
1

CRYSTALLINE COMPUTATION

Norman Margolus

Chapter 18 of Feynman and Computation

(A. Hey, ed.), Perseus Books (1999).

Abstract

Discrete lattice systems have had a long and productive history in physics. Ex-
amples range from exact theoretical models studied in statistical mechanics to ap-
proximate numerical treatments of continuum models. There has, however, been
relatively little attention paid to exact lattice models which obey an invertible dy-
namics: from any state of the dynamical system you can infer the previous state.
This kind of microscopic reversibility is an important property of all microscopic
physical dynamics. Invertible lattice systems become even more physically realis-
tic if we impose locality of interaction and exact conservation laws. In fact, some
invertible and momentum conserving lattice dynamics—in which discrete particles
hop between neighboring lattice sites at discrete times—accurately reproduce hy-
drodynamics in the macroscopic limit.

These kinds of discrete systems not only provide an intriguing information-
dynamics approach to modeling macroscopic physics, but they may also be supremely
practical. Exactly the same properties that make these models physically realistic
also make them efficiently realizable. Algorithms that incorporate constraints such
as locality of interaction and invertibility can be run on microscopic physical hard-
ware that shares these constraints. Such hardware can, in principle, achieve a higher
density and rate of computation than any other kind of computer.

Thus it is interesting to construct discrete lattice dynamics which are more
physics-like both in order to capture more of the richness of physical dynamics in
informational models, and in order to improve our ability to harness physics for
computation. In this chapter, we discuss techniques for bringing discrete lattice
dynamics closer to physics, and some of the interesting consequences of doing so.

1.1 Introduction

In 1981, Richard Feynman gave a talk at a conference hosted by the MIT Informa-
tion Mechanics Group. This talk was entitled “Simulating Physics with Comput-
ers,” and is reproduced in this volume.

In this talk Feynman asked whether it is possible that, at some extremely micro-
scopic scale, nature may operate exactly like discrete computer-logic. In particular,
he discussed whether crystalline arrays of logic called Cellular Automata (CA) might



2 NORMAN H. MARGOLUS

be able to simulate our known laws of physics in a direct fashion. This question
had been the subject of long and heated debates between him and his good friend
Edward Fredkin (the head of the MIT Group) who has long maintained that some
sort of discrete classical-information model will eventually replace continuous dif-
ferential equations as the mathematical machinery used for describing fundamental
physical dynamics[31, 33].

For classical physics, Feynman could see no fundamental impediment to a very
direct CA simulation. For quantum physics, he saw serious difficulties. In addi-
tion to discussing well known issues having to do with hidden variables and non-
separability, Feynman brought up a new issue: simulation efficiency. He pointed out
that, as far as we know, the only general way to simulate a lattice of quantum spins
on an ordinary computer takes an exponentially greater number of bits than the
number of spins. This kind of inefficiency, if unavoidable, would make it impossible
to have a CA simulation of quantum physics in a very direct manner.

Of course the enormous calculation needed to simulate a spin system on an or-
dinary computer gives us the result of not just a single experiment on the system,
but instead approximates the complete statistical distribution of results for an in-
finite number of repetitions of the experiment. Feynman made the suggestion that
it might be more efficient to use one quantum system to simulate another. One
could imagine building a new kind of computer, a quantum spin computer, that
was able to mimic the quantum dynamics of any spin system using about the same
number of spins as the original system. Each simulation on the quantum computer
would then act statistically like a single experiment on the original spin system.
This observation that a quantum computer could do some things easily that we
don’t know how to do efficiently classically, stimulated others to look for and find
algorithms for quantum computers that are much faster than any currently known
classical equivalents[80, 37]. In fact, if we restrict our classical hardware to perform
the “same kind” of computation as the quantum hardware—rather than to just
solve the same problem—then we can actually prove that some quantum compu-
tations are faster. These fast quantum computations present further challenges to
hypothetical classical-information models of quantum physics[44].

Despite such difficulties, Feynman did not rule out the possibility that some
more subtle approach to the efficient classical computational modeling of physics
might yet succeed. He found something very tantalizing about the relationship
between classical information and quantum mechanics, and about the fact that
in some ways quantum mechanics seems much more suited to being economically
simulated with bits than classical mechanics: unlike a continuous classical system,
the entropy of a quantum system is finite. The informational economy of quantum
systems that Feynman alluded to has of course long been exploited in statistical
mechanics, where classical bits are sometimes used to provide finite combinatorial
models that reproduce some of the macroscopic equilibrium properties of quantum
systems[46, 45]. It is natural then to ask how much of the macroscopic dynamical



CRYSTALLINE COMPUTATION 3

behavior of physical systems can also be captured with simple classical information
models. This is an interesting question even if your objective is not to revolutionize
quantum physics: we can improve our understanding of nature by making simple
discrete models of phenomena.

My own interest in CA modeling of physics stems from exactly this desire to try
to understand nature better by capturing aspects of it in exact informational models.
This kind of modeling in some ways resembles numerical computation of differential
equation models, where at each site in a spatial lattice we perform computations
that involve data coming from neighboring lattice sites. In CA modeling, however,
the conceptual model is not a continuous dynamics which can only be approximated
on a computer, but is instead a finite logical dynamics that can be simulated exactly
on a digital computer, without roundoff or truncation errors. Every CA simulation
is an exact digital integration of the discrete equations of motion, over whatever
length of time is desired. Conservations can be exact, invertibility of the dynamics
can be exact, and discrete symmetries can be exact. Continuous behavior, on the
other hand, can only emerge in a large-scale average sense—in the macroscopic
limit. CA models have been developed in which realistic classical physics behavior
is recovered in this limit[79, 18].

Physics-like CA models are of more than conceptual and pedagogical interest.
Exactly the same general constraints that we impose on our CA systems to make
them more like physics also make them more efficiently realizable as physical devices.
CA hardware that matches the structure and constraints of microscopic physical
dynamics can in principle be more efficient than any other kind of computer: it
can perform more logic operations in less space and less time and with less energy
dissipation[94, 27]. It is also scalable: a crystalline array of processing elements can
be indefinitely extended. Finally, this kind of uniform computer is simpler to design,
control, build and test than a more randomly structured machine. The prospect
of efficient large-scale CA hardware provides a practical impetus for studying CA
models.

1.2 Modeling dynamics with classical spins

From the point of view of a physicist, a CA model is a fully discrete classical field
theory. Space is discrete, time is discrete, and the state at each discrete lattice point
has only a finite number of possible discrete values. The most essential property of
CA’s is that they emulate the spatial locality of physical law: the state at a given
lattice site depends only upon the previous state at nearby neighboring sites. You
can think of a CA computation as a regular spacetime crystal of processing events:
a regular pattern of communication and logic events that is repeated in space and
in time. Of course it is only the structure of the computer that is regular, not
the patterns of data that evolve within it! These patterns can become arbitrarily
complicated.



4 NORMAN H. MARGOLUS

Discrete lattice models have been used in statistical mechanics since the 1920’s[46,
45]. In such models, a finite set of distinct quantum states is replaced by a finite set
of distinct classical states. Consider, for example, a hypothetical quantum system
consisting of n spin- 1

2 particles arranged on a lattice, interacting locally. The spin
behavior of such a system can be fully described in terms of 2n distinct (mutually
orthogonal) quantum states. The Ising model accurately reproduces essential as-
pects of phase-change behavior in such a system using n classical bits—which give
us 2n distinct classical states. In the Ising model, at each site in our lattice we put
a classical spin: a particle that can be in one of two classical states. We define bond
energies between neighboring spins: we might say, for example, that two adjacent
spins that are parallel (i.e., are in the same state) have a bond energy of ε=, while
two antiparallel (not same) neighbors have energy ε �=. This gives us a classical
system which has many possible states, each of which has an energy associated
with it. In calculating the equilibrium properties of this system, we simply assume
that the dynamics is complicated enough that all states with the same energy as we
started with will appear with equal probability. Thus we ignore the actual quantum
dynamics of the original spin system, and instead substitute an energy-conserving
random pseudo-dynamics.

We could equally well substitute any classical dynamics that has a sufficiently
complicated evolution. We will consider one simple CA model that has been suc-
cessfully used in this manner[98, 74, 42, 19]. We assume that we are dealing with
an isolated spin system, not in contact with any heat bath, so that total energy
must be exactly conserved. We will also impose the realistic constraint that the mi-
croscopic dynamics of an isolated physical system must be exactly invertible: there
must always be enough information in the current state to recover any previous
state. This constraint helps to ensure that a deterministic dynamics explores its
available state-space thoroughly, and so can be analyzed statistically—this issue is
discussed in Section 1.4.

We can construct a simple CA that has these properties, in which the next value
of the spin at each site on a 2D square lattice only depends upon the current values
of its four nearest neighbors. The rule is very simple: a given spin changes state
if and only if this doesn’t change the total energy associated with its bonds to its
four nearest neighbors. Equivalently, a given spin (bit) is flipped (complemented) if
exactly two of its four neighbors are zero’s, and two are one’s. This doesn’t change
its total bond energy: both before and after the flip, it will be parallel to half of its
neighbors (contributing 2ε= to the total), and antiparallel to the rest (contributing
2ε �=).

The rule as stated above would be fine if we updated just one spin on the lattice
at a time, but we would like to update the lattice in parallel. To make this work,
we will adopt a checkerboard updating scheme: we imagine that our lattice is a
giant black and white checkerboard, and we alternately hold the bits at all of the
black sites fixed while we update all of the white ones, and then hold the white



CRYSTALLINE COMPUTATION 5

Fig. 1.1. An Ising CA (a) A state that evolved from a random pattern of 90% 0’s and
10% 1’s. (b) Wave on the boundary between a domain of all 1’s, and a domain of all 0’s.
(c) Closeup of a portion of the boundary.

sublattice fixed while updating the black. In this way, the neighbors of a spin that
is changed are not also simultaneously changed, and so our logic about conserving
energy remains valid.

Now how can we add invertibility? We already have! If we apply our rule to
the same checkerboard sublattice twice in a row, then each spin is either flipped
twice or not at all—the net effect is no change. Thus the most recent step in our
time evolution can always be undone simply by applying the rule a second time to
the appropriate sublattice, and we can recover any earlier state by undoing enough
steps.

This example demonstrates that we can simultaneously capture several basic
aspects of physics in an exact digital model. First of all, the finite-state character
of a quantum spin system is captured by using classical bits. Next, spatial locality
is captured by making the rule at each lattice site depend only on nearby neigh-
bors. Finally, both energy conservation and invertibility are captured by splitting
the updating process into two phases, and alternately looking at one half of the
bits while changing the other half. By making only changes that conserve a bond
energy locally, we conserve energy globally. By making the change at each site be a
permutation operation that depends only upon unchanged neighbor information, we
can always go backwards by taking the same neighbor information and performing
the inverse permutation.

