagram illustrating the major components of the
marmot-detection application.

for our application domain. We also discuss related systems which
inspired our approach.

2.1 Tradeoffs in Existing Stream Processing Systems
A major divide in SP systems is between those that are synchronous
and those that are asynchronous. A synchronous SP model is gen-
erally thought of by analogy with synchronous hardware—a clock
is driving operators to fire at the same time. On the other hand, in
this paper the most relevant aspect of synchronicity, and the sense
in which we’ll be using the term, is whether or not data streams are
synchronized with each other.

Most literature on streaming databases has focused on an asyn-
chronous streaming model (6; 4), while most compiler literature
has focused on synchronous models (12; 5; 7). WaveScript, like a
streaming database, targets applications that involve multiple feeds
of data arriving on network interfaces at unknown rates. This es-
sentially forced us to adopt an asynchronous SP model and its as-
sociated overheads, including explicit annotation of data records
with timestamps and the use of queueing and dynamic schedul-
ing to handle unpredictable data rates. In contrast, in purely syn-
chronous systems, because data rates are known and static, times-
tamps are not needed, and it is possible for the compiler to stati-
cally determine how much buffering is needed, avoiding queuing
and scheduling overheads.

Hence, synchronous systems typically outperform asynchronous
ones. Our approach, as mentioned in the introduction, is able to
overcome performance limitations of the asynchronous model by
recognizing that many high data rate asynchronous applications—
including our audio processing system— do in fact have some regu-
larity in their data rates some of the time. Thus, in WaveScript, data
streams are decomposed into windows (called Sigsegs) containing
data elements that are regularly sampled in time (or isochronous).
For example, a single Sigseg might represent a few seconds of au-
dio sampled at 44 kHz. Asynchronous streams of Sigsegs are then
the primary streaming data type in WaveScript. Data rates and tim-
ing between Sigsegs on these streams are inherently unpredictable,
since a stream may represent the union of several streams arriving
from different nodes on the network, or may have had filters ap-
plied to it to remove some Sigsegs that are not of interest to the
application.

In summary, no existing system provides exactly the mix of fea-
tures and performance that WaveScript requires. Stream process-
ing database systems, like Aurora (6) and Stanford Stream (4),
are purely asynchronous and designed to process at most a few
thousand data items per second, which is insufficient for real-time
processing of multiple channels of audio data arriving at hundreds
of kilosamples per second. Existing high-performance stream pro-
gramming languages are synchronous and therefore inappropriate
for our domain. Finally, general purpose languages, though clearly
expressive enough to build our application, are not amenable to
many of the optimizations that a stream compiler can apply, and

lack support for automatic parallelization and distribution of pro-
grams, thus complicating the job of the programmer.

2.2 StreamIt and FRP
Although we chose to implement our own SP system, rather than
reuse an existing one, WaveScript draws inspiration from two ex-
isting projects in particular. These are functional reactive program-
ming (FRP) and StreamIt (12). FRP embeds asynchronous events
and continuously valued signals into Haskell (9). FRP programs
may use event handlers to reconfigure the collection of signal trans-
formers dynamically. This provides an extremely rich context for
manipulating and composing signals. FRP has been applied to ani-
mation, robotics, computer vision, and mathematical visualization.
Unfortunately, both because it is implemented atop Haskell, and be-
cause signals are dynamic and reconfigurable, FRP does not deliver
competitive performance for data-intensive applications.

StreamIt is a C-like stream programming language with static
memory allocation that targets the synchronous dataflow domain.
StreamIt provides a syntax for constructing stream graphs using
loops, first-order recursive functions, and a second-class represen-
tation of streams. This provides a high degree of control in con-
structing graphs, but is not as expressive as FRP.

Recent releases of StreamIt include support for streams with
unknown rates. Using this facility, it may have been possible to
implement our acoustic localization application with StreamIt. We
would, however, have had to extend the StreamIt implementation
in a number of ways. First, StreamIt has primarily been devel-
oped for architectures other than our own (e.g., RAW). Also, it
would need a foreign function interface for accessing sensor hard-
ware and networking, as well as the accompanying infrastructure
for distributed execution. Finally, in addition to these engineering
hurdles, we chose not to employ StreamIt because it is a goal of
our research to target the data-intensive streaming domain with a
flexible language that includes dynamic allocation, garbage collec-
tion, and first-class streams. Dynamic allocation and garbage col-
lection allow for higher level programming and better encapsulated
libraries. Further, when working with dynamic workloads (e.g. un-
predictable numbers of marmot calls) portioning resources dynam-
ically can make more efficient use of finite memory.

3. The WaveScript Language
In this section, we introduce the language and provide code exam-
ples drawn from our marmot-detection application. We highlight
the major features of the language, leaving implementation issues
for Section 4. The details of the language are documented in the
user manual (1).

WaveScript is an ML-like functional language with special sup-
port for stream-processing. Although it employs a C-like syntax,
WaveScript provides type inference, polymorphism, and higher-
order functions in a call-by-value language. And like other SP lan-
guages (12; 5; 16), a WaveScript program is structured as a set of
communicating stream operators.

In WaveScript, however, rather than directly define operators
and their connections, the programmer writes a declarative program
that manipulates named, first-class streams and stream transform-
ers: functions that take and produce streams. Those stream trans-
formers in turn do the work of assembling the stream operators
that make up the nodes in an executable stream graph.

Figure 2 shows the main body of our marmot-detection ap-
plication. It consists of two sets of top-level definitions—one for
all nodes and one for the server. In this program, variable names
are bound to streams, and function applications transform streams.
Network communication occurs wherever node streams are con-
sumed by the server, or vice-versa. (One stream is designated
the “return value” of the program by main = grid.) First-class

// Node-local streams, run on every node:
NODE "*" {

(ch1,ch2,ch3,ch4) = VoxNetAudioAllChans(44100);
// Perform event detection on ch1 only:
scores :: Stream Float;
scores = marmotScores(ch1);
events :: Stream (Time, Time, Bool);
events = temporalDetector(scores);
// Use events to select audio segments from all:
detections = syncSelect(events, [ch1,ch2,ch3,ch4]);
// In this config, perform DOA computation on VoxNet:
doas = DOA(detections);

}
SERVER {

// Once on the base station, we fuse DOAs:
clusters = temporalCluster(doas);
grid = fuseDOAs(clusters);
// We return these likelihood maps to the user:
main = grid;

}

Figure 2. Main program composing all three phases of the
marmot-detection application. WaveScript primitives and library
routines are in bold. Type annotations are for documentation only.

fun marmotScores(strm) {
filtrd = bandpass(32, LO, HI, strm);
freqs = toFreq(32, filtrd);
scores =
iterate ss in freqs {
emit Sigseg.fold((+), 0,

Sigseg.map(abs, ss));
};
scores

}

Figure 3. A stream transformer that sums up the energy in a
certain frequency band within its input stream. Energy in this band
corresponds to the alarm call of a marmot.

streams make wiring stream dataflow graphs much more conve-
nient than writing directly in C, where streams would be implicit.

