
Action-Space Partitioning for Planning

Natalia H. Gardiol, Leslie Pack Kaelbling
MIT Computer Science and Artificial Intelligence Lab

Cambridge, MA 02139
nhg@mit.edu,lpk@csail.mit.edu

Abstract

For autonomous artificial decision-makers to solve re-
alistic tasks, they need to deal with searching through
large state and action spaces under time pressure. We
study the problem of planning in such domains and
show how structured representations of the environ-
ment’s dynamics can help partition the action space into
a set of equivalence classes at run time. The partitioned
action space is then used to produce a reduced set of
actions. This technique speeds up search and can yield
significant gains in planning efficiency.

Introduction
Intelligent agents that operate continuously in highly com-
plex domains (household robots, office assistants, logistics
support systems) will have to solve planning problems “in
the wild”; that is, problems that are formulated as subprob-
lems of very large domains. This is in contrast to most plan-
ning problems addressed today, which are carefully formu-
lated by humans to contain only domain aspects actually rel-
evant to achieving the goal. Generally speaking, planning in
a formalized model of the agent’s entire “wild” environment
will be intractable; instead, the agent will have to find ways
to reformulate the problem into a more tractable version that
contains only the relevant information.

One source of difficulty in a complex domain is the exis-
tence of large numbers of objects that are either irrelevant
to the planning problem or, worse, relevant but unneces-
sary. Consider an assembly robot, with a box of thousands
of identical gears. The robot needs one of those gears to do
its job, so those gears aren’t irrelevant. But, because they
are equivalent, it ought to be able to consider only a single
one of them. Our goal in this work is to exploit the effective
equivalence of objects in order to simplify planning.

The complexity of planning is driven primarily by the
length of the solution and the branching factor of the search.
The solution length can sometimes be effectively reduced
using hierarchical techniques. The branching factor can
often be reduced, in effect, by an efficient heuristic. We
will provide a novel method for reducing the branching fac-
tor by dynamically grouping the agent’s actions into state-

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

dependent equivalence classes, and only considering a sin-
gle action from each class in the search. This method can
dramatically reduce the size of the search space, while pre-
serving correctness and completeness of the planning algo-
rithm. It can be combined with heuristic functions and other
methods for improving planning speed.

Planning Strategy
A typical forward-search planner has the basic structure:

1. Start with agenda containing the ground initial state s0

2. Select and remove a state s from the agenda
3. If s satisfies the goal, return the path from the root node

of the search tree to s. (This sequence of branches consti-
tutes the successful plan.)

4. Find the set A of ground actions applicable in s

5. For each a ∈ A, add the successor of s under a to the
agenda; return to step 2

Our approach will replace step 4 with:
4’. Find the set A of equivalence classes of actions applica-
ble in s, and it will only generate a single successor state for
each equivalence class.

Figure 1 shows an example. Consider a domain with three
helicopters and two aircraft carriers in which the goal is to
fly each of the helicopters onto a carrier, but in which we
don’t care which helicopters are on which carriers. We’ll
just consider a single action schema fly(h,c) that moves a
helicopter from the ground to a carrier. Figure 1(a) shows
a portion of the search tree that considers all possible ac-
tions; Figure 1(b) shows the much-reduced tree derived from
action-equivalences.

Initially, all of the helicopters are interchangeable and
so are the carriers; so, all of the actions involving flying
a helicopter to a carrier are equivalent, and one of them
(fly(h1,c1)) is chosen arbitrarily. At this point, h1 is dis-
tinct from h2 and h3, and the two carriers are distinct from
one another. There are four possible actions, but we find
that fly(h2,c1) is equivalent to fly(h3,c1) and that fly(h2,c2)
is equivalent to fly(h3,c2), so we really only have a branch-
ing factor of two. Now there are two distinct states in our
search: (A) in which there are two helicopters on one carrier
and (B) in which there is one helicopter on each carrier. In
state (A) there are two distinct actions, because the carriers

are distinct; in state (B) there is only one action, because
the carriers have become equivalent again. This dynamic
process of discovering action equivalence is very powerful,
making only as many distinctions as necessary.