Figure 1.1a shows the state of the Ising CA after 100,000 steps of time evolution
on a 512×512 lattice, when started from a randomly generated configuration of site
values that consisted of 10% 1’s and 90% 0’s. This is an equilibrium configuration:
if we compare this to the configuration after 100,000,000 steps, the picture looks
qualitatively the same. This equilibrium configuration is divided about equally
between large domains that are mostly 0’s, and large domains that are mostly 1’s.



6 NORMAN H. MARGOLUS

Fig. 1.2. Ising-like CA’s in 1D and 3D. (a) Time history of Bennett’s 1D CA. (b) A 3D
Ising CA cooled with a heatbath.

Since bond energy is conserved, the total length of boundary between regions of 0’s
and regions of 1’s must be unchanged from that in the initial configuration—the
numbers of 0’s and 1’s are not themselves conserved.

This CA has some surprising behavior when started from a more ordered initial
state: it supports the continuum wave equation in an exact fashion. Figure 1.1b
illustrates a wave on the boundary between two pure domains (all 0’s, or all 1’s). If
we hold the values at the edges of the lattice fixed, then we find that the boundary
shown behaves like a standing wave, oscillating in a harmonic fashion that repeats
forever without any damping. In fact, it is easy to show that any waveform that we
set up along this diagonal boundary—as long as it isn’t too steep—exactly obeys the
wave equation (cf. [43]). To see this, notice (Figure 1.1c) that the boundary between
the two domains consists of a sequence of vertical and horizontal line-segments each
the height or width of one site. If we number these segments sequentially along the
boundary, then it is easy to verify that, at each update of the lattice, all of the even-
numbered segments move one position along the boundary in one direction, while
all of the odd-numbered segments move one position in the opposite direction. Thus
the shape of the boundary is exactly the superposition of two discrete waveforms
moving in opposite directions.

Similar techniques to those used in the Ising CA give a variety of related CA
models[90, 62, 19, 21]. For example, in Figure 1.2a we show the time-history of
a 1D rule invented by Charles Bennett that has exactly the same bond-energy
conservation that we’ve just seen[74]. In Bennett’s CA, instead of 1-bit at each site
we put 2-bits, which we’ll call Ai and Bi. The A’s and B’s will play the roles of the
two sublattices in the Ising CA. We first update all of the A’s in parallel, holding



CRYSTALLINE COMPUTATION 7

the B’s fixed, and then vice versa. For each Ai, it’s neighbors along the 1D chain
will be the two B’s on either side of it: Bi−2, Bi−1, Bi+1 and Bi+2. Our rule is the
same as before: we complement an Ai if exactly half of its four neighbors are 1’s,
and half are 0’s. Once we have updated all of the A’s, then we update the B’s in
the same manner, using the A’s as neighbors. If we consider that there is a bond
between each “spin” and its four neighbors, then we are again flipping the spin only
if it doesn’t change the total bond energy. If we update the same sublattice twice in
a row, the net effect is no change: the rule is invertible, exactly like the Ising CA.

In the figure, our 1D lattice is 512 sites wide, with periodic boundaries (joined
at the edges). We started the system with all sites empty except for a patch of
randomly set bits in sites near the center. Time advances upward in the figure, and
we show a segment of the evolution after about 100,000 steps. Rather than show
the domains directly, we show all bonds that join antiparallel spins—the number of
such “domain boundary” bonds is not changed by the dynamics. Note the variety
of “particle” sizes and speeds.

In Figure 1.2b, we show a 3D Ising dynamics with a heat bath. Here the rule
is an invertible 3D checkerboard Ising CA similar to our 2D version, except that at
every site in our 3D lattice we have added a few extra heatbath bits. The heatbath
bits at each site record a binary number that is interpreted as an energy. Now our
invertible rule is again “flip whenever it is energetically allowed.” As long as the
heatbath energy at a given site is not too near its maximum, then a spin flip that
would lower the bond energy is allowed, because we can put the energy difference
into the heatbath. Similarly with transitions that would raise the bond energy. This
heatbath-CA technique is due to Michael Creutz[19]. He thought of the bond energy
as being potential energy, and the heatbath energy as being the associated kinetic
energy. This heatbath CA is perfectly invertible, since applying the dynamics twice
to the same sublattice leaves both the spins and the heatbath unchanged.

By adjusting the energy in the heatbath portion of this 3D CA, we can directly
control the temperature of our system. We simply stop the simulation for a moment
while we reach into our system and reset the heatbath values—without changing the
spin values. As we cool the system in this way, energy will be extracted from bonds,
and so if (for example) ε �= > ε=, then there will be fewer domain boundaries—the
domains will grow larger. The system shown has been cooled in this manner, and
we render the interface between the up and down spins.

Figure 1.3 shows another Ising-like CA defined on a 3D cubic lattice. As in
our 2D Ising CA, we have only one bit of state at each lattice site. Each site has
a bond with each of its six nearest neighbors, and we perform a 3D checkerboard
updating. This time our rule is, “flip a given spin if its six neighbors all have the
same value: six 0’s or six 1’s.” We’ll call this the “Same” rule. If we label half of the
bonds attached to each site as “antiferromagnetic” (i.e., the energy values associated
with parallel and antiparallel spins are interchanged for these labeled bonds), then



8 NORMAN H. MARGOLUS

Fig. 1.3. An Ising-like 3D CA. (a) A macroscopic equilibrium configuration. (b) The same
configuration, with the front half of the ball removed.

this rule again conserves the total bond energy. Notice, though, that there are
many different ways of labeling half of the bonds, and each way corresponds to
a different additively conserved energy. We need to use several of these energies
simultaneously if we want to express the Same rule as “flip whenever permitted by
energy conservation.”

The system in Figure 1.3a is 512×512×512 and was started from an empty space
(all 0’s) with a small random block of spin values in the center. After about 5000
steps of time evolution, this invertible system settles into the ball shown, which then
doesn’t change further macroscopically. Microscopically it must keep changing—
otherwise if we ran the system backwards it couldn’t tell when to start changing
again and unform the ball. The local density of 1’s defines the surface that is being
rendered. In Figure 1.3b we remove the front half of the ball to show its interior
structure. The analogous rule in 2D does not form stable “balls.”

It is easy to define other energy-conserving invertible Ising-like CA’s. We could,
for example, take any model that has a bond energy defined, find a sublattice of
sites that aren’t directly connected to each other by bonds, and update those sites
in an invertible and energy conserving manner, holding their neighbors fixed. By
running through a sequence of such sublattices, we would eventually update all sites.
We could also make CA models with the same energy conservations with just two
sublattices, by using the technique illustrated in Bennett’s CA. Simply duplicate
the state at each site in the original model, calling one copy Ai, and the other Bi.
If the A’s are only bonded to the B’s and vice versa, then we can update half of
our system in parallel, while holding all neighbors that they depend on fixed. Of
course we can construct additional invertible energy-conserving rules by taking any



CRYSTALLINE COMPUTATION 9

of these examples and forbidding some changes that are energetically allowed.

1.3 Simple CA’s with arbitrarily complex behavior

When the Ising model was first conceived in the 1920’s, it was not thought of as a
computer model: there were no electronic computers yet! It was only decades later
that it and other discrete lattice models could begin to be investigated on computers.
One of the first to think about such models was John von Neumann[16, 97]. He
was particularly interested in using computer ideas to construct a mechanical model
that would capture certain aspects of biology that are essential for reproduction and
evolution. What he constructed was a discrete world in which one could arrange
patterns of signals that act much like the logic circuitry in a computer. Just as
computer programs can be arbitrarily complex, so too could the animated patterns
in his CA world. Digital “creatures” in his digital universe reproduced themselves
by following a digital program. This work anticipated the discovery that biological
life also uses a digital program (DNA) in order to reproduce itself.

As we will see below, the level of complexity needed in a CA rule in order to
simulate arbitrary patterns of logic and hence universal computation is quite low.
In physics, this same possibility of building arbitrarily complicated mechanisms out
of a fixed set of components seems to be an essential property of the evolution that
built us. Is this the only essential property of evolution?

In a paradoxical sense, computation universality gives us so much that it really
gives us very little. Once we have computation universality, we have a CA that
is just as powerful as any conventional computer! By being able to simulate the
logic circuitry of any computer, given enough time and space, any universal CA can
compute exactly the same things as any ordinary computer. It can play chess. It
can simulate quantum mechanics. It can even perform a simulation of a Pentium
Processor running Tom Ray’s Tierra evolutionary-simulation program[77], and thus
we know that it is capable of exhibiting Darwinian evolution. But if we don’t put
in such an unlikely initial state by hand, is evolution of interesting complexity
something that we are ever likely to see? Is it a robust property of the dynamics?

Nature has computation universality along with locality, exact conservations and
many other constraints. Which of these constraints are important for promoting
evolution, and whether it is possible to capture all of the important constraints si-
multaneously in a CA model, are both interesting questions. Here we will examine
a well-known CA rule that is universal, and then discuss some physical constraints
that it lacks that might make it a better candidate as a model for Darwinian evo-
lution.

In Figure 1.4 we illustrate Conway’s Game of Life, probably the most widely
known CA rule[7]. This is a CA that involves a 2D square lattice with one bit at
each lattice site, and a rule for updating each site that depends on the total number



10 NORMAN H. MARGOLUS

Fig. 1.4. Conway’s non-invertible “Game of Life” CA (128×128 closeups taken from a
2K×2K space). (a) One thousand steps into an evolution started from a random config-
uration of 1’s and 0’s. (b) The same region after 16 thousand steps—the evolution has
settled down into small uncoupled repeating patterns. (c) A configuration that started
with two “glider guns.”

of 1’s present in its eight nearest neighboring sites. If the total of its neighbors is 3,
a given site becomes a 1, if the total is 2, the site remains unchanged; in all other
cases the site becomes a 0. This rule is applied to all sites simultaneously.

The Life rule is clearly non-invertible since, for example, an isolated 1 surrounded
by 0’s turns into a 0: you cannot then tell from the resulting configuration of site
values whether that site was a 0 or a 1 in the previous configuration.

If you fill your computer screen with a random pattern of 0 and 1 pixels, and run
the Life dynamics on it at video rates, then you see a lively churning and boiling
pattern of activity, dying down in places to a scattering of small-period oscillating
structures, and then being reignited from adjacent areas (Figure 1.4a). If you speed
up your simulation to a few hundred frames per second, then typically after less than
a minute for a 2K×2K system all of the interesting activity has died out, and the
pattern has settled down into a set of isolated small-period oscillators (Figure 1.4b).

If you watch the initial activity closely, however, and pick out some of the inter-
esting dynamical structures that arise, you can “build” configurations containing
constructs such as the ones in Figure 1.4c. These are called glider guns. When the
Life dynamics is applied to a glider gun, at regular intervals the gun spits out a
small pattern that then goes through a short cycle of shapes, with the same shape
reappearing every few steps in a shifted position. These gliders are the smallest
moving objects in the Life universe. By putting together such constructs, one can
show how to build arbitrary logic circuits, using sequences of gliders as the signals
that travel around and interact[7, 36].