Defining functions that manipulate streams is straightforward.
Figure 3 shows a stream transformer (marmotScores) that imple-
ments the core of our event detector—scoring an audio segment
according to its likelihood of containing a marmot alarm call. It
uses a bandpass filter (window-size 32) to select a given frequency
range from an audio signal. Then it computes the power spectral
density (PSD) by switching to the frequency domain and taking the
sum over the absolute values of each sample.

The return value of a function is the last expression in its
body—whether it returns a stream or just a “plain” value. The
marmotScores function declares local variables (filtrd, freqs),
and uses the iterate construct to invoke a code block over every el-
ement in the stream freqs. The iterate returns a stream which is
bound to scores. In this case, each element in the stream (ss)
is a window of samples, a Sigseg. The Sigseg map and fold (e.g.
reduce) functions work just as their analogs over lists or arrays.

The code in Figures 2 and 3 raises several issues which we
will now address. First, we will explain the fundamental iterate
construct in more depth. Second, we will discuss synchronization
between streams. Third, we will address Sigsegs and their use in the
marmot-detection application. Finally, we describe how programs
are distributed through a network.

3.1 Core Operators: iterate and merge
WaveScript is an extensible language built on a small core. In this
section, we will examine the primitives that make up the kernel of
the language, and serve as the common currency of the compiler.
Aside from data sources and network communication points, only
two stream primitives exist in WaveScript: iterate and merge.
Iterate applies a function to each value in a stream, and merge
combines streams in the real-time, asynchronous order that their
elements arrive.

Both these primitives are stream transformers (functions applied
to stream arguments) but they correspond directly to operators in
the stream graph generated by the compiler, and are referred to
interchangeably as functions or operators. WaveScript provides
special syntactic sugar for iterate, as shown in Figure 3. We will
return to this syntax momentarily, but first we present a formulation
of iterate as a pure, effect-free combinator.

iterate :: (((α, σ)→(List β, σ)), σ, Stream α)
→ Stream β

merge :: (Stream α, Stream α) → Stream α

Notice that iterate takes only a single input stream; the only
way to process multiple streams is to first merge them. Also, it is
without loss of generality that merge takes two streams of the same
type: an algebraic sum type (discriminated union) may be used to
lift streams into a common type.

Iterate is similar to a map operation, but more general in that
it maintains state between invocations and it is not required to
produce exactly one output element for each input element. The
function supplied to iterate is referred to as the kernel function. The
kernel function takes as its arguments a data element from the input
stream (α), and the current state of the operator (σ). It produces as
output zero or more elements on the output stream (List β) as well
as a new state (σ). Iterate must also take an additional argument
specifying the initial state (σ).

3.2 Defining Synchronization
In asynchronous dataflow, synchronization is an important issue.
Whereas in a synchronous model, there is a known relationship
between the rates of two streams—elements might be matched up
on a one-to-one or n-to-m basis—in WaveScript two event streams
have no a priori relationship. Yet it is possible to build arbitrary
synchronization policies on top of merge.

One example, shown in Figure 2, is syncSelect. SyncSelect
takes windowed streams (streams of Sigsegs) and produces an out-
put stream containing aligned windows from each source stream.
SyncSelect also takes a “control stream” that instructs it to sample
only particular time ranges of data. In Figure 2, syncSelect extracts
windows containing event detections from all four channels of mi-
crophone data on each node.

In Figure 4 we define a simpler synchronization function, zip,
that forms one-to-one matches of elements on its two input streams,
outputting them together in a tuple. If one uses only zips to combine
streams, then one can perform a facsimile of synchronous stream
processing. As prerequisite to zip, we define mergeTag, which lifts
both its input streams into a common type using a tagged union. It
tags all elements of both input streams before they enter merge.
(Left and Right are data constructors for a two-way union type.)

fun mergeTag(s1, s2) {
s1tagged = iterate x in s1 { emit Left(x) };
s2tagged = iterate y in s2 { emit Right(y) };
merge(s1tagged, s2tagged);

}

Here we have returned to our syntactic sugar for iterates. In
Figure 4, Zip is defined by iterating over the output of mergeTag,
maintaining buffers of past stream elements, and producing output

fun zip(s1,s2) {
buf1 = Fifo.new();
buf2 = Fifo.new();
iterate msg in mergeTag(s1,s2) {

switch msg {
Left (x): Fifo.enqueue(buf1,x);
Right(y): Fifo.enqueue(buf2,y);

}
if (!Fifo.empty(buf1) &&

!Fifo.empty(buf2))
then emit(Fifo.dequeue(buf1),

Fifo.dequeue(buf2));
}

}

Figure 4. Zip—the simplest synchronization function.

only when data is available from both channels. These buffers are
mutable state, private to zip. Note that this version of zip may use
an arbitrarily large amount of memory for its buffers.

3.3 Windowing and Sigsegs
The marmotScores function in Figure 3 consumes a stream of
Sigsegs. In addition to capturing locally isochronous ranges of
samples, Sigsegs serve to logically group elements together. For
example, a fast-Fourier transform operates on windows of data of
a particular size, and in WaveScript that window size is dictated by
the width of the Sigsegs streamed to it.

A Sigseg contains a sequence of elements, a timestamp for the
first element, and a time interval between elements. We refer to a
stream of type Stream (Sigseg τ) as a “windowed stream”. All
data produced by hardware sensors comes packaged in Sigseg con-
tainers, representing the granularity with which it is acquired. For
example, the microphones in our acoustic localization application
produce a windowed stream of type Stream (Sigseg Int16).