Equivalence relations
We represent planning domains in the PPDDL lan-
guage (Younes & Littman 2004). A problem description
contains the following elements: P , a set of logical pred-
icates, denoting the properties and relations that can hold
among the finite set of domain objects, O; Z , a set of action
schemas; and T , a set of object types. A operator schema
z ∈ Z , when applied in a state s, produces a set of ground
actions, z|s. A ground action a ∈ z|s, applied to a state s,
produces a new state, γ(a, s).

Now, we need to define an equivalence relation on ac-
tions.1 The equivalence of actions will ultimately arise from
a notion that individual objects are equivalent if they have
the same properties and relations. In the helicopter example,
we intuitively used the on relation to decide which objects
were equivalent. We could also have used unary properties
of the objects: if the helicopters had been different models,
or the carriers of different sizes, then that might have re-
sulted in more distinctions. In our current work, we assume
that all of the properties and relations used in the domain
description are important, and require that objects be equiv-
alent with respect to all of them; in future work, we hope
to relax this requirement, allowing some properties, such as
color, to be ignored if they are not important to the domain
dynamics.

So, we formally make the following assumption.
Sufficiency of Object Properties: A domain object’s func-
tion is determined only by its properties and relations to
other objects, and not by its name.

An important consequence of this assumption is that we
are forced to support fully-quantified goal sentences, a con-
siderable generalization to the propositional goals typically
handled by planning systems. If we are in a setting in which
a few objects’ identities are in fact necessary, say by being
named in the goal sentence, then we encode this informa-
tion via supplementary properties. That is, we add a relation
such as is-block14(X) that would only be true for block14.
Obviously, if identity matters for a large number of objects,
the approach presented here would not generate much im-
provement.

We will start by defining an equivalence relation on states.
To do this, we will view the relational state description of a
state s as a graph, called the state relation graph, and de-
noted Gs. The nodes in the graph correspond to objects in
the domain, and the edges correspond to binary relations
between the objects. Relations with more than two argu-
ments, e.g. refuel(h1,level1,level2), can be represented mak-
ing edges that “split” the relation, e.g. refuel1(h1,level1) and
refuel2(level1,level2). In addition, nodes and edges have a
label, L, which is a set of strings. The label for each node
contains the object’s type and the values of any other unary

1More detailed versions of these definitions, including all
proofs, are available in (Gardiol & Kaelbling 2006).

predicates in the domain; the label for each edge contains the
relation’s name. Two states are equivalent if there is a one-
to-one mapping between the objects that preserves node and
edge labels of the state relation graphs. That is:
State equivalence: Two states s1 and s2 are equivalent, de-
noted s1 ∼ s2, if there exists an isomorphism, Φ, between
the respective state relation graphs: Φ(Gs1) = Gs2 .

With respect to a given state s, two ground actions a1 and
a2 are defined to be equivalent if they produce equivalent
successor states, γ(a1, s) and γ(a2, s) :
Action equivalence: Two actions a1 and a2 are equivalent
in a state s, denoted a1 ∼ a2, iff γ(a1, s) ∼ γ(a2, s)

This definition can be inefficient to use directly since it
requires propagation of all of the actions through the state
dynamics in order to decide which ones are equivalent. We
can, instead, overload the notion of isomorphism to apply
to actions and develop a test on the starting state and ac-
tions directly, without propagation. In PPDDL and related
formalisms, actions can be thought of as ground applications
of predicates. Thus, each argument in a ground action will
correspond to an object in the state, and, thus, to a node in
the state relation graph. So, two actions ground with respect
to a state s are provably equivalent if: (1) they are each in-
stances of the same operator, and (2) there exists a mapping
Φ(s) = s that will map the arguments of one action to ar-
guments of the other. In this case, since the isomorphism Φ
that we seek is a mapping between s and itself, it is called
an automorphism. We compute action equivalence via the
notion of action isomorphism, defined formally as follows:
Action isomorphism: Two actions a1 and a2 are isomor-
phic in a state s, denoted a1 ∼s a2, iff there exists an auto-
morphism for s, Φ(s) = s, such that Φ(a1) = a2.