This then is our first example of a universal CA rule. Many other non-invertible



CRYSTALLINE COMPUTATION 11

universal CA rules are known—the simplest is due to Roger Banks[90]. All of these
can support arbitrary complexity if you rig up a special enough initial state. Life
is notable because it spontaneously develops interesting complexity starting from
most initial states. Small structures that do something recognizable occasionally
appear briefly, before being sucked back into the digital froth.

1.4 Invertible CA’s are more interesting

One problem with Conway’s Life as a model of evolution is that it lasts for such
a short time when started from generic initial conditions. For a space of 2K×2K
bits, there are 24,194,304 distinct possible configurations, and this rule typically goes
through fewer than 214 of them before repeating a configuration and entering a
cycle. This doesn’t allow much time for the evolution of complexity! Furthermore,
useful computing structures in Life are very fragile: gliders typically vanish as soon
as they touch anything.

The short Life-time problem can be attributed largely to the non-invertible na-
ture of the Life rule—invertible rules do not behave like this. We typically have no
idea just how long the cycle times of our invertible CA’s actually are, because we
have never seen them cycle, except from very special initial states or on very tiny
spaces. The reason that invertible CA’s have such long cycle-times is actually the
same as the reason that essentially all invertible information dynamics have long
cycles: an invertible dynamics cannot repeat any state it has gone through until it
first repeats the state it started in. In other words, if we run an invertible rule for
a while, we know what the unique predecessor of every state we have already seen
is, except for the first state—its predecessor is still coming up! Thus an invertible
system is forced to keep sampling distinct states until it stumbles onto its initial
state. Since there is nothing forcing it toward that state as it explores its state
space, the cycle of distinct states is typically enormously long: if our invertible CA
really did sample states at random without repetition, it would typically have to go
through about half of all possible states before chancing upon its initial state[91].
A non-invertible system doesn’t have this constraint, and can re-enter its past tra-
jectory at any point[49]. The moral here is that if you want to make a discrete
world that lasts long enough to do interesting things, it is a good idea to make it
invertible. As a bonus, a more thorough exploration of the available state-space
tends to make a system more amenable to statistical mechanical analysis.

To make it easier to capture physical properties in CA’s, we will use a technique
called partitioning, which was developed specifically for this purpose[60, 90]. This
technique is closely related to the sublattice technique introduced in Section 1.2[93,
62]. The idea of partitioning is to divide up all of the bits in our CA system
into disjoint local groupings—each bit is part of only one group. Then we update
all of the groups independently, before changing the groupings and repeating the
process—changing the groupings allows information to propagate between groups.



12 NORMAN H. MARGOLUS

Fig. 1.5. The invertible “Critters” CA. (a) The solid and dotted blockings are used
alternately. (b) The Critters rule.

If the updating of each group conserves the number of 1’s, for example, then so
does the global dynamics. If the updating applied independently to each group
is an invertible function, then the global dynamics is also invertible. Since all
invertible CA’s can be reexpressed isomorphically in a partitioning format—where
conservations and invertibility are manifest—this is a particularly convenient format
to use for our models[93, 47, 48].

Our first example of a partitioned CA is called “Critters.” This is a universal
invertible CA that evolves interesting complexity. The Critters rule uses a 2×2
block partition on a 2D square lattice. In Figure 1.5a we show an 8×8 region of
the lattice—each square represents a lattice site that can hold a 0 or a 1. The
solid lines show the grouping of the bits into 2×2 blocks that is used on the even
time-steps, the dotted lines show the odd-time grouping. The Critters rule is shown
in Figure 1.5b. This same rule is used for both the even-time grouping and the
odd-time grouping. All possible sets of initial values for the four bits in a 2×2 block
are shown on the left, the corresponding results are shown on the right. The rule is
rotationally symmetric, so not all cases need to be shown explicitly: each of the four
discrete rotations of a block that is shown on the left turns into the same rotation
of the corresponding result-block shown on the right.

Notice that each of the 16 possible initial states of a block is turned into a distinct
result state. Thus the Critters rule is invertible. Notice also that the number of
1’s in the initial state of each block is, in all cases, equal to the number of 0’s in
the result. Thus this property is true for each update of the entire lattice. If we
call 1’s particles on even steps, and call 0’s particles on odd steps, then particles
are conserved by this dynamics. Notice that the Critters rule also conserves the
parity (sum mod 2) along each diagonal of each block, which leads to conservation



CRYSTALLINE COMPUTATION 13

Fig. 1.6. A Critters simulation. (a) The initial state of the full 2K×2K lattice. (b) The
state after 1,000,000 steps. (c) A closeup of a region on the right.

of parity along every second diagonal line running across the entire space.

It is not interesting to run an invertible rule such as Critters starting from a
completely random initial state, as we did in the case of Life. This is because the
vast majority of all possible states are random-looking and so, by a simple counting
argument, almost all of them have to turn into other random-looking states. To
see this, note that any given number of steps of an invertible dynamics must turn
each distinct initial state into a distinct final state. Since the set of states with
recognizable structure is such a tiny subset of the set of all possible states, almost
every random-looking state must turn into another random-looking state.

Thus instead of a random state, a “generic” initial state for an invertible CA will
be some easily generated “low-entropy” state—we saw several examples of invertible
evolutions from such states in Section 1.2. For the Critters CA, we show a sample
simulation started from an empty 2K×2K lattice with a randomly filled 512×512
block of 0’s and 1’s in the middle (Figure 1.6a). In Figure 1.6b we see the state
after 1,000,000 updates of the entire space. In this simulation, opposite edges of
the space have been connected together (periodic boundaries). Figure 1.6c shows
a closeup of a region near the right edge of the space: all of the structure present
has arisen from collisions of small moving objects that emerged from the central
region. In analogy to Life, we will call these small moving objects gliders. You can
see several of these gliders in various phases of their motion in the closeup: they are
the compact symmetrical structures composed of four particles, with two particles
adjacent to each other, and two slightly separated (see also Figure 1.10). In the
Critters dynamics, a glider goes through a cycle of four configurations each time it
shifts by two positions.

Unlike the gliders in Life, Critters gliders are quite robust. Consider, for exam-
ple, what happens when two of these gliders collide in an empty region. At first



14 NORMAN H. MARGOLUS

they form a blob of eight particles that goes through some pattern of contortions. If
nothing hits this blob for a while, we always see at least one of the gliders emerge.
This property arises from the combination of conservation and invertibility: we can
prove, from invertibility, that the blob must break up, but since the only moving
objects we can make with eight particles are one or two gliders, then that’s what
must come out. To see that the blob must break up, we can suppose the opposite.
The particles that make up the blob can only get so far apart without the blob
breaking up, and so there are only a finite number of possible configurations of the
blob. The blob cannot repeat any configuration (and hence enter a cycle of states)
because of invertibility: a local cycle of states would be stable going back in time as
well as forward, but we know that the blob has to break up if we run backwards past
the collision that formed it. Since the blob runs out of distinct configurations and
cannot repeat, it must break up. At least one glider must come out. If the collision
that formed the blob was rotationally symmetric, then both gliders must come out,
since the dynamics is also rotationally symmetric. The robustness of particles that
we saw in Figure 1.2a arises in a similar manner.

The Critters rule is fascinating to watch because of the complicated structures
that form, with swarms of gliders bouncing around within them and slowly altering
them. Sometimes, for example, a glider will hit a little flap left from a previous glider
collision, flipping it from one diagonal orientation to another. This will affect what
another glider does when it subsequently hits that flap. Gliders will hit obstacles
and turn corners, sometimes going one way, sometimes another, depending on the
details of the collisions. The pattern must gradually change, because the system
as a whole cannot repeat. After a little observation it is clear that there are many
ways to build arbitrary logic out of the Critters rule—one simple way is sketched
in the next section in order to demonstrate this rule’s universality.

Started from an ordered state, the Critters CA accumulates disorder for the same
reason that a neat room accumulates disorder: most changes make it messier. As we
have already noted, in an invertible dynamics, a simple counting argument tells us
that most messy states don’t get neater. Localized patterns of structured activity
that may arise within this CA must deal with an increasingly messy environment.
No such structure in an invertible world can take in inputs that have statistical
properties that are unpredictable by it, and produce outputs that are less messy,
again because of our counting argument. Thus its fair to call a measure of the
messiness of an invertible CA world the total entropy. We can think of this total
entropy as being approximated by the size of the file we would get if we took
the whole array of bits that fills our lattice and used some standard compression
algorithm on it.

It is possible to construct invertible CA’s in which a simple initial state turns
into a completely random looking mess very quickly. While it is still true that
this invertible CA will probably take forever to cycle, it has found another way
to end its interesting activity quickly—what we might call a rapid heat death. Of



CRYSTALLINE COMPUTATION 15

A

B

AB

AB

AB

AB

_

_

Fig. 1.7. Fredkin’s Billiard Ball Model. (a) Balls heading toward a collision. (b) Paths
taken in collision are displaced from straight paths.

course heat death is the inevitable fate of any CA evolution that has a long enough
cycle: since the vast majority of states are random-looking, very long cycles must
consist mostly of such states. We can, however, try to put off the inevitable. In
the Critters CA, symmetries and conservation laws act as constraints on the rate of
increase of entropy, and so make the interesting low-entropy phase of the dynamics
last much longer. It would be interesting to try to capture within CA dynamics
other mechanisms that occur in real physics that contribute to metastability and
hence delay the heat death.

1.5 A bridge to the continuum

Historically, the partitioning technique used in the previous section was first de-
veloped[60] for use in the construction of a very simple universal invertible CA
modeled after Fredkin’s Billiard Ball Model (BBM) of computation[30].1 The BBM
is a beautiful example of a continuum physical system that is turned into a digital
system simply by constraining its initial conditions and the times at which we
observe it. This makes it a wonderful bridge between the tools and concepts of
continuum mechanics, and the world of exact discrete information dynamics. This
model is discussed in [26], but we will review it very briefly here.

In Figure 1.7a we show two finite-diameter billiard balls heading toward a colli-
sion, both moving at the same speed. Their centers are initially located at integer
coordinates on a Cartesian lattice—we will refer to these as lattice points. At regu-
lar intervals, the balls will be found at consecutive lattice points, until they collide.

1The first universal invertible CA was actually constructed by Toffoli[86], who showed how to
take a universal 2D CA that was non-invertible, and add a third dimension that would keep a
complete time history of the dynamics, thus rendering it invertible.



16 NORMAN H. MARGOLUS

Fig. 1.8. A Billiard Ball Model CA. (a) The BBMCA rule. (b) A BBMCA circuit.