Of course, the audio stream produced by the hardware may
not provide the desired window size. WaveScript makes it easy to
change the window size of a stream using the rewindow library
procedure. Rewindow(size,overlap,s) changes the size of the
windows, and, with a nonzero overlap argument, can make win-
dows overlapping. In our implementation, Sigsegs are read only, so
it is possible to share one copy of the raw data between multiple
streams and overlapping windows. The efficient implementation of
the Sigseg ADT was addressed in (11).

Because windowing is accomplished with Sigsegs, which are
first-class objects, rather than a built-in property of the communi-
cation channel or an operator itself, it is possible to define functions
like rewindow directly in the language.

3.4 Distributed Programs
A WaveScript program represents a graph of stream operators that
is ultimately partitioned into subgraphs and executed on multiple
platforms. In the current implementation, this partitioning is user-
controlled. The code in Figure 2 defines streams that reside on the
node as well as those on the server. Function definitions outside of
these blocks may be used by either. The crossings between these
partitions (named streams declared in one and used in the other),
become the points at which to cut the graph. Note that with the
application in Figure 2, moving the DOA computation from node
to server requires only cutting and pasting a single line of code.

The WaveScript backend compiles individual graph partitions
for the appropriate platforms. In addition to the code in Figure 2,
the programmer also must specify an inventory of the nodes—type
of hardware, and so on—in a configuration file. The runtime deals
with disseminating and loading code onto nodes. The networking
system takes care of transferring data over the edges that were cut
by graph partitioning (using TCP sockets in our implementation).

Parse, Desugar, Typecheck

Program Tree

Interpret & Reify

Rewrite Rules

Partition / Profile

Stream Graph Optimizer

Monomorphize & Defunctionalize

Scheme Backend

Stream Graph

ML Backend C++ Backend

Figure 5. Compilation Work-flow and Compiler Architecture

4. WaveScript Implementation
The WaveScript language is part of the ongoing WaveScope
project, which delivers a complete stream-processing (SP) sys-
tem for high data-rate sensor networks. As such, it includes many
components that fall outside the scope of this paper, including: the
networking layer, scheduling engines, and control and visualization
software. What we will describe in this section are the key points in
the implementation of the compiler, with a brief treatment of issues
pertaining to runtime execution.

4.1 A Straw-man Implementation
A naive way to implement WaveScript is to use a language with
support for threads and communication channels, such as Concur-
rent ML or Java. In that setting, each node of the dataflow graph
would be represented by a thread, and the connections between the
nodes by channels. Each thread would block until necessary inputs
are received on input channels, perform the node’s computation,
and forward results on output channels.

While such an approach could leverage parallelism, the over-
head of running a distinct thread for each node, and of synchro-
nizing through communication channels, would be prohibitive for
many parts of the computation. Because the compiler would not
have direct access to the structure of the (fixed) stream graph, the
job would fall to the runtime to handle all scheduling of threads.
(This approach is used in some streaming databases, to the detri-
ment of performance (11).)

4.2 The WaveScript Approach
WaveScript instead exposes the stream graph to the compiler, al-
lowing a range of stream optimizations described in Section 5. The
scheduler uses profiling data to assign operators to threads, with
one thread per CPU. Each thread, when a data element becomes
available, performs a depth-first traversal of the operators on that
thread, thereby “following” the data through. This depth-first al-
gorithm is modified to accommodate communication with opera-
tors on other threads. Outgoing messages are placed on thread-safe
queues whenever the traversal reaches an edge that crosses onto
another CPU. Also, the traversal is stopped periodically to check
for incoming messages from other threads, while respecting that
individual operators themselves are not reentrant. The WaveScope
runtime system was described in (11).

The overall structure of the WaveScript compiler is depicted
in Figure 5. The interpret&reify evaluator, described in the next
section, is the critical component that transforms the WaveScript
program into a stream graph. Subsequently, it is optimized, parti-
tioned, lowered into a monomorphic, first-order intermediate lan-
guage, and sent through one of WaveScript’s three backends.

4.3 Semantics and Evaluation Model
WaveScript targets applications in which the structure of the stream
graph remains fixed during execution. We leverage this property to
evaluate all code that manipulates stream graphs at compile time.
For the supported class of programs, however, this multi-phase
evaluation is semantics preserving (with respect to a single-phase
evaluation at runtime).

A WaveScript evaluator is a function that takes a program,
together with a live data stream, and produces an output stream.

Eval :: program → inputstream → outputstream

Our evaluation method is tantamount to specializing the evaluator
(partially evaluating) given only the first argument (the program).
The end result is a stream dataflow graph where each node is an
iterate or a merge. (In a subsequent step of the compiler, we
perform inlining within those iterate’s until they are monomorphic
and first-order.)

WaveScript’s evaluation technique is key to enabling higher-
order programming in the performance-critical, resource limited
embedded domains—some features (closures, polymorphism, first-
class streams) are available to the programmer but evaluated at
compile-time. We find that this provides much of the benefit, in
terms of modularity and library design, without the runtime costs.
Further, this method simplifies backend code generation, as our
C++ backend (described in Section 4.4) omits these features. The
main benefit of the evaluation method, however, is that it enables
stream graph optimizations. Thus the performance increases de-
scribed in Section 6.2 can be directly attributed to interpret&reify.

Our method is in contrast with metaprogramming, where mul-
tiple explicit stages of evaluation are orchestrated by the program-
mer. For example, in MetaML (17), one writes ML code that gener-
ates additional ML code in an arbitrary number of stages. This stag-
ing imposes a syntactic overhead for quotation and antiquotation to
separate code in different stages. Further, it imposes a cognitive
burden on the programmer—extra complexity in the program syn-
tax, types, and execution. For the streaming domain in particular,
WaveScript provides a much smoother experience for the program-
mer than a more general metaprogramming framework.

Interpret & Reify: Now we explain our method for reducing
WaveScript programs to stream graphs. During compile time, we
feed the WaveScript source through a simple, call-by-value inter-
preter. 1 The interpreter’s value representation is extended to in-
clude streams as values. The result of interpretation is a stream
value. A stream value contains (1) the name of a built-in stream-
operator it represents (e.g. iterate, merge, or a source or network
operator), (2) input stream values to the operator where applicable,
and (3) in the case of iterate, a closure for the kernel function.

