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In the light of recent developments in the theory of invertible cellular automata, we attempt to give a unified 
presentation of the subject and discuss its relevance to computer science and mathematical physics. 

1 .  I n t r o d u c t i o n  

1.1. Preliminaries 

One of the goals of computer science is to pro- 
vide abstract models of concrete computers, i.e., 
of whatever computing apparatus can ultimately 
be built out of the physical world. In this, one 
seeks expressiveness (whatever aspects of the com- 
puter are deemed relevant should be captured by 
the model) and accuracy (whatever one can prove 
about the model should be true about the com- 
puter). Invertible cellular automata (ICA) are an 
important  development in this direction, of signif- 
icance comparable to the introduction of Turing 
machines (and similar paradigms of effective com- 
putation) in the late '30s. 

Turing machines represent a conscious effort 
[81] to capture, in axiomatic form, those aspects 
of physical reality that are most relevant to com- 
putation. In this, they are quite unlike Cantor 's  
transfinite sets or similar inventions of the roman- 
tic era, and much more like Euclid's principles, 
which were meant to describe the geometry of our 
physical world (and one should not forget that,  
for the Greeks, computat ion was synonymous with 
geometrical construction). 

Cellular au tomata  are more expressive than 
Turing machines, insofar as they provide explicit 
means for modeling parallel computation on a 
spacetime background. However, both classes of 
models are indifferent to one fundamental aspect 
of physics, namely microscopic reversibility, and 

thus help create the illusion that,  computationally 
speaking, one lives in a fairy world where the sec- 
ond principle of thermodynamics is not enforced, 
and "perpetual computation" (in the same sense 
as "perpetual motion") is possible. By explicitly 
coming to terms with this aspect of reality, invert- 
ible cellular automata provide a modeling environ- 
ment that is more accurate and, in the end, more 
productive. 

Only a few years ago, what was known about 
ICA could be summarized in a few lines - and was 
not very exciting either. Today, one can tell a more 
interesting story, and we shall try to do so in this 
paper. 

Our involvement with ICA represents the Con- 
vergence of several research trails, including 
- C o n c u r r e n t  computation in networks having 
uniform structure. 
- Reversible (or "information preserving") com- 
puting processes. 
- Fundamental connections between physics and 
computation. 
- Foundations of relativity. 
- Quantum computation. 
- Fine-grained modeling of physical systems. 
- H i g h - p e r f o r m a n c e  simulation of cellular au- 
tomata.  
- Data encryption. 

1.2. An apology 

We have many things to say, and we have a 
quite varied audience in mind. We want to make 
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sure that the readers perceive the essential is- 
sues before plunging into endless technicalities. 
For these reasons, we shall follow an informal ap- 
proach when this seems to enhance clarity, and we 
shall often present a specific example rather than 
the most general case. 

2. Invertible cellular automata 

2.1. Cellular automata 

Cellular automata are abstract dynamical sys- 
tems that play a role in discrete mathematics com- 
parable to that played by partial differential equa- 
tions in the mathematics of the continuum. In 
terms of structure as well as applications, they are 
the computer scientist’s counterpart to the physi- 
cist’s concept of a ‘field’ governed by ‘field equa- 
tions’. It is not surprising that they have been rein- 
vented innumerable times under different names 
and within different disciplines. The canonical at- 
tribution is to Ulam and von Neumann [82,84] 
(circa 1950). #l 

Concise formal definitions are given in sec- 
tion 2.4 (for a more complete formal treatment, 
see refs. [68,79]). Intuitively, a celZuIar automa- 

ton is an indefinitely extended network of triv- 
ially small, identical, uniformly interconnected, 
and synchronously clocked digital computers. 

More specifically, we start with an indefinitely 
extended n-dimensional lattice which represents 
“space” (typically, n equals 1, 2, or 3 in physical 
modeling applications). To each site of this lattice, 
or cell, there is associated a state variable, called 
the cell state, ranging over a finite set called the 
state alphabet (typically, the cell state consists of 
just a few bits’ worth of data). 