Now, we can state the following theorem.
Theorem: Given a state s and an operator schema z, and
actions a1, a2 ∈ z|s, if a1 ∼s a2, then γ(a1, s) ∼ γ(a2, s).

This theorem says that if a substitution mapping the state
graph onto itself also maps one ground action a1 onto a
ground action a2, then the states resulting from the execu-
tion of a1 and a2 in s are equivalent.

To illustrate the process, we consider an example. In Fig-
ure 2, an example problem instance contains 7 blocks, col-
ored red and blue, in which block identity can be ignored.
The task at hand is to compute which ground actions, if any,
fall into the same equivalence class. We explain the proce-
dure in detail below, using the figure for reference.

1. Ground an operator z in state s to obtain a set of appli-
cable ground actions z|s. In Figure 2(a), grounding the
pickup operator produces four ground actions, each cor-
responding to picking up one of the four clear blocks off
the block or surface below it.

2. Compute the set of automorphisms, Φ for the state rela-
tion graph Gs of s. In Figure 2(b), we have drawn the
state relation graph for the state s from part (a). There ex-
ists an automorphism Φ that maps block3 to block5, and
block4 to block6 (and vice-versa).

3. For each pair of ground actions ai and aj in z|s, deter-
mine whether there exists a Φ that maps ai to aj . If so,
put ai and aj in the same equivalence class. In this case,

Figure 1: In this figure, we have an example domain in which the task is to fly each of the three helicopters onto one of two carriers. In a) is
a cartoon of the search tree if we were to enumerate all the ground actions. However, there are only a few qualitatively different states, shown
zoomed-in in part b). If we could eliminate distinguishing between actions that produce equivalent states, as in this example, our search tree
would be much more compact.

there is only a single mapping to consider. This mapping
can be use to re-write a2 as a3 (and vice-versa). Thus, we
put a2 and a3 into the same class. No other actions can be
re-written as each other. The resulting set is shown in (c).

4. Return a reduced action set consisting of one sample from
each equivalence class.

Completeness and Correctness
Having defined equivalence on actions with respect to a
state, we need to establish that we can plan using represen-
tatives of each equivalence class of actions at each step. A
planning algorithm is correct if its solutions are, in fact, legal
plans. It is clear that by reducing the set of possible actions,
we cannot endanger the correctness of a planner. A planning
algorithm is complete if it produces a correct plan whenever
one exists. We might reasonably worry that reducing the
action set might cause our planner no longer to be complete.

In this section we will show that a planning procedure
that uses only equivalence-class representatives is complete
whenever the original planning procedure, which had access
to the whole action space, is complete. We can construct
an inductive argument, based on the following properties:
first, equivalent actions taken from equivalent states produce
equivalent successor states; second, whenever a goal (a first-
order sentence) is satisfied in a particular state s, then it must
be satisfied by any state in the equivalence class containing
s. Then, from a given starting state, the successive substitu-
tion of one ground action for another in its equivalence class
leads us to a state that still satisfies the goal.

We showed the first of these properties in the previous
section. Now we move to the next important step: we need
to guarantee that the goal condition, if satisfied in a particu-
lar state s, can be satisfied by any state equivalent to s. It is
not hard to show that if a fully quantified logical sentence is
satisfied in a state s, then it is satisfied in any state s̃ ∈ [s],

where [s] is the equivalence class of s. We assume that the
goal condition is a fully quantified sentence and that the ini-
tial state is fully ground.

For the final step in the argument, we extend the notion of
equivalence to planning procedures:
Equivalent Planning Procedures: Let P be a planning
procedure such that at each state s, P executes an action a.
Consider a planning procedure P ′ such that at each state
s̃ ∼ s, P ′ executes an action ã ∼s a. Then P and P ′ are
defined to be equivalent planning procedures.