The dependency links between stream values form the stream
graph. All that remains is to reify the kernel functions from closures
back into code. Fortunately this problem is much studied (15).
Closures become λ-expressions once again. Variables in the clo-
sure’s environment are recursively reified as let-bindings surround-
ing the λ-expression. The algorithm uses memoization (through a
hash table) to avoid duplicating bindings that occur free in multiple
closures. These shared bindings become top-level constants.

Let’s consider a small example. Within the compiler, the kernel
function argument to an iterate is always represented (both before
and after interpret & reify) by a let-binding for the mutable refer-
ences that make up its state, surrounding a λ-expression containing

1 Originally, we used an evaluator that applied reduction rules, including
β- and δ-reduction, until fixation. Unfortunately, in practice, to support
a full-blown language (letrec, foreign functions, etc.) it became complex,
monolithic, and inscrutable over time, as well as running around 100 times
slower than our current interpret/reify approach.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

MarmotDetect

MarmotDOA

MarmotFUSE

MarmotMultinode

Pipeline

Pothole

ChezScheme 7.3
GCC 4.1.3

MLton rev 5666

Figure 6. Execution times (in milliseconds) of current WaveScript
backends on application benchmarks. Single-threaded benchmark
on AMD Barcelona, optimizations enabled. Benchmarks include
three stages of the marmot application (detection, DOA, and fusing
DOAs), as well as a complete multinode simulation—eight nodes
simulated on one server, as when processing data traces offline.
Also included are our pipeline leak detection, and road surface
anomaly (pothole) detection applications.

the code for the kernel function. The abstract syntax looks approx-
imately like the following.

iterate (let st=ref(3) in λx.emit(x+!st)) S

When interpreted, the let-form evaluates to a closure. During reifi-
cation, mutable state visible from the closure (st) is reified into
binding code no differently than any other state. However, it is
a compile-time error for mutable state to be visible to more than
one kernel function. For the simple example above, interpret &
reify will generate the same code as it was input. More gener-
ally, this pass will eliminate all stream transformers (such as zip
from Figure 4) leaving only iterates, merges, and network/source
operators—in other words, a stream graph.

4.4 WaveScript backends
WaveScript’s compiler front-end uses multiple backend compilers
to generate native code. Before the backend compilers are invoked,
the program has been profiled, partitioned into per-node subgraphs,
optimized, and converted to a first-order, monomorphic form. Our
current backends generate code for Chez Scheme (8), MLton (18),
and GCC. For the purpose of targeting new architectures, we may
extend WaveScript to generate code for other languages as well, in-
cluding, perhaps, other stream-processing languages, or languages
that would enable compilation on 8-bit “mote” platforms (such as
NesC/TinyOS).

These backends each provide a different combination of compile-
time, debugging, performance, and parallelism. The backends’ rel-
ative performance on a benchmark suite is shown in Figure 6.

Scheme backend: The WaveScript compiler itself is imple-
mented in the Scheme programming language. Accordingly, the
first, and simplest backend is simply an embedding of WaveScript
into Scheme using macros that make the abstract syntax directly
executable. This backend is still used for development and debug-
ging. Furthermore, it enables faster compile times than the other
backends. And when run in a special mode, it will enable direct
evaluation of WaveScript source immediately after type checking
(without evaluating to a stream-graph). This provides the lowest-
latency execution of WaveScript source, which is relevant to one of
our applications that involves large numbers of short-lived Wave-

Script “queries” submitted over a web-site. It also keeps us hon-
est with respect to our claim that our reification of a stream graph
yields exactly the same behavior as direct execution.

MLton backend: MLton is an aggressive, whole-program op-
timizing compiler for Standard ML. Generating ML code from the
kernel functions in a stream graph is straightforward because of the
similarities between the languages’ type systems. This provided us
with an easy to implement single-threaded solution that exhibits
surprisingly good performance (18), while also ensuring type- and
memory-safe execution. In fact, it is with our MLton backend that
we beat the handwritten C version of the acoustic localization ap-
plication. MLton in itself is an excellent option for building embed-
ded software, if GC pauses can be tolerated. However, using MLton
directly would forego WaveScript’s stream graph optimization.

C++ backend : Originally, we had intended for our C++ back-
end to be the best-performing of the three backends, as it includes
a low-level runtime specifically tailored for our streaming domain.
However, in our current implementation the MLton backend actu-
ally outperforms our C++ backend, due to three primary factors:

1. The C++ backend leverages the flexible WaveScope scheduling
engine for executing stream graphs. The cost of this flexibility
is that transferring control between operators is at least a vir-
tual method invocation, and may involve a queue. The MLton
and Scheme backends support only single-threaded depth-first
traversal, where control transfers between operators are direct
function calls.

2. MLton incorporates years of work on high-level program opti-
mizations that GCC cannot reproduce (the abstractions are lost
in the C code), and which we do not have time to reproduce
within the WaveScript compiler.

3. Our prototype uses a naive reference counting scheme (with cy-
cles prevented by the type system) that is less efficient than ML-
ton’s tracing collector. (Although it does reduce pauses relative
to MLton’s collector.) In the future we believe that we can im-
plement a substantially more efficient domain-specific collector
by combining deferred reference counting with the fact that our
stream operators do not share mutable state.

As we show in Section 6, in spite of its limitations, our cur-
rent prototype C++ runtime is the best choice when parallelism is
available. This is important in several of our applications where
large quantities of offline data need to be processed quickly on
multi-core/multiprocessor servers, such as when evaluating our al-
gorithms on over a terabyte of accumulated marmot audio data.

5. Optimization Framework
With the basic structure of the compiler covered, we now focus
on the optimization framework. The cornerstone of this framework
is the profiling infrastructure, which gathers information on data-
rates and execution times that subsequently enable the application
of graph optimizations from the synchronous dataflow community.
In this section we’ll also cover our method for performing algebraic
rewrite optimizations, which are not currently driven by profiling
information.

To use the profiling features, representative sample data is pro-
vided along with the input program. In our marmot application,
the sample audio data provided includes both periods of time with
and without marmot alarm calls. The current implementation uses
the Scheme embedding of WaveScript to execute part or all of the
stream graph on the sample data.