“Time” advances in discrete steps; the dynamics 
is given by an explicit recipe, called the local map, 

which is used at every time step by each cell to 
determine its new state from the current state of 
certain cells in its vicinity. 

The local map itself is the composition of two 
operators, namely, the neighborhood, which speci- 
fies which cells affect the given cell, and the table, 

#l At about the same time but quite independently, Zuse 
[91] proposed structures, intended as digital models of 
mechanics, that are essentially cellular automata. 

which specifies how those cells affect it. In more 
detail: 

(i) The neighborhood lists the relative positions, 
with respect to the generic ceil (in this context also 
called center cell), of a finite number of cells called 
the cell’s neighbors. (The neighbors of a cell need 
not coincide with the cell’s “first neighbors” in 
the array. They may include the cell itself or cells 
that are several sites away, while cells in between 
may be skipped. All that is required is that they 
be finite in number, and be arranged in the same 
spatial pattern with respect to each cell.) 

(ii) The table takes the states of a cell’s neigh- 
bors as arguments, and returns as a result the 
cell’s corresponding new state. 

Thus, a cellular automaton’s laws are local (no 
action-at-a-distance) and uniform (the same rule 
applies to all sites at all times); in this respect, 
they reflect two fundamental aspects of physics. 
Moreover, the system’s laws are finitary, that is, 
by means of the local map one can explicitly con- 
struct in an ezact way the forward evolution of 
an arbitrarily large portion of a cellular automa- 
ton through an arbitrary length of time, all by 
finite means. It is such strong effectiveness built 
in their definition that makes dynamical systems 
based on cellular automata appealing to the com- 
puter scientist. In continuous dynamical systems, 
such as those defined by differential equations, the 
state variables range over an uncountable set, and 
one has to accept a weaker standard for “effective- 
ness”; i.e., a specification of the dynamics is ac- 
cepted as effective if the state of any finite portion 
of the system at any future time can be computed 
with an arbitrarily small error by finite means. In 
cellular automata, we demand and obtain zero er- 
ror. 

In this sense, cellular automata present them- 
selves as a finitary alternative to the methods of 
the calculus in the modeling of spatially extended 
systems. 

2.2. Invertibility 

An assignment of states to all cells, i.e., a state 
for the entire cellular automaton, is called a con- 
figuration. By applying the local map to every 
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site of the array, from any configuration q one 
obtains a new configuration q', called its succes-  

sor.  Thus, the local map defines a t ransformation 
q ~ q', called the global  m a p ,  on the set of config- 
urations. 

A cellular au tomaton  is i n v e r t i b l e  if its global 
map  is invertible, i.e., if every configuration - 
which, by definition, has exactly one successor - 
also has exactly one predecessor. 

In the context of dynamical  systems, invertibil- 
ity coincides with what the physicists call 'micro- 
scopic reversibility' .  This should not be confused 
with ' invariance under t ime reversal ' ,  which is a 
stronger property.  #2 

Initially, cellular au t om a t a  were used chiefly as 
"toy models" for phenomenology associated with 
dissipative (i.e., macroscopically irreversible) pro- 
cesses; typical topics were biological organization 
[40,23], self-reproduction [84], chemical reactions, 
and visual pa t te rn  processing [59]. Since the in- 
terest was more in exploring the c o n s e q u e n c e s  of 
irreversible behavior ra ther  than its or ig in s ,  it was 
not only harmless but  actually expedient (given 
the severely limited comput ing resources) to use 
models where irreversibility happened to be built- 
in. #3 Thus, it is not surprising that  no need was 
felt for [CA. 

It  should be noted that  the issue of invertibility 
wasn' t  even present in the minds of most cellu- 
lar au toma ta  investigators. To the few to whom 
it was, it wasn ' t  at all clear whether  ICA could 
actually lend themselves to the modeling of mi- 
croscopically reversible physics. 

The perceived difficulties were of two kinds. 
On one hand, there were no practical procedures 
known for constructing nontrivial ICA; on the 
other, it was suspected and argued tha t  ICA did 
not have adequate comput ing capabilities. 