Now, letting γ(a1, . . . , an, s0) denote the state that results
from executing the sequence of actions a1, . . . , an starting
from state s0, we can state the completeness property:
Theorem: Let P be a complete planning procedure. Any
planning procedure P ′ equivalent to P is also a com-
plete planning procedure. That is, for all goals g, if
γ(a1, . . . , an, s0) → g then γ(ã1, . . . , ãn, s0) → g. Thus,
any serial plan that exists in the full action space has an
equivalent version in the partitioned space. (Gardiol & Kael-
bling 2006)

Implementation and Complexity Issues
A question that immediately arises is whether it is wise
to embed the computation of graph automorphisms in our
search loop. The difficulty of the graph isomorphism a
long-standing open question in the field of complexity the-
ory, and it is currently unknown whether the problem is
NP-complete. One can construct instances in which even
a well-regarded algorithm such as nauty (McKay 1981) is
forced to do an exponential-time search for an isomorphism.
However, for a broad class of graphs, there also always
exist conditions under which nauty can run in polynomial
time (Miyazaki 1997). In particular, when there is a bounded
number of vertex colors, it can be proved that canonical
graph forms can be computed in polynomial time by nauty.

Figure 2: The steps involved in computing action equivalence in a 7-block domain. In part (a), the instantiation of the pickup operator z in
a state s produces four ground actions in the set z|s. In part (b), the state relation graph for s lets us compute the automorphism Φ. When
applied to the ground actions, this mapping, Φa, produces the set of equivalence classes. That is, pickup(3,4) is mapped to pickup(5,6), and
vice-versa; thus, the four ground actions correspond to three equivalence classes.

Our experience has shown that, indeed, in graphs such as
ours in which vertices are constrained by small number of
object types, the isomorphisms are computed very fast. The
most expensive part of the algorithm is in the heuristic eval-
uation of a candidate action.

The main search loop is implemented as a simple best-
first-search using the Fast-Forward (FF) heuristic function to
rank candidate actions (Hoffmann & Nebel 2001). Ties are
broken randomly and repeated states are skipped.

Experimental Validation
To illustrate the computational savings of planning with
equivalence-class sampling, we studied three algorithms in
three domains.

The first algorithm is a state-based forward-search plan-
ner guided by the FF heuristic, which we use as a baseline
approach. The second algorithm, the equivalence-class sam-
pling planner, is the baseline planner using a single action
per equivalence class. These planners are implemented rel-
atively naı̈vely in Java, and are thus not as fast as highly-
tuned implementations. Therefore, we also compare against
a freely available implementation of FF itself.2 In contrast
to simple hill-climbing, which breaks ties randomly, the FF
algorithm uses an enforced-hill-climbing search, which has
an advantage over random tie-breaking if plateaus are short.

We start by confirming performance under ideal circum-
stances. That is, as a first step to validating our hypothesis,
we must show that the computation time does not increase
dramatically as a function of the number of redundant ob-
jects if there is no increase in the underlying difficulty of the
problem, i.e., required plan length. It is important isolate the
effect of increased problem size from the effect of increased
solution length. The first two sets of experiments carry this
out.

The first set of experiments was done in the ICAPS 2004

2http://members.deri.at/ joergh/ff.html

blocks-world domain.3 In this idealized setting, the starting
state has all blocks on the table, and the number of blocks is
varied from 3 to 100. In each case, the goal is to place any
three red blocks in a stack, which is expressed as the logical
sentence:
(:goal (exists (?fb0) (and (is-red ?fb0)

(exists (?fb1) (and (is-red ?fb1) (on ?fb0 ?fb1)
(exists (?fb2) (and (is-red ?fb2) (on ?fb1 ?fb2) (on ?fb2 table)
(and (not (= ?fb0 ?fb1)) (not (= ?fb0 ?fb2)) (not (= ?fb1?fb2)))
)))))))