The profiler measures the number of elements passed on
streams, their sizes, and the execution times of stream operators.

The relative execution times of operators (in Scheme) are taken to
be representative of the other backends as well. This method is ex-
pedient, and provides the best support for incremental or repeated
profiling of the stream graph, but if a more precise notion of rela-
tive times is called for, we may need to perform profiling in other
backends in the future (at the cost of much longer compile times).

5.1 Stream Graph Optimizations
There are a breadth of well-understood transformations to static
and dynamic dataflow graphs that adjust the parallelism within a
graph—balancing load, exposing additional parallelism (fission),
or decreasing parallelism (fusion) to fit the number of processors
in a given machine. The StreamIt authors identify task, data, and
pipeline parallelism as the three key dimensions of parallelism in
streaming computations (12). Task parallelism is the naturally oc-
curring parallelism between separate branches of a stream graph.
Data parallelism occurs when elements of a stream may be pro-
cessed in parallel, and must be teased out by fissioning operators.
Pipeline parallelism is found in separate stages (downstream and
upstream) of the stream graph that run concurrently.

We have not taken the time to reproduce all the graph optimiza-
tions found in StreamIt and elsewhere. Instead, we have imple-
mented a small set of optimizations in each major category, so as to
demonstrate the capability of our optimizer framework—through
edge and operator profiling—to effectively implement static graph
optimizations normally found in the synchronous dataflow domain.
Keep in mind that these optimizations are applied after the graph
has been partitioned into per-node (e.g. a VoxNet node or laptop)
components. Thus they affect intra-node parallelism. We do not yet
try to automatically optimize inter-node parallelism.

Operator placement: For the applications in this paper, so-
phisticated assignment of operators to CPUs (or migration between
them) is unnecessary. We use an extremely simple heuristic, to-
gether with profiling data, to statically place operators. We start
with the whole query on one CPU, and when we encounter split-
joins in the graph, assign the parallel paths to other CPUs in round-
robin order, if they are deemed “heavyweight”. Our current notion
of heavyweight is a simple threshold function on the execution time
of an operator (as measured by the profiler). This exploits task-
parallelism in a simple way but ignores pipeline parallelism.

Fusion: We fuse linear chains of operators so as to remove over-
heads associated with distinct stream operators. Any lightweight
operators (below a threshold) are fused into either their upstream or
downstream node depending on which edge is busier. This particu-
lar optimization is only relevant to the C++ backend, as the Scheme
and MLton backends bake the operator scheduling policy into the
generated code. That is, operators are traversed in a depth first order
and emits to downstream operators are simply function calls.

Fission: Stateless Operators: Any stateless operator can be du-
plicated an arbitrary number of times to operate concurrently on
consecutive elements of the input stream. (A round-robin splitter
and joiner are inserted before and after the duplicated operator.)
The current WaveScript compiler implements this optimization for
maps, rather than all stateless operators. A map applies a function
to every element in a stream, for example, map(f,s). In Wave-
Script, map is in fact a normal library procedure and is turned into
an anonymous iterate by interpret-and-reify. We recover the addi-
tional structure of maps subsequently by a simple program analysis
that recognizes them. (A map is an iterate that has no state and one
emit on every code path.) This relieves the intermediate compiler
passes from having to deal with additional primitive stream opera-
tors, and it also catches additional map-like iterates resulting from

other program transformations, or from a programmer not using the
“map” operator per-se.

Wherever the compiler finds a map over a stream (map(f,s)),
if the operator is deemed sufficiently heavyweight, based on profil-
ing information, it can be replaced with:

(s1,s2) = split2(s);
join2(map(f,s1), map(f,s2))

Currently we use this simple heuristic: split the operator into as
many copies as there are CPUs. Phase ordering can be a problem,
as fusion may combine a stateless operator with an adjacent stateful
one, destroying the possibility for fission. To fix this we use three
steps: (1) fuse stateless, (2) fission, (3) fuse remaining.

Fission: Array Comprehensions: Now we look a splitting
heavyweight operators that do intensive work over arrays, specif-
ically, that initialize arrays with a non-side-effecting initialization
function. Unlike the above fusion and fission examples, which
exploit existing user-exposed parallelism (separate stream ker-
nels, and stateless kernels), this optimization represents additional,
compiler-exposed parallelism.

Array comprehensions are a syntactic sugar for constructing
arrays. Though the code for it was not shown in Section 3, array
comprehensions are used in both the second and third stages of the
marmot application (DOA calculation and FuseDOA). The major
work of both these processing steps involves searching a parameter
space exhaustively, and recording the results in an array or matrix.
In the DOA case, it searches through all possible angles of arrival,
computing the likelihood of each angle given the raw data. The
output is an array of likelihoods. Likewise, the FuseDOA stage fills
every position on a grid with the likelihood that the source of an
alarm call was in that position.

The following function from the DOA stage would search a
range of angles and fill the results of that search into a new array.
An array comprehension is introduced with #[|].

fun DOA(n,m) {
fun(dat) {
#[searchAngle(i,dat) | i = n to m]

}
}

With this function we can search 360 possible angles of arrival
using the following code: map(DOA(1,360),rawdata). There’s a
clear opportunity for parallelism here. Each call to searchAngle
can be called concurrently. Of course, that would usually be too fine
a granularity. Again, our compiler simply splits the operator based
on the number of CPUs available.

map(Array.append,
zip2(map(DOA(1, 180), rawdata)

map(DOA(181,360), rawdata)))

In the current implementation, we will miss the optimization
if the kernel function contains any code other than the array com-
prehension itself. The optimization is implemented as a simple pro-
gram transformation that looks to transform any heavyweight maps
of functions with array comprehensions as their body.

5.1.1 Batching via Sigsegs and Fusion
High-rate streams containing small elements are inefficient. Rather
than put the burden on the runtime engine to buffer these streams,
the WaveScript compiler uses a simple program transformation to
turn high-rate streams into lower-rate streams of Sigseg containers.
This transformation occurs after interpret-and-reify has executed,
and after the stream graph has been profiled.

The transformation is as follows: any edge in the stream-graph
with a data-rate over a given threshold is surrounded by a window
and dewindow operator. Then the compiler repeats the profiling
phase to reestablish data-rates. The beauty of this transformation is

that its applied unconditionally and unintelligently; it leverages on
the fusion optimizations to work effectively.