#2 Let r: Q --~ Q be an invertible dynamical system. A 
bijective mapping ¢: Q ---* Q obeying appropriate reg- 
ularity properties (e.g., continuity, translation invari- 
ance, etc., depending on the context) is called a time- 
reversal operator if r - t  ---- 0-1rt¢;  the system is in- 
variant under t ime reversal if it admits of such an oper- 
ator. Thus, a tlme-reversal invariant sys tem is not only 
invertible but also isomorphic to its inverse, tIamilto- 
nian mechanics has the well-known tlme-reversal oper- 
ator ~b: (q,p) ~-, (q, -p ) .  

#3 This interest is not abating; see, for instance, refs. 
[55,7,8,10]. 

Both of these difficulties have now been am- 
ply removed. Indeed, ICA have become an impor- 
tant  tool of computat ional  physics in applications 
where the explicit modeling of reversible phenom- 
ena is concerned. Moreover, they are playing an 
increasingly impor tan t  role as conceptual tools of 
theoretical physics. 

2.3.  H i s t o r i c a l  n o t e s  

As already mentioned, cellular au toma ta  were 
initially t reated as some sort of conceptual erec- 
tor set - a plaything for interdisciplinary biologists 
and computer  scientists - and drew little at ten- 
tion from professional mathematicians .  This may 
explain why the issue of invertibility - which in 
mathemat ica l  systems theory is one of obvious pri- 
ority - was slow to be explicitly recognized by the 
cellular au toma ta  community.  

In 1962, Moore [51] asked whether there could 
exist "Garden of Eden" configurations - i.e., con- 
figurations that  do not have a predecessor - and 
proved that ,  under certain conditions, if a config- 
uration has more than one predecessor then there 
must  be a configuration that  has none [511. The 
converse was proved by Myhill [53] in 1963. 

Moore 's  and Myhill 's results originated a 
lengthy "Garden of Eden" debate  (see references 
in ref. [61]), which brought to light a number  of 
subtle issues somehow related to invertibility. B u t  

invertibility was explicitly addressed only in 1972, 
in seminal papers  by Richardson [60] and Amoroso 
and Pa t t  I2]. #4 

After that ,  theoretical work on invertibility in 
cellular au toma ta  proliferated (see refs. [3,61,54] 
and [46-48,90,35]). In spite of that  work, however, 
for many years the most interesting ICA actually 
exhibited remained an extremely simple-minded 
one (the longest orbit  is of period two!), discovered 
by Pat t  through brute-force enumerat ion [56]. ICA 
continued to "appear  to be quite rare" [2]. 

Not only rare, but also simple-minded! On the 

#4 Unbeknownst to those authors, systems that are in 
essence one-dimensional cellular automata had already 
been studied in an abstract mathematical  context by 
Hedlund and associates as early as 1963 [30~31]i both 
Richardson's results on invertibility (section 4.3) and 
Patt's search for ICA (section 5.3) had been antici- 
pated by Hedlund's school. 
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basis of various kinds of circumstantial evidence 
(cf., e.g., ref. [63]), Burks conjectured that an ICA 

cannot be computation-universal [ll] (note that 
that was at a time when computation universality 
was being turned up under almost every stone), 
and soon Aladyev [l] appeared to have proved 
Burk’s conjecture. 

Finally, except for the one-dimensional case [2], 
no one even knew of a systematic procedure for 
telling whether or not a cellular automaton was 
invertible. 

In summary, for a long time ICA seemed to lack 
any appeal or promise. 

Following fundamental results by Bennett on 
invertible Turing machines [6], in 1976 one of 
us (Toffoli) proved the existence of ICA that are 
computation- and construction-universal [67], and 
noted the relevance of this, in principle, to the 
modeling of physics [68]. 

In the same year, and unnoticed by the (then 
meager) cellular automata establishment, Pomeau 
[26] discussed, as a model for hydrodynamics, a 
“lattice gas” that is in fact an ICA and a use- 
ful stylization of certain microscopically reversible 
physical interactions. 