The second set of experiments was done in an adaptation
of the AIPS 2002 “depot” domain,4 a logistics domain. This
domain has a larger variety of relations, and fewer objects
are indistinguishable. A problem instance in this experiment
set consists of a set of trucks, hoists, pallets, crates, distrib-
utors, and depots. The trucks and crates are initialized ran-
domly among the distributors, and the objective is to move
any two crates to the target pallet at the depot. As in the
blocks-world domain above, this goal condition was chosen
to confirm that the equivalence-based algorithm is able to
take advantage of the fact that the increased number of ob-
jects does not lengthen the solution. The increased number
of objects proves difficult to handle for the FF and baseline
algorithms. The goal for the depot domain is described by
this logical sentence:
(:goal (and (exists (?p - pallet) (exists (?c1 - crate)

(exists (?c2 - crate)
(and (destination ?p) (on ?c1 ?p) (on ?c2 ?p)))))))

Figure 3 shows the total computation time as a function
of the domain size for the blocks-world and depot domains.
Computation time was measured by a monitoring package
to ensure consistency across runs. In the right-hand side
figure, the curve for the baseline algorithm is stopped at
domain size of 100 because the computation time was ex-
cessive. Our implementation of the baseline algorithm is

3http://cs.rutgers.edu/˜ mlittman/topics/ipc04-pt
4http://planning.cis.strath.ak.uk/competition

Figure 3: Comparing algorithm performance when the problem difficulty increases solely as a function of domain size. Reducing the
branching factor by using equivalence classes keeps growth small. At left, results for the blocks-world domain; and, at right, for depot.

Figure 5: Comparing algorithm performance on a particularly
unfavorable domain, the IPC-04 Tireworld domain. There is no
advantage as the problem instances grow, and the equivalence-
checking produces a slight overhead with respect to the baseline.
The y-axis is on a log scale.

clearly not as efficient as the implementation of FF. But, us-
ing equivalence-class sampling, we can solve much larger
problems efficiently, in time growing much more slowly in
problem size than FF. Note that the y-axis for the blocks-
world domain is on a log scale.

Figure 4 shows, for three different instances of each
blocks-world and depot domain, the number of actions ex-
panded at each step of the search when reducing the action
space with equivalence classes and the number that would
have been expanded had all the actions been used. There is
a slight up-hill trend to the curves for the equivalence class

partitioning, and this is because, as we manipulate objects
over the course of acting, some objects that were equivalent
to start are no longer equivalent. Of course, the opposite
can also happen: sometimes objects that were distinct can
be collapsed into the same equivalence class over time, as
shown in the curve for the 200-crate depot domain in the
right-hand side figure.

The third set of experiments was done in the ICAPS 2004
“tireworld” domain. Problem instances were taken directly
from the planning competition archive. This is the kind of
domain in which we expect no advantage from our algo-
rithm, but we still would like to see the impact of the com-
putational overhead incurred by the equivalence-class com-
putation. A tireworld problem instance consists of a single
vehicle, and a set of locations. These locations are linked by
roads more or less at random. The goal is to put the vehicle
at a specified location, via a sequence of drive(loc1, loc2)
actions (executable only if there is a road between loc1 and
loc2). There will be no savings unless the graph of loca-
tions itself has some automorphisms, but this was not the
case in any of the problem instances given. As we would
expect, the plot in Figure 5 shows a mild increasing trend
as the number of driving locations increases from 17 to 45.
These problems are solved quickly, and the resolution on
FF’s time output (100ms) is too coarse for finer distinctions.
Nonetheless, taken from the first data point to the last, FF
shows a slight upward trend, as well. In any case, the over-
head of the equivalence-class computation stays constrained
and manageable.