Let’s walk through what happens. When a window/dewindow
pair is inserted around an edge, it makes that edge low-rate, but
leaves two high-rate edges to the left and to the right (entering
window, exiting dewindow). Then, seeing the two high-rate edges,
and the fact that the operators generated by window and dewindow
are both lightweight, the fusion pass will merge those lightweight
operators to the left and right, eliminating the high-rate edges, and
leaving only the low-rate edge in the middle.

5.2 Extensible Algebraic Rewrites
The high-level stream transformers in WaveScript programs fre-
quently have algebraic properties that we would like to exploit. For
example, the windowing operators described in Section 3 support
the following laws:

dewindow(window(n, s)) = s

window(n, dewindow(s)) = rewindow(n, 0, s)

rewindow(x, y, rewindow(a, b, s)) = rewindow(x, y, s)

rewindow(n, 0, window(m, s)) = window(n, s)

In the above equations, it is always desirable to replace the expres-
sion on the left-hand side with the one on the right. There are many
such equations that hold true of operators in the WaveScript Stan-
dard Library. Some improve performance directly, and others may
simply pave the way for other optimizations, for instance:

map(f,merge(x, y)) = merge(map(f, x),map(f, y))

WaveScript allows rewrite rules such as these to be inserted in
the program text, to be read and applied by the compiler. The
mechanism we have implemented is inspired by similar features
in the Glasgow Haskell Compiler (13). However, the domain-
specific interpret-and-reify methodology enhances the application
of rewrite rules by simplifying to a stream graph before rewrites
occur—removing abstractions that could obscure rewrites at the
stream level. Extensible rewrite systems have also been employed
for database systems (14). And there has been particularly intensive
study of rewrite rules in the context of signal processing (2).

It is important that the set of rules be extensible so as to support
domain-specific and even application-specific rewrite rules. (Of
course, the burden of ensuring correctness is on the rules’ writer.)
For example, in a signal processing application such as acoustic
localization, it is important to recognize that Fourier transforms and
inverse Fourier transfers cancel one another. Why is this important?
Why would a programmer ever construct an fft followed by an ifft?
They wouldn’t—intentionally. But with a highly abstracted set of
library stream transformers, it’s not always clear what will end up
composed together.

In fact, when considered as an integral part of the design, alge-
braic rewrite rules enable us to write libraries in a simpler and more
composable manner. For example, in WaveScript’s signal process-
ing library all filters take their input in the time domain, even if
they operate in the frequency domain. A lowpass filter first applies
an fft to its input, then the filter, and finally an ifft on its output.
This maximizes composability, and does not impact performance.
If two of these filters are composed together, the fft/ifft in the mid-
dle will cancel out. Without rewrite rules, we would be forced to
complicate the interfaces.

5.3 Implementing Rewrites
A classic problem in rewrite systems is the order in which rules are
applied. Applying one rewrite rule may preclude applying another.
We make no attempt at an optimal solution to this problem. We use
a simple approach; we apply rewrites to an abstract syntax tree from

// Before the original interpret/reify pass
When (rewrites-enabled)

// Turn special functions into primitives:
runpass(hide-special-libfuns)
Extend-primitive-table(special-libfuns)
runpass(interpret-reify)
// Groom program and do rewrites:
runpass(inline-let-bindings)
run-until-fixation(apply-rewrite-rules)
// Reinsert code for special functions:
runpass(reveal-special-libfuns)
Restore-primitive-table()

// Continue normal compilation....

Figure 7. Pseudo-code for the portion of the compiler that applies
rewrite optimizations.

root to leaves and from left-to right, repeating the process until no
change occurs in the program.

A key issue in our implementation is at what stage in the com-
piler we apply the rewrite rules. Functions like rewindow are de-
fined directly in the language, so if the interpret-and-reify pass in-
lines their definitions to produce a stream graph, then rewrite rules
will no longer apply. On the other hand, before interpret-and-reify
occurs, the code is too abstracted to catch rewrites by simple syn-
tactic pattern matching.

Our solution to this dilemma is depicted in Figure 7. We simply
apply interpret-and-reify twice. The first time, we hide the top-
level definitions of any “special” functions whose names occur
in rewrite rules (rewindow, fft, etc), and treat them instead as
primitives. Next we eliminate unnecessary variable bindings so
that we can pattern match directly against nested compositions
of special functions. Finally, we perform the rewrites, reinsert the
definitions for special functions, and re-execute interpret-and-reify,
which yields a proper stream graph of iterates and merges.

6. Evaluation
Evaluating a new programming language is difficult. Until the
language has had substantial use for a period of time, it lacks large
scale benchmarks. Microbenchmarks, on the other hand, can help
when evaluating specific implementation characteristics. But when
used for evaluating the efficacy of program optimizations, they risk
becoming contrived.

Thus we chose to evaluate WaveScript “in the field” by using it
to developing a substantial sensor network application for localiz-
ing animals in the wild. First, we compare our implementation to a
previous (partial) implementation of the system written in C by dif-
ferent authors. The WaveScript implementation outperforms its C
counterpart—with significant results for the sensor network’s real-
time capabilities. Second, we showcase our compiler optimizations
in the context of this application, explaining their effect and evalu-
ating their effectiveness.

6.1 Comparing against handwritten C
A year previous to our own test deployment of the distributed mar-
mot detector, a different group of programmers implemented the
same algorithms (in C) under similar conditions in a similar time-
frame. This provides a natural point of comparison for our own
WaveScript implementation. Because the WaveScript implementa-
tion surpasses the performance of the C implementation, we were
able to run both the detector and the direction-of-arrival (DOA) al-
gorithm on the VoxNet nodes in real-time—something the previous
implementation did not accomplish (due to limited CPU).

Table 1 shows results for both the continuously running detec-
tor, and the occasionally running DOA algorithm (which is invoked

Table 1. Performance of WaveScript marmot application vs. hand-
written C implementation. Units are percentage CPU usage, num-
ber of seconds, or speedup factor.