Independently, Fredkin had been studying in- 
vertible recurrences as models of dynamical be- 
havior; had arrived at techniques for synthesiz- 
ing arbitrary sequential behavior out of invertible 
Boolean primitives [19]; and had studied a class of 
ICA (see section 5.4) that displayed some analogy 
with Lagrangian mechanics. 

Rapid, synergistic developments finally started 
taking place in the early ’80s. 

In 1981, a conference on “Physics and Computa- 
tion” [20] explicitly addressed the theme of finda- 
mental connections between physics and computer 
science (rather than more incidental ones, such as 
computer programs for the numerical integration 
of differential equations). Ideas such as “virtually 
nondissipative computation” [19] and “quantum 
computation” [5,18] started gaining legitimacy. 

The links between a number of physicists and 
computer scientists interested in these themes 
were tightened by a follow-up workshop on 
Moskito Island (1982), where an early prototype 
of cellular automata machine was demonstrated 
by us. 

Wolfram’s 1983-1986 sortie into the cellular au- 

tomata arena [85-891, stimulated by that work- 
shop, was in turn a determining factor in intro- 
ducing a generation of mathematical physicists to 
the cellular-automaton paradigm. 

Inspired by Fredkin’s “billiard-ball” model of 
computation [19], Margolus arrived in 1983 at a 
very simple computation-universal ICA[41] that is 
suggestive of how a computer could in principle be 
built out of microscopic mechanics. At about the 
same time, Vichniac [83] and Creutz [13] pioneered 
the use of cellular automata for the microcanoni- 
cal modeling of Ising spin systems. 

The introduction of dedicated cellular automata 
machines [71] encouraged much new experimental 
work on ICA, and stimulated further theoretical 
developments. 

For instance, according to Pomeau, seeing (at 
a second Moskito Island workshop, in 1984) his 
lattice-gas model running on one of these ma- 
chines made him realize that what had been con- 
ceived primarily as a conceptuaE model could in- 
deed be turned, by using suitable hardware, into a 
computationally accessible model. This stimulated 
his interest in finding lattice-gas rules that would 
provide better models of fluids. In the past few 
years, lattice-gas hydrodynamics has grown into a 
substantial scientific business (see section 5.6). 

In turn, the growing interest in fine-grained 
models of physics and in their potential appli- 
cations to important practical problems created 
the need for computers capable of handling large 
models of this kind much more efficiently than 
conventional scientific computers [45]. A second 
generation of cellular automata machines, whose 
development is almost complete [44,78], reflects in 
its architecture the objective to efficiently support 
the simulation of ICA- which are likely to consti- 
tute a major portion of its fare. 

2.4. Terminology 

The present section complements with precise 
definitions and notation the informal terminol- 
ogy introduced in sections 2.1-2.2. Refer to refs. 
[31,72] for more abstract, but equivalent, defini- 
tions given in terms of continuity in the Cantor-set 
topology. 
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Space. Let S = Z n denote the Abelian group 
of translations of an n-dimensional lattice I onto 
itself. It  will be convenient to call the elements of 
S displacements. The sum and the difference of 
two displacements are again displacements. The 
application of a displacement s E S to a site i E I 
yields a new site denoted by i + s. The difference 
i' - i between two sites is the displacement s such 
that  i' = i + s .  

Interconnection. A neighborhood is a finite set 
of displacements (i.e., a subset of S). Typically, 
a neighborhood X is applied as an opera tor  to 
a site i, yielding a set of sites. Tha t  is, the X -  
neighborhood (or s imply the neighborhood, when X 
is understood) o f / i s  the set i + X  = { i+x l x  E X}; 
the elements of i + X are the neighbors of i, and 
are natural ly  indexed by the elements of X.  