In Figure 1.7b we show a collision. The outer paths show the actual course that
the balls take after a collision; the inner paths illustrate where each of the two
balls would have gone if the other one wasn’t there to collide with it. Thus we see
that a locus at which a collision might or might not happen performs logic: if the
presence of a ball at a lattice point at an integer time is taken to represent a 1,
and the absence a 0, then we get 1’s coming out on the outer paths only if balls at
A AND B came in at the same time. The other output paths correspond to other
logical functions of the inputs. It is easy to verify that this collision is a universal
and invertible logic element (just reverse all velocities to run BBM circuits back-
wards). We also allow fixed mirrors in our model to help route ball-signals around
the system—these are carefully placed so that the centers of balls are still always
found at lattice points at integer times.

In order to make a simple CA model of the BBM, we will represent finite di-
ameter balls in our CA by spatially separated pairs of particles, one following the
other—the leading edge of the ball followed by the trailing edge. When such a ball
collides with something, the front-edge particle collides first, and then the influ-
ence is communicated to the trailing edge. This kind of “no rigid bodies” approach
to collisions is more consonant with the locality of interaction that we are trying
to capture in CA’s than a larger-neighborhood model in which distant parts of a
fixed-size ball can see what’s going on right away.

Figure 1.8a shows the BBMCA rule. Like the Critters rule, this rule is rota-
tionally symmetric and so, again, only one case out of every rotationally equivalent
set is shown. Note that the rule conserves 1’s (particles), and that only two cases
change. This is the complete rule that is applied alternately to the even and odd
2×2 blockings. Note that, much like the Ising CA, this rule is its own inverse: if we
simply apply the update rule to the same blocking twice in a row, the net effect is



CRYSTALLINE COMPUTATION 17

Fig. 1.9. A BBMCA collision. We show succesive snapshots of a small area where a
collision is happening. In the first image, the solid-blocks are about to be updated. The
blocking alternates in successive images.

no change.2

Figure 1.9 shows a BBMCA collision between two minimum-size balls—the gap
between the two particles that make up the front and back of the ball can be
any odd number of empty sites. Until the balls get close together the particles
that form them all propagate independently: a single 1 in one corner of a block
moves to the opposite corner. When we change the blocking, the particle again
finds itself alone in a block in the same corner it started in, and again moves in
the same direction. When two leading-edge particles find themselves in the same
block, the collision begins. These particles are stuck for one step—this case doesn’t
change. Meanwhile the trailing edge particles catch up, each colliding head-on with
a leading-edge particle which was about to head back to meet it (if the gap had
been wider). New particles come out at right angles to the original directions, due
to the “two-on-a-diagonal” case of the rule, which switches diagonal. Now one of
the particles from each head-on collision becomes the new leading edge particle;
these are done with the collision and head away from the collision locus, once again
propagating independently of the trailing particles. Meanwhile the two new trailing-
edge particles are headed toward each other. They collide and are stuck for one
step before reflecting back the way they came, each following along the path already
taken by a leading edge particle. Each two-particle ball has been displaced from its
original path. If the other two-particle ball hadn’t been there, it would have gone
straight.

Mirrors are built by placing square patterns of four particles straddling two
adjacent blocks of the partition. It is easy to verify that such squares don’t change
under this rule, even if you put them right next to each other. Single particles just
bounce back from such mirrors. The collision of a two-particle ball with such a
mirror looks just like the collision of two balls that we have already seen; we just
replace one of the balls with a mirror whose surface lies along the axis of symmetry
of the two-ball collision. The remaining ball can’t tell the difference. For more
details about the BBMCA, see [90, 62].

2The Ising CA is actually very closely related. It can be put into the same 2×2 block-partitioned
format if we model bonds instead of sites[90].



18 NORMAN H. MARGOLUS

Fig. 1.10. A BBMCA-style collision of pairs of gliders in the Critters CA. The images
shown are not consecutive states of the lattice, but are instead spaced in time to correspond
(with a 45◦ rotation) to the images in the previous figure.

Figure 1.8b shows a BBMCA circuit, computing a permutation sequence. Be-
cause of their long cycle times, invertible circuits tend to make good pseudo-random
number generators. In fact, a perfect random number generator would go through
all of its internal states before cycling, and so it would be perfectly invertible. It
is also interesting to use the BBMCA to construct circuits that are more directly
analogous to thermodynamic systems, since the constraint of invertibility means
that it is impossible to design a BBMCA circuit that, acting on unpredictable sta-
tistical inputs that it receives, can reduce the entropy of those data—for the reasons
discussed in the previous section[62, 4, 6]. The BBMCA is simple enough that it
provides a good theoretical model to use for other inquiries about connections be-
tween physics and computation. For example, one can use its dynamics as the basis
of quantum spin models[63].

Using Figure 1.10, we sketch a simple demonstration that the Critters rule of
the previous section is universal—we show that pairs of Critters-gliders suitably
arranged can act just like the “balls” in the BBMCA, which is universal. Figure 1.10
shows a collision that is equivalent to that shown in Figure 1.9. We don’t show every
step of the Critters time-evolution; instead we show the pairs of gliders at points
corresponding to those in the collision of Figure 1.9. Mirrors can be implemented
by two single Critters particles, one representing each end of the mirror.

1.6 Discrete molecular dynamics

Having constructed a CA version of billiard ball dynamics, it seems natural to try to
construct CA’s that act more like real gases[89, 60]. With enough particle directions
and particle speeds, our discrete Molecular Dynamics (MD) should approximate a
real gas.

The BBMCA has just four particle directions and a single particle speed. We will
make our first MD model by modifying the BBMCA rule. For simplicity, we won’t
worry about modeling finite-diameter balls: single 1’s will be our gas molecules.
The simplest such rule would be, “During each 2×2 block update, each molecule
ignores whatever else is in the block and simply moves to the opposite corner of



CRYSTALLINE COMPUTATION 19

Fig. 1.11. A simple four-direction lattice gas. (a) A momentum conserving invertible rule.
(b) A 512×512 lattice filled randomly with particles, with a square block of ones’s in the
center. (c) A round pressure wave spreads out from the center.

its block.” Then, when we switch partitions, that molecule would again be back in
the same kind of corner that it started in and so it would again move in the same
direction—moving exactly like an isolated particle in the BBMCA. This simple rule
gives us a non-interacting gas, with four directions and one speed.

We would like to add a momentum conserving collision to this non-interacting
gas rule. We can begin by defining what we mean by momentum. If we imagine
that our discrete lattice dynamics is simply a succession of snapshots of a continuum
system, as it was in the case of the BBM, then we automatically inherit definitions of
energy and momentum from the continuous system. To add a momentum conserving
collision to our simple four-direction gas, we should have two molecules that collide
head-on come out at right angles. Figure 1.11a shows the non-interacting gas rule
with one case modified to add this collision: when exactly two molecules appear on
one diagonal of a block, they come out on the other diagonal.

We would not expect such a simple model to behave very much like a real gas. In
Figure 1.11b, we show a 512×512 2D space filled with a random pattern of 1’s and
0’s, with a square block in the center of the pattern that is all 1’s. Figure 1.11c shows
this system after about 200 updates of the space: we see a round pressure wave. We
were amazed when we first ran this simulation in the early 1980’s[89]. How could we
get such continuous looking behavior from such a simple model? This is the point
at which we began to think that perhaps CA MD might be immediately practical
for fluid modeling[59, 90]. Discrete lattice models are well adapted to meshes of
locally interconnected digital hardware, which can be very large and very fast if the
models are simple. It turns out, though, that this particular model is too simple
to simulate fluid flow—though it is useful for other purposes. This four-direction



20 NORMAN H. MARGOLUS

Fig. 1.12. A slightly modified gas CA. The vertical bar is a density wave traveling to the
right, the circle is a region in which waves are slower. We see the wave reflect and refract.

lattice gas automaton (LGA) is now commonly known as the HPP gas after its
originators[41], who analyzed it about a decade before we rediscovered it. Their
analysis showed that this four-velocity model doesn’t give rise to normal isotropic
hydrodynamics.

Notice that the HPP gas is perfectly invertible—like the BBMCA, its rule is its
own inverse. Thus we can run our pressure wave backwards, getting back exactly
to the square block we started from. This doesn’t contradict what we said earlier
about entropy in invertible CA’s, since a messy state can always be cleaned up if
you undo exactly the sequence of actions that produced the mess. Normal forward
time evolution doesn’t do this.

Once we are able to model one macroscopic phenomenon, it is often obvious
how to model other phenomena. Starting from a model with sound waves, we can
make a model with reflection and refraction of such waves. In Figure 1.12 we show
a simulation using a 2-bit variant of the HPP CA. Here we have added a bit to each
site, and used it to mark a circular region of the space: one bit at each site is a
gas bit, and the other bit is a mark bit. We now alternate the rule with time so
that, for one complete even-time/odd-time update of the lattice we apply the HPP
rule to the gas bits at all sites; then we do a complete even/odd update only of
unmarked blocks, with all gas particles in blocks containing non-zero mark-bits left
unchanged. This gives us two connected HPP systems, one running half as fast as
the other. In particular, waves travel half as fast in the marked region, and so we
get refraction of the wave that is incident from the left. Notice that the dynamics is
still perfectly invertible, and that we can make our “lens” any shape we desire—it is
a general feature of CA MD that we can simply “draw” whatever shaped obstacles
and potentials we need in a simulation[83]. Related LGA techniques have been used
for complex antenna simulations[81].

We can model many other phenomena by coupling 2×2 block rules. We can,



CRYSTALLINE COMPUTATION 21

for example, use the HPP gas or a finite-impact-parameter variant of it (the TM
gas[59, 90], which has better momentum-mixing behavior) as a source of pseudo-
randomness in a diffusion model. We start by again putting two bits at each lattice
site—one bit will belong to the diffusing system, while the other belongs to the
randomizing system. Let the four bits of the randomizing system in each block
simply follow the HPP dynamics described above. Let the four bits of the diffusing
system be rotated 90◦ clockwise or counterclockwise, depending on the parity of
the number of 1’s in the four “random” bits. This results in a perfectly invertible
diffusion in which no more than one diffusing particle can ever land at the same
site[90]. Using this approach with enough bits at each site we can, for example,
model the diffusion and interaction of different chemical species.

The HPP CA was originally presented in a different format than we have used
above[41]. Since this other format is in many cases very natural for discussing MD
models, we will describe it here, and then relate it to a partitioned description. We
start by putting four bits of state at each site of a square lattice. We will call the
bits at the ith site Ni, Si, Ei and Wi. The dynamics consists of alternating two
steps: (1) move the data, and then (2) let the groups of bits that land at each
site interact separately. The first step moves the data in sheets: if we think of the
directions on our lattice as being North, South, East and West, then all of the N
bits are moved one position North, all the S bits one position South, etc. Our
interaction rule at each site combines the bits that came from different directions
and sends them out in new directions. A state consisting of two 1’s (particles) that
came in from opposite directions and two 0’s from the other directions, is changed
into a state in which the 1’s and 0’s are interchanged—the particles come out at
right angles to their original directions. In all other cases, particles come out in the
same directions they came in.