C WaveScript Speedup
VoxNet DOA 3.00s 2.18s 1.38
VoxNet Detect 87.9% 56.5% 1.56

when a detection occurs). The detector results are measured in per-
centage CPU consumed when running continuously on an VoxNet
node and processing audio data from four microphone channels at
44.1 KHz (quantified by averaging 20 top measurements over a
second interval). DOA results are measured in seconds required to
process raw data from a single detection. Along with CPU cycles,
memory is a scarce resource in embedded applications. The Wave-
Script version reduced the memory footprint of the marmot applica-
tion by 50% relative to the original hand-coded version. (However,
even the original version used only 20% of VoxNet’s 64 MB RAM.)
GC performance of MLton was excellent. When running both de-
tection and DOA computations, only 1.2% of time was spent in col-
lection, with maximum pauses of 4ms—more than adequate for our
application. Collector overhead is low for this class of streaming
application, because they primarily manipulate arrays of scalars,
and hence allocate large quantities of memory but introduce rela-
tively few pointers. Table 2 lists the size of the source-code for the
Detector and DOA components, discounting blank lines and com-
ments. Both versions of the application depend on thousands of
lines of library code and other utilities. Lacking a clear boundary
to the application, we chose to count only the code used in the im-
plementation of the core algorithms, resulting in modest numbers.

The ability to run the DOA algorithm directly on VoxNet results
in a large reduction in data sent over the network—800 bytes
for direction-of-arrival probabilities vs. at least 32KB for the raw
data corresponding to a detection. The reduced time in network
transmission offsets the time spent running DOA on the VoxNet
node (which is much slower than a laptop), and can result in lower
overall response latencies. The extra processing capacity freed up
by our implementation was also used for other services, such as
continuously archiving all raw data to the internal flash storage, a
practical necessity that was not possible in previous attempts.

Our original goal was to demonstrate the ease of programming
applications in a high-level domain-specific language. In fact, we
were quite surprised by our performance advantage. We imple-
mented the same algorithm in roughly the same way as previous au-
thors. Neither of the implementations evaluated here represent in-
tensively hand-optimized code. A significant fraction of the appli-
cation was developed in the field during a ten-day trip to Colorado.
Indeed, because of the need for on-the-fly development, program-
mer effort is the bottleneck in many sensor network applications.
This is in contrast with many embedded, or high-performance sci-
entific computing applications, where performance is often worth
any price. Therefore, languages that are both high-level and allow
good performance are especially desirable.

After the deployment we investigated the cause of the perfor-
mance advantage. We found no significant difference in the effi-
ciency of the hottest spots in the application (for example, the tight
loop that searches through possible angles of arrival). However, the
C implementation was significantly less efficient at handling data,
being constrained by the layered abstraction of the EmStar frame-
work. It spent 26% percent of execution time and 89% percentage
of memory in data acquisition (vs. 11% and 48% for WaveScript).
In short, the application code we wrote in WaveScript was as effi-
cient as hand-coded C, but by leveraging the WaveScript platform’s
vertical integration of data acquisition, management of signal data,
and communication, overall system performance improved.

Table 2. Non-whitespace, non-comment lines of code for Wave-
Script and C versions of the core localization algorithm.

LOC/WaveScript LOC/C
Detector 92 252

DOA 124 239

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12 14

S
p
e
e
d
u
p
 o

v
e
r

b
e
n
c
h

m
a
rk

 t
im

in
g

Number of Worker CPUs

Speedup from Fission optimizations

Stateless Operator
Partial Stateless

Array Comprehension

Figure 8. Parallel speedups achieved by applying fission optimiza-
tions to the DOA phase of the marmot application.

6.2 Effects of Optimization on Marmot Application
Here we relate the optimizations described in Section 5 to our
marmot application case study. One thing to bear in mind is that
there are multiple relevant modes of operation for this application.
A given stage of processing may execute on the VoxNet node, the
laptop base station, or offline on a large server. Both on the laptop
and offline, utilizing multiple processor cores is important.

Rewrite-rules: As discussed in Section 5.2, many of our signal
processing operations take their input in the time domain, but con-
vert to the frequency domain to perform processing. An example
of this can be seen in the bandpass library routine called from the
marmotScores function in Section 3 (part of the detector phase).
Notice that the marmotScores function is another example; it also
converts to the frequency domain to perform the PSD. The rewrite-
rules will eliminate all redundant conversions to and from the fre-
quency domain, with a 4.39× speedup for the detector phase in the
MLton backend and 2.96× speedup in the C++ backend.

Fusion and Batching: The fusion optimizations described in
Section 5.1 are relevant to the C++ backend, which has a higher
per-operator overhead. Fusion is most advantageous when many
lightweight operators are involved, or when small data elements
are passed at a high rate. Because the marmot application involves
a relatively small number of operators, and because they pass data
in Sigsegs, the benefits of fusion optimization are modest. (For the
same reason, the batching optimizations performed by the com-
piler, while invaluable in many cases, provide no benefit to the mar-
mot application.)

The detector phase of the application speeds up by 7%, and the
DOA phase by 2.7%. The FuseDOA phase benefits not at all.

Fission and Parallelization: Offline processing has intrinsic
parallelism because it applies the first and second phases of the
application (detector and DOA) to many data streams in parallel
(simulating multiple nodes). To squeeze parallelism out of the

individual marmot phases, we rely on our fission optimizations
from Section 5.1.

To evaluate our fission optimizations, we applied each of them
to the DOA phase of the marmot application and measured their
performance on a commodity Linux server. Our test platform is a
4 × 4 motherboard with 4 quad-core AMD Barcelona processors
and 8 GB of RAM, running Linux 2.6.23. In our parallel tests, we
control the number of CPUs actually used in software. We used the
Hoard memory allocator to avoid false sharing of cache lines.

Fission can be applied to the DOA phase in two ways: by du-
plicating stateless operators, and by using array comprehension to
parallelize a loop. Figure 8 shows the parallel speedup gained by
applying each of these optimizations to the DOA phase of the mar-
mot application. In this graph, both flavors of fission optimization
are presented to show speedup relative to a single-threaded version.
Each data point shows the mean and 95% confidence intervals com-
puted from 5 trials at that number of worker CPUs. The point at
‘0’ worker CPUs is single-threaded; the point at ‘1’ worker CPU
places the workload operator on a different CPU from the rest of
the workflow (e.g., the I/O, split, join, etc).