Related Work
The idea of exploiting symmetries in a planning problem to
reduce the search space has a rich history. Fox and Long
present a notion of symmetric states that is used to simplify
planning (1999; 2002; 2005). At the outset of the planning
problem, two objects are defined to be equivalent if they

Figure 4: Comparing, at each plan step, the number of ground actions in the whole ground action space (dashed line) vs. the number
expanded when using equivalence partitions (solid line). Note the log scale on the y-axis. Curves are shown for a selection of domains to
avoid clutter: 7, 32 and 100 blocks, and 5, 50, and 200 crates.

have the same properties in both the initial state and the goal
state. In more recent work, object symmetry (computed with
respect to a pre-specified abstraction of the object relation-
ships) is used to supplement the FF algorithm (Hoffmann &
Nebel 2001) during search. This work differs from ours in
that it considers only those object symmetries that are invari-
ant over the course of the plan.

Guere and Alami (2001) also try to restrict search by an-
alyzing domain structure. In their approach, they define the
idea of the “shape” of a state. A state’s shape is given by
the arrangement of objects in a domain irrespective of the
objects’ identities. An algorithm is given to construct all the
possible arrangements for a particular domain instance as a
pre-processing step. To extract a plan/solution, the planning
algorithm looks for sequence of transformations that con-
nects a state in the starting shape to a state in the goal shape.
While this can speed up planning, the downside is that the
graphical representation of the entire state space can be pro-
hibitively large to store.

The goal of Haslum and Jonsson (2000) is very similar to
ours: reduce the number of operators (actions) in order to re-
duce the branching factor and speed up search. They define
the notion of redundant operator sets. Intuitively, an operator
is redundant with respect to an existing sequence of opera-
tors if it does not produce any effects different from those
already produced by the the sequence. The set of redundant
operators, considering sequences up to a pre-determined
length, are computed before starting to plan; however, this
is a computation that is PSPACE-hard in general. An approx-
imate algorithm is also given. In the familiar blocks-world,
for example, this method would remove an atomic move ac-
tion, since its effects would be redundant to the two-step se-
quence of pickup and putdown actions. Planning efficiency
increases when such redundancies are found, even though

their presence is a function of a given domain specification
and perhaps not a fundamental characteristic of the problem.
A search for this type of redundancy is something that could
be used in combination with our algorithm, since each ap-
proach seeks redundancies of different kinds.

Joslin and Roy (1997) use the idea of isomorphisms
to detect symmetry in planning problems represented as
constraint-satisfaction problems. An important difference is
that this computation is done as a pre-processing step (rather
than in-line) and that existential goals are not supported.

Other work that explicitly considers equivalences in prob-
lem structure includes that of Rintanen (2004), who has con-
sidered equivalence at the level of transition sequences for
use in SAT-based planners. As a pre-processing step, the
problem designer defines a function E that partitions the do-
main states into classes, and automorphisms are found in
the graph representing the transitions between all the states.
A formula is generated to encode when two transition se-
quences are interchangeable, as well as another formula that
prevents examining two transitions when they are known to
be interchangeable. These formulae are added to the SAT
formula for the planning or model checking problem. These
formulae can sometimes be quite large, and the design func-
tion E is left unspecified for any particular application.

Finally, partial-order planning and related least-
commitment approaches (Weld 1994) were developed
address problems faced by backtracking total-order plan-
ners. While elegant, these approaches are known to have
their own set of computational limitations.

In contrast, the approach described in this paper is in-
tended to be a general method for reducing the action space
that can be applied on the fly in a domain-independent man-
ner. The equivalence classes of actions are computed at each
step in a way that can be used by any planning algorithm.

Conclusions and Future Work
This is work explicitly attempts to define what it means for
planning operators to be equivalent in the presence of com-
plex relational structure. We have formalized such a defini-
tion, provided an exact method for computing equivalence
classes, shown completeness of such a planning procedure,
and illustrated the benefit of equivalence-class analysis for
planning. Furthermore, this approach has the benefit of sup-
porting fully-quantified goal conditions.