We can think of this as a particular kind of partitioning rule, where the four
bits at each site are the groups, and we use the data-movement step to rearrange
the bits into new groups. Although in some ways this site-partitioned description
of the HPP gas is simpler, it also suffers from a slight defect. If we imagine, as we
did in our discussion of the Ising model, that our lattice is a giant black and white
checkerboard, then we notice that in one data movement step all of the bits that
land at black squares came from white squares, and vice versa. No data that is
currently on a black square will ever interact with data that is currently on a white
square: we have two completely independent subsystems. The 2×2 block version
of the HPP rule is isomorphic to just one of these subsystems, and so lets us avoid
simulating two non-interacting systems. Of course we can also avoid this problem
in the site-partitioned version with more complicated time-dependent shifts: we can
always reexpress any partitioned CA as a site-partitioned CA. This fact has been
important in the design of our latest CA machines.

The HPP lattice gas produces a nice round-looking sound wave, but doesn’t
reproduce 2D hydrodynamics in the large-scale limit. We can clearly make a CA



22 NORMAN H. MARGOLUS

Fig. 1.13. Flow past a half-cylinder using a six-direction lattice gas on a triangular lattice.
We simulate “smoke” streamers to visualize the flow.

model with more speeds and directions by having molecules travel several lattice
positions horizontally and/or vertically at each step—just add more particles at each
site, and shift the different momentum fields appropriately during the movement
step. With enough speeds and directions, it seems obvious that we can get the right
macroscopic limit—this should be very much like a hard-sphere gas, which acts like a
fluid. The fact that so many different fluids obey the same hydrodynamic equations
also suggests that the details of the dynamics can’t matter very much, just the
constraints such as momentum and particle conservation.

So how simple a model can work? It was found[28] that we can recover macro-
scopic 2D hydrodynamics from a model that is only slightly more complicated than
the HPP gas. A single-speed model with six particles per site, moving in six direc-
tions on a triangular lattice, will do. If all zero-net-momentum collisions cause the
molecules at the collision site to scatter into a rotated configuration, and otherwise
particles go straight, then in the low speed limit we recover isotropic macroscopic
fluid dynamics. Figure 1.13 shows a simulation of a slightly more complicated
six-direction lattice gas[12]. The simulation shown is 2K×1K, and we see vortex
shedding in flow past a half-cylinder. The white streamers are actually a second
gas (more bits per site!), inserted into the hydrodynamic gas as a kind of smoke
used to visualize flows in this CA wind tunnel. This is an invertible CA rule, ex-
cept at the boundaries which are irreversibly being forced (additional bits per site
mark the boundaries). Simple single-speed CA’s have also been used to simulate
3D hydrodynamics[22, 2].

When it was discovered that lattice gases could simulate hydrodynamic behavior,
there was a great deal of excitement in some circles and skepticism in others. The
exciting prospect was that by simplifying MD simulations to the point where only



CRYSTALLINE COMPUTATION 23

Fig. 1.14. Some CA MD simulations. (a) Flow through a porous medium. (b) A topo-
logically complicated structure within a chemical reaction simulation. (c) Crystallization
using irreversible discrete forces.

the essence of hydrodynamic behavior remained, one could extend the scale of these
simulations to the point where interesting hydrodynamics could be done directly
with an MD method. This spawned an entire new field of research[22, 23, 71, 13,
52, 76, 10]. This optimistic scenario has not yet been realized. One problem is that
simple single speed models aren’t well suited for simulating high-speed flows. As
in a photon gas, the sound speed in a single-speed LGA is almost the same as the
maximum particle speed, making supersonic flows impossible to simulate. You need
to add more particle speeds to fix this. The biggest problem, though, is that you
need truly enormous CA systems to get the resolution needed for hydrodynamic
simulations with high Reynold’s numbers[102].

For the near term, for those interested in practical modeling, it makes sense
to avoid high-Reynold’s numbers and fast fluid flows, and to use MD CA models
to simulate other kinds of systems that are hard to simulate by more conventional
numerical techniques. Suitable candidates would include systems for which the best
current simulation techniques are in fact some form of molecular dynamics, as well
as systems for which there are at present no good simulation techniques because
traditional MD cannot reach the hydrodynamic regime. An example would be sys-
tems with very complicated flows. Figure 1.14a shows a simulated flow through a
piece of sandstone. The shape of the sandstone was obtained from MRI imaging
of an actual rock, taking advantage of the ability of CA MD simulations to handle
arbitrarily shaped obstacles. Shading in the figure indicates flow velocity. Sim-
ulations were compared against experiments on the same rock that was imaged,
and agreement was excellent[79, 2]. More complicated flows, involving immiscible
liquids, have been simulated with this same technique.

CA models of complex systems can be built up by combining simpler models.
We simply pile up as many bits as we need at each lattice site, representing as many



24 NORMAN H. MARGOLUS

fluids, random variables, heat baths, and other fields as we desire. Then we update
them in some repeated sequence, including extra steps that make different groups of
subsystems interact, much as we did in our diffusion and our refraction examples.
For practical purposes we will often dispense with invertibility, and be satisfied
with irreversible rules coupled to pseudo random subsystems. Figure 1.14b shows
an example of a 3D chemical reaction simulation of this sort, which simulates the
FitzHugh-Nagumo reaction-diffusion dynamics[56]. The knot and its surroundings
are composed of two different chemical phases. The connectivity of the knot in
conjunction with domain repulsion keeps the knot from shrinking away. Many kinds
of multiphase fluids, microemulsions, and other complex fluids have been simulated
using related techniques[14, 9, 79].

We can easily add discrete forces by having particles at a discrete set of vector
separations interact. If two such particles are heading away from each other we can
point them toward each other and otherwise leave them unchanged—this results in
an attraction. This kind of rule isn’t invertible, but it is energy and momentum
conserving. Figure 1.14c shows a 3D crystallization simulation using a potential
built up out of such interactions[103]. This is not currently a very practical way to
simulate crystals, but this kind of technique is generally useful[3, 104]. For example,
the “smoke” in Figure 1.13 has a weak cohesive force of this kind, which makes the
smoke streams thinner.

There are many other ways to build new CA MD models. We often appeal to
microdynamical analogy, or to simulating “snapshots” of a hypothetical continu-
ous dynamics. We can take aspects of existing atomistic models and model them
statistically at a higher level of aggregation using exact integer counts and conser-
vations, to avoid any possibility of numerical instability[12]. We can combine CA’s
with more traditional numerical mesh techniques, using discrete particles to handle
difficult interface regions[50]. We can adapt various energy-based techniques from
statistical mechanics[38, 9]. We can also build useful models in a less systematic
manner, justifying their use by simulation and careful measurements[79]. Combin-
ing well understood CA MD components to build up simulations of more complex
systems is a kind of iterative programming exercise that involves testing components
in various combinations, and adjusting interactions.

Although there is already a role for CA MD models even on conventional comput-
ers, there is a serious mismatch on such machines between hardware and algorithms.
If we are going to design MD simulations to fit into a CA format, we should take
advantage of the uniformity and locality of CA systems, which are ideally suited to
efficient and large-scale hardware realization.

1.7 Crystalline computers

Computer algorithms and computer hardware evolve together. What we mean by
a good algorithm is that we have found some sort of efficient mapping between the



CRYSTALLINE COMPUTATION 25

computation and the hardware. For example, CA and other lattice algorithms are
sometimes “efficiently” coded on conventional machines by mapping the parallelism
and uniformity of the lattice model onto the limited parallelism and uniformity
of word-wide logical operations—so-called “multi-spin coding.” This is a rather
grotesque physical realization for models that directly mimic the structure and
locality of physics: we first build a computer that hides the underlying spatial
structure of nature, and then we try to find the best way to contort our spatial
computation to fit into that mold!

Ultimately all physical computations have to fit into a spatial mold, and so
our most efficient computers and algorithms will eventually have to evolve toward
the underlying spatial “hardware” of nature[94]. Because physical information can
travel at only a finite velocity, portions of our computation that need to commu-
nicate quickly must be physically located close together. Computer architects can
only hide this fact-of-life from us for so long. At some point, if we want our com-
putations to run faster, our algorithms must take on the responsibility of dealing
with this constraint.

Computer engineers are not unaware of this spatial constraint. Various locally-
interconnected parallel computers have been built and studied[53]. Mesh architec-
tures are organized like a kind of CA, but usually with a rather powerful computer
with a large memory at each lattice site. Unlike CA’s, they normally don’t have
the same operation occurring everywhere in the lattice at the same time. SIMD or
data parallel mesh machines are more CA-like, since they typically have a simpler
processor at each site, and they do normally have the operation of all processors
synchronized in perfect lockstep.

Another important spatial computing device is the gate array. These regular
arrays of logic elements are very much like a universal CA. Initially, we build these
chips with arrays of logic elements, but we leave out the wiring. Later, when we
need a chip with a specific functionality, we can quickly “program” the gate array
by simply adding wires to connect together these elements into an appropriate
logic circuit. FPGA’s (field programmable gate arrays) make programming the
interconnections even easier. What should be connected to what is specified by
some bits that we communicate directly to the chip: this rapid transition from
bits to circuitry eliminates much of the distinction that is normally made between
hardware and software[73].

As general purpose computing devices, none of these CA-like machines are sig-
nificant mainstream technologies—the evolutionary forces that are pushing us in
the CA direction haven’t yet pushed hard enough. This was even more true when
Tom Toffoli and I first started playing with CA’s together, almost two decades ago.
There were no machines available to us then that would let us run and display CA’s
quickly enough that we could experience them as dynamical worlds. We became in-
creasingly frustrated as we tried to explore the new and exciting realm of invertible



26 NORMAN H. MARGOLUS

Fig. 1.15. CA machines. (a) Our earliest CA machines scanned their memory like a
framebuffer, applying discrete logic to a sequence of neighborhood windows. (b) CAM-8
uses a 3D mesh array of SIMD processors. Each processor handles part of the lattice,
alternating data movement with sequential lookup-table updating of the groups of bits
that land at each lattice site.

CA’s on available graphical workstations: each successive view of our space took
minutes to compute.

Tom designed and built our first CA simulation hardware. This CA machine was
a glorified frame-buffer that kept the CA space in memory chips. As it scanned a 2D
array of pixels out of the memory, instead of just showing them on a screen, it first
applied some neighborhood logic to the data, then sent each resulting pixel to the
screen while also putting it back into memory. At first the neighborhood logic was
on a little prototyping board (this is shown schematically in Figure 1.15a). I learned
about digital circuitry by building site-update rules out of TTL chips—each small
logic circuit I built became the dynamical law for a different video-rate universe!
Eventually, we switched to lookup tables, which largely replaced the prototype
circuits. The first few generations of machines, however, all had wires that you could
move around to change things—whenever you wanted to demonstrate something,
you would invariably find that someone else had rewired your machine[88].