The greatest gain, a speedup of 12× is achieved from paralleliz-
ing stateless operators. In our application, the entire DOA phase
of the workflow is stateless, meaning that the whole phase can be
duplicated to achieve parallelism. As described in Section 5.1, a
map operator or a sequence of map operators is replaced by a
split→join sequence that delivers tuples in round robin order to
a set of duplicated worker operators, and subsequently joins them
in the correct order. Running this on our 16 core test machine, we
see near-linear speedup up to 13 cores, where performance levels
off. This level is the point at which the serial components of the
plan become the bottleneck, and are unable to provide additional
work to the pool of threads.

Array comprehension parallelization yields a lesser, but still sig-
nificant maximum speedup of 6×. This case is more complex be-
cause fission by array comprehension applies to only a portion of
the DOA phase. The DOA computation consists of a preparation
phase that computes some intermediate results, followed by a work
phase that exhaustively tests hypothetical angle values. This struc-
ture limits the maximum possible speedup from this optimization.
As a control, the “Partial Stateless” curve designates the speedup
achieved by restricting the stateless operator fission to the phase
duplicated by the array comprehension. From the graph we see that
the parallel benefit is maximized when distributing the work loop to
6 worker cores; beyond that point the additional overhead of trans-
ferring between cores (e.g., queueing and copying overhead) di-
minishes the benefit. The appropriate number of cores to use is a
function of the size of the work loop and the expected copying and
queueing overhead.

Optimizing for latency is often important for real time responses
and for building feedback systems. Although the stateless operator
optimization achieves higher throughput through pipelining, it will
never reduce the latency of an individual tuple passing through the
system. However, array comprehension can substantially reduce
the latency of a particular tuple by splitting up a loop among
several cores and processing these smaller chunks in parallel. In our
experiments we found that the array comprehension optimizations
reduced the average latency of tuples in our test application from
30 ms to 24 ms, a 20% reduction.

7. Conclusion
We described WaveScript, a type-safe, garbage collected, asyn-
chronous stream processing language. We deployed WaveScript in
an embedded acoustic wildlife tracking application, and evaluated
its performance relative to a hand-coded C implementation of the
same application. We observed a 1.38× speedup—which enabled

a substantial increase in in-the-field functionality by allowing more
complex programs to run on our embedded nodes—using half as
much code. We also used this application to study the effectiveness
of our optimizations, showing that the throughput of our program
is substantially improved through domain-specific transformations
and that our parallelizing compiler can yield near-linear speedups.

In conclusion, we believe that WaveScript is well suited for both
server-side and embedded applications, offering good performance
and simple programming in both cases. For the embedded case, its
potential to bring high-level programming to low-level domains is
particularly exciting.

References
[1] Wavescript users manual, http://regiment.us/wsman/.
[2] Automatic derivation and implementation of signal processing algo-

rithms. SIGSAM Bull., 35(2):1–19, 2001.
[3] A. M. Ali, T. Collier, L. Girod, K. Yao, C. Taylor, and D. T. Blumstein.

An empirical study of acoustic source localization. In IPSN ’07: Pro-
ceedings of the sixth international conference on Information process-
ing in sensor networks, New York, NY, USA, 2007. ACM Press.

[4] A. Arasu et al. Stream: the stanford stream data manager (demonstra-
tion description). In SIGMOD ’03: Proceedings of the 2003 ACM SIG-
MOD international conference on Management of data, pages 665–
665, New York, NY, USA, 2003. ACM.

[5] I. Buck et al. Brook for gpus: stream computing on graphics hardware.
In SIGGRAPH ’04: ACM SIGGRAPH 2004 Papers, pages 777–786,
New York, NY, USA, 2004. ACM.

[6] D. Carney, U. Cetintemel, M. Cherniak, C. Convey, S. Lee, G. Seid-
man, M. Stonebraker, N. Tatbul, and S. Zdonik. Monitoring streams—
a new class of data management applications. In VLDB, 2002.

[7] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice. Lustre: a declar-
ative language for real-time programming. In POPL ’87: Proc. of the
14th ACM SIGACT-SIGPLAN symposium on Principles of prog. lang.,
pages 178–188, New York, NY, USA, 1987. ACM.

[8] R. K. Dybvig. The development of chez scheme. In ICFP ’06: Proc.
of the 11th ACM SIGPLAN intl. conf on Functional prog., pages 1–12,
New York, NY, USA, 2006. ACM.

[9] C. Elliott and P. Hudak. Functional reactive animation. In Proceed-
ings of the ACM SIGPLAN International Conference on Functional
Programming (ICFP ’97), volume 32(8), pages 263–273, 1997.

[10] L. Girod, M. Lukac, V. Trifa, and D. Estrin. The design and imple-
mentation of a self-calibrating distributed acoustic sensing platform.
In ACM SenSys, Boulder, CO, Nov 2006.

[11] L. Girod, Y. Mei, R. Newton, S. Rost, A. Thiagarajan, H. Balakrish-
nan, and S. Madden. Xstream: A signal-oriented data stream manage-
ment system. In ICDE, 2008.

[12] M. I. Gordon, W. Thies, and S. Amarasinghe. Exploiting coarse-
grained task, data, and pipeline parallelism in stream programs. In
ASPLOS-XII: Proc. of the 12th intl. conf. on Arch. support for prog.
lang. and op. sys., pages 151–162, New York, NY, USA, 2006. ACM.

[13] S. P. Jones et al. Playing by the rules: Rewriting as a practical
optimisation technique in ghc. In Haskell Workshop, 2001.

[14] H. Pirahesh, J. M. Hellerstein, and W. Hasan. Extensible/rule based
query rewrite optimization in Starburst. pages 39–48, 1992.

[15] P. Sewell et al. Acute: High-level programming language design for
distributed computation. J. Funct. Program., 17(4-5):547–612, 2007.

[16] R. Stephens. A survey of stream processing. Acta Informatica,
34(7):491–541, 1997.

[17] W. Taha and T. Sheard. Multi-stage programming with explicit anno-
tations. In Partial Evaluation and Semantics-Based Program Manipu-
lation, Amsterdam, The Netherlands, June 1997, pages 203–217. New
York: ACM, 1997.

[18] S. Weeks. Whole-program compilation in mlton. In ML ’06: Proceed-
ings of the 2006 workshop on ML, pages 1–1, New York, NY, USA,
2006. ACM.