Taking advantage of structured action representations
helps us ignore the relevant but unnecessary complexity and
focus instead on the interesting complexity in a problem.
We provide a formal basis for computing action equivalence
classes that guarantees a complete planning procedure while
significantly reducing the branching factor of the search.
Equivalence classes are a promising way to reduce the ac-
tion space that can be embedded into any planning algorithm
as a subroutine. For example, it would be possible to aug-
ment FF itself with this technique to construct an even faster
implementation. The enforced-hill-climbing in FF, which is
done to prevent random tie-breaking, only changes the order
in which successor states are evaluated; the procedure which
reduces the number of actions applicable at each successor is
easily embedded. Furthermore, the “helpful-actions” heuris-
tic (Hoffmann & Nebel 2001) used by FF remains useable:
of the reduced set of ground actions under consideration at
a given state s, we either choose the recommended “helpful
action” a as returned by the heuristic (if it is a member of
the reduced set), or, the ground action that is in the same
equivalence class as a (if it is not).

There are many ways to extend this work. The next imme-
diate step is to define approximate action equivalence in or-
der to more aggressively collapse actions together. One sim-
ple way is to begin with a minimal set of relations; adding
them back systematically if no plan found. For this, we must
provide a method to analyze which relations appear to be
most important. We can start by considering a minimal set
which contains the relations present in the goal, for example.

Furthermore, in the current implementation, we cannot
escape linear dependence on the number of objects in the do-
main. But, by augmenting the description language, it ought
to be possible to assert, for instance, that a set of objects
is equivalent, and then to have an algorithm whose running
time is sensitive only to the number of different objects that
get used in the plan, but not to the number of extra objects
in the domain already established to be equivalent.

The idea of equivalence classes may also impact hierar-
chical planning. The connection is simply that branching
factor, even if reduced, will continue to be an issue when
searching for very long plans. Reducing the branching fac-
tor only postpones exponential growth in computation time
with the length of the plan, thus, we would like to be able to
reduce the plan length where possible. This means we must
investigate how our technique can take advantage of, and
maybe help construct, hierarchical plan structures, which
seek to shorten the length of plans at more abstract levels
of the hierarchy. We can observe that overly lengthy solu-
tions may in fact indicate that a too-detailed abstraction level
is being used. Thus, the notions of isomorphic actions may

be used to find sequences of actions that arrive at equivalent
states. These sequences can become macro-operators for a
more abstract planning level.

Together, these techniques could make it feasible to find
and solve relatively small planning problems that share the
same solution with apparently much harder problems in
highly complex domains.

Acknowledgements
This material is based upon work supported by the Defense
Advanced Research Projects Agency (DARPA), through the
Department of the Interior, NBC, Acquisition Services Di-
vision, under Contract No. NBCHD030010.

References
Fox, M., and Long, D. 1999. The detection and exploita-
tion of symmetry in planning problems. In IJCAI.
Fox, M., and Long, D. 2002. Extending the exploitation of
symmetries in planning. In AIPS.
Fox, M.; Long, D.; and Porteous, J. 2005. Abstraction-
based action ordering in planning. In IJCAI.
Gardiol, N. H., and Kaelbling, L. P. 2006. Computing
action equivalences for planning under time constraints.
Technical Report MIT-CSAIL-TR-2006-022, MIT CS &
AI Lab, Cambridge, MA.
Guere, E., and Alami, R. 2001. One action is enough to
plan. In IJCAI.
Haslum, P., and Jonsson, P. 2000. Planning with reduced
operator sets. In AIPS.
Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search. JAIR
14.
Joslin, D., and Roy, A. 1997. Exploiting symmetry in lifted
CSPs. In AAAI.
McKay, B. 1981. Practical graph isomorphism. Congr.
Numer. 30.
Miyazaki, T. 1997. The complexity of McKay’s canonical
labeling algorithm. Groups and Computation II 28.
Rintanen, J. 2004. Symmetry reduction for SAT represen-
tations of transition systems. In ICAPS.
Weld, D. 1994. An introduction to least commitment plan-
ning. AI Magazine 15(4):27–61.
Younes, H., and Littman, M. 2004. PPDDL1.0: An ex-
tension to PDDL for expressing planning domains with
probabilistic effects. Technical Report CMU-CS-04-167,
Carnegie Mellon.