We went through several generations of hardware, playing with models that no
one else had ever seen[90]. At a certain point we rediscovered the HPP lattice
gas, and our simulations rekindled interest in this kind of model. At this point,
our machines became inadequate. They had been designed for interacting and
experimenting with small 2D systems that you could watch on a monitor. Real
CA MD was going to require large-scale 3D machines designed for serious scientific
simulation, with provisions for extensive data analysis and visualization. A new
dedicated CA MD machine could be about 1000 times as cost effective as existing



CRYSTALLINE COMPUTATION 27

supercomputers for this task, and would provide the interactivity and flexibility of
a personal CA workstation.

I designed the new architecture (CAM-8) based on the experience that Tom
and I had with our earlier machines[66]. As shown in Figure 1.15b, this machine
uses a 3D mesh array of SIMD processors running in perfect lockstep. The lattice
being simulated (which can be n dimensional) is divided up evenly among the
processors, each processor handling an equal sector of the overall lattice. As in our
earlier machines, the state of the lattice is kept in ordinary memory chips, and the
updating is done by lookup tables—also memory chips. Data cycles around and
around between these two sets of memory chips.

Unlike our previous machines, which provided a fixed set of traditional CA neigh-
borhoods, the only neighborhood format supported by CAM-8 is site-partitioning
(discussed in Section 1.6). Any bit field (i.e., set of corresponding bits, one from
every site) can be shifted uniformly across the lattice in any direction. Whatever
data land at a given lattice site are updated together as a group. This is a particu-
larly convenient neighborhood format from a modeling point of view, since any CA
dynamics on any neighborhood can be accomplished by performing an appropriate
sequence of data shifts and site updates, each acting on a limited number of site
bits at a time. Also, as we’ve seen, partitioning is a particularly good format for
constructing models that incorporate desired physical properties.

Site partitioning is also a very convenient neighborhood format from a hardware
standpoint. Since the pattern of data movement is very simple and regular, mesh
communication between processors is also very simple. Since the updating is done
on each site independently, it doesn’t matter what order the sites are updated in,
or how many different processors are involved in the updating. All of this can be
organized in the manner most efficient for the hardware.

CAM-8 machines were built and performed as expected. All of the simulations
depicted in this chapter were done on CAM-8, except for that of Figure 1.14a (which
is similar to [2]). CAM-8 has not, unfortunately, had the impact that we hoped it
might. First of all, during the time that we were building the machine, it was found
that lattice gases weren’t as well suited for high Reynold’s number hydrodynamic
flow simulations as people had hoped. In addition, in the absence of any good CA
machines, interest in lattice dynamics calculations had shifted to techniques that
make better use of the floating point capabilities of conventional computers. Also,
most researchers interested in developing practical applications already had good
access to conventional supercomputers, which were 1000 times less cost effective
than CAM-8, but had familiar and high-quality software and system support. Fi-
nally, the evolutionary forces favoring CA-like machines were temporarily on the
wane at the time when CAM-8 was completed, as multiprocessor funding dried up
and fine-grained parallel computing companies folded. We didn’t build any versions
of our indefinitely scalable CAM-8 machine that were large enough to make pre-



28 NORMAN H. MARGOLUS

viously unreachable realms of CA modeling accessible—as our early machines first
opened the CA world to us.

In the near term, prospects again look good for CA machines. Although our
small personal-computer-scale CAM-8 machines are still about as good as any su-
percomputer for LGA computations, advances in technology make radical improve-
ments possible. By putting logic directly on DRAM memory chips, which is now
routinely done, and by exploiting the enormous memory bandwidth that can be
made available on-chip, it is possible today to make a SIMD machine similar to the
CAM-8 that is over 10,000 times faster per memory chip than the current CAM-8
hardware[69]. Putting together arrays of such chips, qualitatively new physical sim-
ulations will become possible. Other SIMD applications such as logic simulation,
image processing and 3D bit-map manipulation/rendering will also run at about a
trillion bit-operations per second per chip. Whether we manage to make our next
dream machine, the time is ripe for commercial SIMD-based CA machines.

What of the more distant future? In the preceding sections, we have empha-
sized invertible CA’s. Aside from their intrinsic interest, they have the virtue that
they mimic the microscopic invertibility of physical dynamics. From a macroscopic
point of view, this means that these CA’s can in principle be implemented using
frictionless reversible mechanisms—they don’t depend on dissipative thermodynam-
ically irreversible processes in order to operate[27, 100, 106, 107]. Thus 3D machines
based on invertible CA’s won’t have the same problem getting rid of dissipated heat
that irreversible machines do[4, 5, 26]. From a more microscopic point of view, we
can see the match between invertible computation and invertible quantum physics
as making possible direct use of quantum scale elements and processes to do our
computations. We can make use of discrete properties of these quantum elements
to represent our digital quantities and perform our digital computations.

Thus in the distant future I expect that our most powerful large-scale general
purpose computers will be built out of macroscopic crystalline arrays of identical
invertible computing elements. We would make such large arrays out of identical
elements because they will then be easier to control, to design, to build and to
test. These will be the distant descendants of todays SIMD and FPGA computing
devices: when we need to perform inhomogeneous computations, we will put the
irregularities into the program, not the hardware. The problem of arranging the
pieces of a computation in space will be part of the programming effort: architec-
tural ideas that are used today in physical hardware may reappear as data structures
within this new digital medium. With molecular scale computing elements, a small
chunk of this computronium[64] would have more memory and processing power
than all of the computers in the world today combined, and high Reynold’s number
CA MD calculations of fluid flow would be practical on such machines.

Note that I don’t expect our highest performance general purpose computers
to be quantum spin computers of the sort discussed in Section 1.1. In such a



CRYSTALLINE COMPUTATION 29

machine, the whole computer operates on a superposition of distinct computations
simultaneously. This kind of quantum parallelism is very delicate, and the overhead
associated with the difficult task of maintaining a superposition of computations
over a large spatial scale will be such that it will only be worth doing in very
specialized situations—if it is possible at all[75]. This won’t be something that we
will do in our general purpose computers.

1.8 What makes a CA world interesting?

Future CA machines will make extensive large-scale CA simulations possible—we
will be able to study the macroscopic properties of CA worlds that we design.
Aside from issues of size and speed, there doesn’t seem to be any obvious reason why
exact classical information models cannot achieve as high a level of rich macroscopic
complexity as we see in our universe. This is a very different modeling challenge
than trying to simulate quantum mechanics with CA’s. We would like to simulate
an interesting macroscopic world which is built out of classical information. It is
instructive to try to see what the difficulties might be.

The most important thing in our universe that makes it interesting to us is of
course us. Or more generally, the existence of complex organisms. Thus let’s begin
by seeing what it might take to simulate a world in which Darwinian evolution is
likely to take place. Since no one has yet made a CA that does this, our discussion
will be quite speculative.

One of the most successful computer models of evolution is Tom Ray’s Tierra[77,
78], which was designed to capture—in an exact digital model—an essential set of
physical constraints abstracted from biology. His model did not include spatial
locality or invertibility, but we could try to add these features.

Modeling evolution in a robust spatial fashion may, however, entail incorporating
some physical properties into our CA systems that are not so obvious[65]. For
example, in nature we have the property that we can take complicated objects and
set them in motion. This property seems to be essential for robust evolution: it
is hard to imagine the evolution of complex organisms if simpler pieces of them
can’t move toward each other! No known universal CA has this property (but see
[18, 3, 104]). There is nothing in the Life CA, for example, that corresponds to a
glider-gun in motion.

The general property of physics that allows us to speak about an object at rest
and then identify the same object in motion is relativistic invariance. The fact that
the laws of physics look the same in different relativistic frames means that we can
have the same complex macroscopic objects in all states of motion: an organism’s
chemistry doesn’t stop working if it moves, or if the place it lives moves! In a
spatial CA dynamics, some sort of spatial macroscopic motion invariance would
clearly make evolution more likely. Since our CA’s have a maximum speed at



30 NORMAN H. MARGOLUS

which information can travel—a finite speed of light—relativistic invariance is a
possible candidate. Full relativistic invariance may be more than we need, but it is
interesting to ask, “Can we incorporate relativistic invariance into a universal CA
model?”

We have already seen that we can have macroscopic rotational invariance in our
lattice gas models, and we know that numerical mesh calculations of relativistic dy-
namics are possible. Thus achieving a good approximation of relativistic invariance
in the macroscopic limit for an exact CA model seems possible[43]. Such a system
would, at least in the limit, have the conservations associated with the continu-
ous Lorentz group of symmetries. Although it is not possible to put a continuous
symmetry directly into a discrete CA rule, it is certainly possible to put these con-
servations into the rule, along with a discrete version of the symmetries—just as we
did in our lattice gas models.3

Thus we might imagine our relativistically invariant CA to be a refinement of
lattice gases—we would also like to make it invertible for the reasons discussed in
Section 1.4. But we also demand that this CA incorporate computation universality.
This may not be easy: since a relativistically invariant system must have momen-
tum conservation, we will need to worry about how to hold complex interacting
structures together. Thus we may need to incorporate some kind of relativistically
invariant model of forces into our system.

Simulating forces in an exact and invertible manner is not so easy, particularly
if we want the forces to last for a long time[105]. Models in which forces are com-
municated by having all force-sources continuously broadcast field-particles have
the problem that the space soon fills up with these field-particles—which cannot be
erased because of local invertibility—and then the force can no longer be communi-
cated. Directly representing field gradients works better, but making this work in
a relativistic context may be hard.

At this point, we might also begin to question our basic CA assumptions. We
introduced crystalline CA’s to try to emulate the spatial locality of physics in our
informational models, but we are now discussing modeling phenomena in a realm of
physics in which modern theories talk about extra dimensions and variable topology.
Perhaps whatever is essential fits nicely into a simple crystalline framework, but
perhaps we need to consider alternatives. We could easily be led to informational
models in which the space and time of the microscopic computation becomes rather
divorced from the space and time of the macroscopic phenomena.

We started this section with the (seemingly) modest goal of using a CA to try to
capture aspects of physics necessary for a robust evolution of interesting complexity,
and we have been led to discuss incorporating larger and larger chunks of physics

3In continuum physics, continuous symmetries are regarded as fundamental and conservations
arise as a consequence of symmetry. Fredkin has pointed out that in discrete systems, it must be
the conservation that is fundamental.



CRYSTALLINE COMPUTATION 31

into our model. Perhaps our vision is too limited, and there are radically different
ways in which we can have robust evolution in a spatial CA model. Or perhaps we
can imitate nature, but cheat in various ways. We may not need full relativistic
invariance. We may not need exact invertibility. On the other hand, it is also
perfectly possible that we can’t cheat very much and still get a system that’s nearly
as interesting as our world.

1.9 Conclusion

I was in high school when I first encountered cellular automata—I read an article
about Conway’s “Game of Life.” At that time I was intensely interested in both
Physics and Computers, and this game seemed to combine the two of them. I
immediately wondered if our universe might be a giant cellular automaton.

The feeling that physics and computation are intimately linked has remained
with me over the years. Trying to understand the difficulties of modeling nature
using information has provided an interesting viewpoint from which to learn about
physics, and also to learn about the ultimate possibilities of computer hardware.
I have learned that many properties of macroscopic physics can be mirrored in
simple informational models. I have learned that quantum mechanics makes both
the amount and the rate-of-change of information in physical systems finite—all
physical systems do finite information processing[68]. I have learned that the non-
separability of quantum systems makes it hard to model them efficiently using clas-
sical information—it is much easier to construct quantum spin computer models[1].
I have learned that physics-like CA models can be the best possible algorithms when
the computer hardware is also adapted to the constraints and structure of physical
dynamics. I have learned that developing computer hardware that promotes this
viewpoint can consume an enormous amount of time!

Since classical information is much easier to understand than quantum informa-
tion I have mostly studied classical CA models. In these systems, a macroscopic
dynamical world arises from classical combinatorics. Continuous classical-physics
behavior can emerge in the large-scale limit. We can try to model and understand
(and perhaps teach our students about) all sorts of physical phenomena without get-
ting involved in quantum complications. We can also try to clarify our understand-
ing of the fundamental quantities, concepts and principles of classical mechanics and
of classical computation by studying such systems[32]. The principle of stationary
action, for example, must arise in such systems solely from combinatorics—there is
no underlying quantum substratum in a CA model. Conversely, we should remem-
ber that information (in the guise of entropy) was an important concept in physics
long before it was discovered by computer scientists. Just as Ising-like systems
have provided intuitive classical models that have helped clarify issues in statistical
mechanics, CA’s could play a similar role in dynamics.

Since we have focused so much on discrete classical CA models of physics, it



32 NORMAN H. MARGOLUS

might be appropriate to comment briefly on their relationship to discrete quantum
models—Feynman’s quantum spin computer of Section 1.1. Exactly the same kinds
of grouping and sublattice techniques that we have used to construct invertible CA’s
also allow us to construct quantum CA’s—QCA’s[61]. We simply replace invertible
transformations on groups of bits with unitary transformations on groups of spins.
Just as it is an interesting problem to try to recover classical physics from ordinary
CA’s, it is also interesting to try to find QCA’s that recover the dynamics of known
quantum field theories in the macroscopic limit[11, 57, 58, 105]. Following our Ising
CA example, it might be instructive to investigate classical CA’s that are closely
related to such QCA’s.

Although people have often studied CA’s as abstract mathematical systems
completely divorced from nature, ultimately it is their connections to physics that
make them so interesting. We can use them to try to understand our world better,
to try to do computations better—or we can simply delight in the creation of our
own toy universes. As we sit in front of our computer screens, watching to see
what happens next, we never really know what new tricks our CA’s may come up
with. It is really an exploration of new worlds—live television from other universes.
Working with CA’s, anyone can experience the joy of building simple models and
the thrill of discovering something new about the dynamics of information. We can
all be theoretical physicists.

1.10 Acknowledgments

Much of what I know of this subject I learned from Edward Fredkin, Tommaso Tof-
foli and Charles Bennett. They were my close collaborators in the MIT Information
Mechanics Group and my dear friends. They provided me with the support and
encouragement I needed to begin work in this field. It was a privilege to be a part
of their group.

Richard Feynman has been a constant source of inspiration and insight in my
physics career. His Lectures on Physics[24] sustained me through my undergraduate
years, and I spent some wonderful months as a graduate student visiting with him
at CalTech and giving lectures on CA’s and on reversible computing in his course
on computation[26]. I have many fond memories of his warmth, charm, humor and
joie de vivre.

I learned much from conversations with Mark Smith, Mike Biafore, Gerard Vich-
niac and Hrvoje Hrgovc̆ić—colleagues in the MIT IM Group. I have also learned
much from my colleagues in the lattice gas field who have helped me in my re-
search, particularly Jeff Yepez, who has been a close collaborator on CA research
with the CAM-8 machine. The construction of CAM-8 itself was a large effort
that involved many people—including Tom Toffoli, Tom Durgavich, Doug Faust,
Ken Streeter and Mike Biafore—each of whom contributed in a vital way. My cur-
rent physics/computation related research has been made possible by the support,



CRYSTALLINE COMPUTATION 33

collaboration and encouragement of Tom Knight.

This manuscript has benefitted greatly from discussions with and comments
by Raissa D’Souza, Lov Grover, David Meyer, and Ilona Lappo. Thanks to Dan
Rothman for providing Figure 1.14a, Ray Kapral for providing Figure 1.14b, and
Jeff Yepez for providing Figure 1.14c. Figure 1.2b comes from a simulation written
by Tom Toffoli and Figure 1.3 comes from an investigation that I’m working on
jointly with Raissa D’Souza and Mark Smith.

Support for this work comes from DARPA contract DABT63-95-C-0130, the
MIT AI Lab’s Reversible Computing Project, and Boston University’s Center for
Computational Science.

Notes on the references

Much of the material in this chapter is discussed at greater length in [62] and
[90]. These documents were both strongly influenced by ideas and suggestions from
Edward Fredkin, some of which are also discussed in [30, 31, 32, 33, 34, 35]. Some
recent books on CA modeling of physics are [79] and [18]. Many of the early lattice-
gas and quantum computing papers are reproduced in [22] and [54] respectively.
Recent related papers can be found online in the comp-gas and quant-ph archives
at http://xxx.lanl.gov, and cross-listed there from other archives at LANL such
as chao-dyn. Pointers to papers in these archives are given in some of the references
below.

References

[1] D. S. Abrams and S. Lloyd, “Simulation of many-body fermi systems on a universal
quantum computer,” Phys. Rev. Lett. 79, 2586–2589 (1997) and quant-ph/9703054.

[2] C. Adler, B. Boghosian, E. Flekkoy, N. Margolus and D. Rothman, “Simulating
three-dimensional hydrodynamics on a cellular-automata machine,” in [76, p. 105–
128] and chao-dyn/9508001.

[3] C. Appert, V. Pot and S. Zaleski, “Liquid-gas models on 2D and 3D lattices,” in
[52, p. 1–12].

[4] C. H. Bennett, “The thermodynamics of computation—a review,” in [29, p. 905–
940].

[5] C. H. Bennett and R. Landauer, “The fundamental physical limits of computation,”
Scientific American 253:1, 38–46 (1985).

[6] C. H. Bennett, “Demons, engines, and the second law,” Scientific American 257:5,
88-96 (1987).

[7] E. Berlekamp, J. Conway and R. Guy,Winning Ways For Your Mathematical Plays,
Volume 2 (Academic Press, 1982).



34 NORMAN H. MARGOLUS

[8] M. Biafore, “Few-body cellular automata,” MIT Ph.D. Thesis (1993), available as
MIT/LCS/TR-597 (MIT Laboratory for Computer Science, 1993).

[9] B. M. Boghosian, P. Coveney and A. N. Emerton, “A lattice-gas model of microemul-
sions,” Proc. Roy. Soc. Lond. A 452, 1221–1250 (1996) and comp-gas/9507001.

[10] B. M. Boghosian, F. J. Alexander and P. V. Coveney (eds.), Discrete Models of
Complex Fluid Dynamics, special issue of Int. J. Mod. Phys. C 8:4 (1997).

[11] B. M. Boghosian and W. Taylor IV, “Quantum lattice-gas models for the many-body
Schrödinger equation,” in [10] and quant-ph/9701016.

[12] B. M. Boghosian, J. Yepez, F. J. Alexander and N. Margolus, “Integer Lattice
Gases,” Phys. Rev. E. 55:4, 4137–4147 and comp-gas/9602001.

[13] J. P. Boon (ed.), Advanced Research Workshop on Lattice Gas Automata, special
issue of J. Stat. Phys. 68:3/4 (1992).

[14] J. P. Boon, D. Dab, R. Kapral and A. Lawniczak, “Lattice gas automata for reactive
systems,” Phys. Rep. 273, 55–147 (1996) and comp-gas/9512001.

[15] R. Brooks and P. Maes (eds.), Artificial Life IV Proceedings (MIT Press, 1994).

[16] A. Burks, (ed.), Essays on Cellular Automata (Univ. Illinois Press, 1970).

[17] H. Chate (ed.), International Workshop on Lattice Dynamics, special issue of Phys-
ica D 103:1/4 (1997).

[18] B. Chopard, B. and M. Droz, Cellular Automata Modeling of Physical Systems,
(Cambridge University Press, 1998).

[19] M. Creutz, “Deterministic ising dynamics,” Annals of Physics 167, 62–76 (1986).

[20] D. Farmer, T. Toffoli and S. Wolfram (eds.), Cellular Automata, North-Holland
(1984); reprinted from Physica D 10:1/2 (1984).

[21] R. D’Souza and N. Margolus, “Reversible aggregation in a lattice gas model using
coupled diffusion fields,” preprint available in cond-mat/9810258.

[22] G. Doolen (ed.), Lattice-Gas Methods for Partial Differential Equations (Addison-
Wesley, 1990).

[23] G. Doolen (ed.), Lattice-Gas Methods for PDE’s: Theory, Applications and Hard-
ware (North-Holland, 1991); reprinted from Physica D 47:1/2.

[24] R. P. Feynman, R. B. Leighton and M. Sands, The Feynman Lectures on Physics
(Addison-Wesley, 1963).

[25] R. P. Feynman, “Simulating physics with computers,” in [29, p. 467–488].

[26] R. P. Feynman, Feynman Lectures on Computation, edited by J. G. Hey and R. W.
Allen (Addison-Wesley, 1996).



CRYSTALLINE COMPUTATION 35

[27] M. P. Frank, “Reversibility for efficient computing,” MIT Ph.D. Thesis (1999).

[28] U. Frisch, B. Hasslacher and Y. Pomeau, “Lattice-gas automata for the navier-stokes
equation,” Phys. Rev. Lett. 56, 1505–1508 (1986).

[29] E. Fredkin, R. Landauer and T. Toffoli (eds.), Proceedings of the Physics of Compu-
tation Conference, in Int. J. Theor. Phys., issues 21:3/4, 21:6/7, and 21:12 (1982).

[30] E. Fredkin and T. Toffoli, “Conservative logic,” in [29, p. 219–253].

[31] E. Fredkin, “Digital mechanics: an informational process based on reversible uni-
versal CA,” in [39, p. 254–270].

[32] E. Fredkin, “A physicist’s model of computation,” Proceedings of the XXVIth Re-
contre de Moriond, 283–297 (1991).

[33] E. Fredkin, “Finite nature,” Proceedings of the XXVIIth Recontre de Moriond,
(1992).

[34] E. Fredkin, “A new cosmogony,” in [70, p. 116–121].

[35] E. Fredkin, “The digital perspective,” in [95, p. 120–121].

[36] D. Griffeath and C. Moore, “Life without death is p-complete,” Santa Fe Institute
working paper 97-05-044, to appear in Complex Systems (1998); also available at
http://psoup.math.wisc.edu, a general source of information on pattern formation
in irreversible CA’s.

[37] L. K. Grover, “A fast quantum mechanical algorithm for database search,” Proceed-
ings, 28th Annual ACM Symposium on the Theory of Computing (STOC), 212–218
(1996) and quant-ph/9605043; reproduced in [54].

[38] J. R. Gunn, C. M. McCallum and K. A. Dawson, “Dynamic lattice-model simula-
tion,” Phys. Rev. E, 3069–3080 (1993).

[39] H. Gutowitz, Cellular Automata: Theory and Experiment (North Holland, 1990);
reprinted from Physica D 45:1/3 (1990).

[40] J. E. Hanson and J. P. Crutchfield, “Computational mechanics of cellular automata:
an example,” in [17, p. 169–189].

[41] J. Hardy, O. de Pazzis and Y. Pomeau, “Molecular dynamics of a classical lattice gas:
transport properties and time correlation functions,” Phys. Rev. A 13, 1949–1960
(1976).

[42] H. J. Herrmann, “Fast algorithm for the simulation of Ising models,” J. Stat. Phys.
45, 145–151 (1986).

[43] H. J. Hrgovc̆ić, “Discrete representations of the n-dimensional wave-equation,” J.
Phys. A 25:5, 1329–1350 (1992).



36 NORMAN H. MARGOLUS

[44] H. J. Hrgovc̆ić, “Quantum mechanics on spacetime lattices using path inte-
grals in a Minkowski metric,” MIT Ph.D. Thesis (1992), available online at
http://www.im.lcs.mit.edu/poc/hrgovcic/thesis.ps.gz

[45] K. Huang, Statistical Mechanics, (John Wiley & Sons, 1987).

[46] E. Ising, “Beitrag zur theorie des ferromagnetismus,” Zeits. für Phys. 31, 253–258
(1925).

[47] J. Kari, “Reversibility and surjectivity problems of cellular automata,” Journal of
Computer and System Sciences 48:1, 149–182 (1994).

[48] J. Kari, “Representation of reversible cellular automata with block permutations,”
Mathematical Systems Theory 29:1, 47–61 (1996).

[49] S. A. Kauffman, “Requirements for evolvability in complex systems: orderly dy-
namics and frozen components,” in [108, p. 151–192].

[50] T. Kawakatsu and K. Kawasaki, “Hybrid models for the dynamics of an immiscible
binary mixture with surfactant molecules,” Physica A 167:3, 690–735 (1990).

[51] C. Langton, C. Taylor, J. D. Farmer and S. Rasmussen (eds.), Artificial Life II,
Santa Fe Institute Studies in the Sciences of Complexity, vol. XI (Addison-Wesley,
1991).

[52] A. Lawniczak and R. Kapral (eds.), Pattern Formation and Lattice-Gas Automata
(American Mathematical Society, 1996).

[53] F. T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays, Trees,
Hypercubes (Morgan Kaufman, 1991).

[54] S. Lloyd (ed.), Quantum Computation (John Wiley & Sons, 1999).

[55] H. K. Lo, T. Spiller and S. Popescu (eds.), Introduction to Quantum Computation
and Information (World Scientific, 1998).

[56] A. Malevanets and R. Kapral, “Microscopic model for FitzHugh-Nagumo dynamics,”
Phys. Rev. E 55:5, 5657-5670 (1997).

[57] D. A. Meyer, “From quantum cellular automata to quantum lattice gases,” J. Stat.
Phys. 85, 551–574 (1996) and in quant-ph/9604003.

[58] D. A. Meyer, “Quantum lattice gases and their invariants,” in [10, p. 717–736] and
quant-ph/9703027.

[59] N. Margolus, T. Toffoli and G. Vichniac, “Cellular-automata supercomputers for
fluid dynamics modeling,” Phys. Rev. Lett. 56, 1694–1696 (1986).

[60] N. Margolus, “Physics-like models of computation,” in [20, p. 81–95]; reproduced in
[54].



CRYSTALLINE COMPUTATION 37

[61] N. Margolus, “Quantum computation,” New Techniques and Ideas in Quantum
Measurement Theory (Daniel Greenberger ed.), 487–497 (New York Academy of
Sciences, 1986); reproduced in [54].

[62] N. Margolus, “Physics and computation” MIT Ph.D. Thesis (1987). Reprinted as
Tech. Rep. MIT/LCS/TR-415, MIT Lab. for Computer Science, Cambridge MA
02139 (1988).

[63] N. Margolus, “Parallel quantum computation,” in [108, p. 273–287]; reproduced in
[54].

[64] N. Margolus, “Fundamental physical constraints on the computational process,”
Nanotechnology: Research and Perspectives (B.C. Crandall and J. Lewis eds.)
(MIT Press, 1992).

[65] N. Margolus, “A bridge of bits,” in [70, 253–257].

[66] N. Margolus, “CAM-8: a computer architecture based on cellu-
lar automata,” in [52, p. 167–187] and comp-gas/9509001. See also
http://www.im.lcs.mit.edu/cam8.html.

[67] N. Margolus, “An FPGA architecture for DRAM-based systolic computations,” in
[73, p. 2–11].

[68] N. Margolus and L. Levitin, “The maximum speed of dynamical evolution,” in [96,
p. 188–195] and quant-ph/9710043.

[69] N. Margolus, “Crystalline computation,” to appear in Proceedings of the Conference
on High Speed Computing (Lawrence Livermore National Laboratory, 1998).

[70] D. Matzke (ed.), Proceedings of the Workshop on Physics and Computation—
PhysComp ’92 (IEEE Computer Society Press, 1993).

[71] R. Monaco (ed.), Discrete Kinetic Theory, Lattice Gas Dynamics and Foundations
of Hydrodynamics (World Scientific, 1989).

[72] B. Ostrovsky, M. A. Smith and Y. Bar-Yam, “Simulations of polymer interpenetra-
tion in 2D melts,” in [10, p. 931–939].

[73] K. Pocek and J. Arnold, The Fifth IEEE Symposium on FPGA-based Custom Com-
puting Machines (IEEE Computer Society, 1997).

[74] Y. Pomeau, “Invariant in cellular automata,” J. Phys. A 17:8, 415–418 (1984).

[75] J. Preskill, “Fault-tolerant quantum computation,” in [55] and quant-ph/9712048.

[76] Y. H. Qian (ed.), Discrete Models for Fluid Mechanics, special issue of J. Stat. Phys.
81:1/2 (1995).

[77] T. S. Ray, “An approach to the synthesis of life,” in [51, p. 371–408].

[78] T. S. Ray, “Evolution of parallel processes in organic and digital media,” in [99, p.
69–91].



38 NORMAN H. MARGOLUS

[79] D. Rothman and S. Zaleski, Lattice-Gas Cellular Automata—simple models of com-
plex hydrodynamics, (Cambridge University Press, 1997).

[80] P. W. Shor, “Algorithms for quantum computation: discrete log and factoring,”
Proceedings of the 35th Annual Symposium on the Foundations of Computer Science,
124–134, (IEEE, 1994) and quant-ph/9508027; reproduced in [54].

[81] N. R. S. Simons, M. Cuhaci, N. Adnani and G. E. Bridges, “On the potential use
of cellular-automata machines for electromagnetic-field solution,” Int. J. Numer.
Model. Electron. N. 8:3/4, 301–312 (1995).

[82] K. Sims, “Evolving 3D morphology and behavior by competition,” in [15, p. 28–39].

[83] M. A. Smith, “Representations of geometrical and topological quantities in cellular
automata,” Physica D 47, 271–277 (1990).

[84] M. A. Smith, “Cellular automata methods in mathematical physics,” MIT Ph.D.
Thesis (1994). Reprinted as Tech. Rep. MIT/LCS/TR-615, MIT Lab. for Computer
Science (1994).

[85] S. Takesue, “Boltzmann-type equations for elementary reversible cellular automata,”
in [17, 190-200].

[86] T. Toffoli, “Computation and construction universality of reversible cellular au-
tomata,” J. Comp. Syst. Sci. 15, 213–231 (1977).

[87] T. Toffoli, “Physics and computation,” in [29, p. 165–175].

[88] T. Toffoli, “CAM: A high-performance cellular-automaton machine,” in [20, p. 195–
204].

[89] T. Toffoli, “Cellular automata as an alternative to (rather than an approximation
of) differential equations in modeling physics,” in [20, p. 117–127].

[90] T. Toffoli and N. Margolus, Cellular Automata Machines—a new environment for
modeling (MIT Press, 1987).

[91] T. Toffoli, “Four topics in lattice gases: ergodicity; relativity; information flow; and
rule compression for parallel lattice-gas machines,” in [71, p. 343–354].

[92] T. Toffoli, “How cheap can mechanics’ first principles be?” in [108, p. 301–318].

[93] T. Toffoli and N. Margolus, “Invertible cellular automata: a review,” in [39, p.
229–253].

[94] T. Toffoli, “What are nature’s ‘natural’ ways of computing?” in [70, p. 5–9].

[95] T. Toffoli, M. Biafore and J. Leão (eds.), PhysComp96 (New England Complex
Systems Institute, 1996). Also online at http://www.interjournal.org.

[96] T. Toffoli and M. Biafore (eds.), PhysComp96, special issue of Physica D 120:1/2
(1998).



CRYSTALLINE COMPUTATION 39

[97] S. Ulam, “Random processes and transformations,” Proceedings of the International
Congress on Mathematics 1950, volume 2, 264–275 (1952).

[98] G. Vichniac, “Simulating physics with cellular automata,” in [20, p. 96–116].

[99] P. D. Waltz (ed.), Natural and Artificial Parallel Computation (SIAM Press, 1996).

[100] C. Vieri, “Reversible computer engineering,” MIT Ph.D. Thesis (1998).

[101] S. Wolfram, Cellular Automata and Complexity (Addison-Wesley, 1994).

[102] V. Yakhot and S. Orszag, “Reynolds number scaling of cellular-automaton hydro-
dynamics, Phys. Rev. Lett. 56, 1691–1693 (1986).

[103] J. Yepez, “Lattice-gas crystallization,” in [76, p. 255–294].

[104] J. Yepez, “A lattice-gas with long-range interactions coupled to a heat bath,” in [52,
p. 261–274].

[105] J. Yepez, “Lattice-gas dynamics,” Brandeis Physics Ph.D. Thesis (1997). Available
as Air Force Research Laboratory Tech. Rep. PL-TR-96-2122(I), PL-TR-96-2122(II)
and PL-TR-96-2122(III), AFRL/VSBE Hanscom AFB, MA 01731 (1996).

[106] S. G. Younis and T. F. Knight, Jr., “Practical implementation of charge recover-
ing asymptotically zero power CMOS,” in Proceedings of the 1993 Symposium on
Integrated Systems, 234–250 (MIT Press, 1993).

[107] S. G. Younis, “Asymptotically zero energy computing using split-level charge recov-
ery logic,” MIT Ph.D. Thesis (1994).

[108] W. Zurek (ed.), Complexity, Entropy, and the Physics of Information (Addison-
Wesley, 1990).