The radius of X is the length of its longest ele- 
ment.  #5 

State. Given a lattice I and a nonempty  state 
a lphabet  A, the set Q of configurations (of A over 
I )  is the Cartesian product  of copies of A indexed 
by the set I ,  i.e., Q = A t. The ith component ,  
in this product ,  of a configuration q is called the 
s tate  of site i in configuration q, and is denoted as 
usual by qi. Note that  qi c A can be thought  of 
as the result of applying to configuration q C A I 
the projection operator  [i] associated with the ith 
coordinate of the Cartesian product ,  i.e., qi = [i]q. 

More generally, a neighborhood projection oper- 
ator  [i + X] will extract  from a configuration q the 
collective s tate  of the neighbors of i, denoted by 
[i + X]q or qi+x. Note that  qi+x E A x .  

Dynamics. A local map is a pair A = (X, f ) ,  
where X is a neighborhood and f a table, i.e., a 
function of the form f:  A x --* A. The table f can 
be applied to any site i of a given configuration 
q through the agency of the neighborhood projec- 
tion operator ,  which will extract  from q and sup- 
ply to f the correct set of arguments.  Let q~ be 
the result of this application, i.e., 

q~ -- fq i+x (=  f[i  + X]q). (1) 

The symbol q~ can be interpreted as the state at 
site i of a new configuration q'. The relation q' = 

#s For our purposes, the Euclidean metric will do, even 
though it is an overkill. 

rq defines a new function r:  Q ~ Q, called the 
global map induced by the local map A. 

Note that  the local map  can be thought of as a 
function A: (Q , I )  --~ A defined (cf. (1)) by 

$(q, i) = (X,  f ) (q ,  i) = fq i+x .  (2) 

The sequence of configurations obtained from 
an initial configuration q0 by i terating the map  r 
will be denoted by 

qO,ql q2 , . . .  (3) 

where the superscript  represents the sequence in- 
dex rather  than  an exponent.  

A table f ,  formally given as a function of k argu- 
ments (k is the size of the neighborhood X) ,  may 
happen to depend vacuously on some of these ar- 
guments.  In tha t  case, one can maximal ly  reduce 
neighborhood and table in an obvious way, yield- 
ing the effective neighborhood and the correspond- 
ing table - which together make up the reduced lo- 
cal map.  Unless otherwise noted, we shall tacit ly 
assume that  local maps  are given in reduced form. 

3. U n i v e r s a l i t y  

Little needs to be added here on the universality 
theme. 

In ref. [67], the computa t ion  universality of ICA 
was proved by showing tha t  every computat ion-  
universal cellular au tomaton  can be embedded in 
an invertible one having one more dimension. This 
left open the question of whether  one-dimensional 
ICA could be computat ion-universal .  A positive 
answer was recently given by Morita  and Harao 
[50]. 

The constructions of refs. [67,50] are more con- 
cerned with existence than with efficiency. More 
direct constructions can be more instructive as 
well as more efficient. Indeed, if one wants to build 
a general-purpose comput ing structure within a 
cellular au tomaton ,  the most  practical approach 
is to s tar t  with a local map  tha t  directly supports  
logic gates and wires, and then build the appropri-  
ate logic circuits out of these primitives [4,77]. As 
explained in refs. [70,19], in an invertible cellular 
au tomaton  the gates will have to be invertible; be- 
cause of this constraint,  a complete, self-contained 
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logic design will have to explicitly provide, be- 

sides circuitry for the desired logic functions, ad- 
ditional circuitry for functions (analogous to en- 
ergy supply and heat removal in ordinary comput- 
ers) concerned with entropy balance. This issue, 
which had been bypassed in ref. [67], is directly 
addressed by ICA such as the BBM model devised 
by Margolus [41]. 

4. Decidability 

One of the first questions to come to mind is, 
of course, “How does one tell if a cellular automa- 
ton is invertible?” We shall now present the essen- 
tial aspects of this question; further details will be 
given in the following sections. 

4.1. A parable 

FOR SALE: Local map X of invertible cellular 
automaton SPRIZE. Interesting behavior, lots of 
fun. $29.95. Call John at x3194. 

This ad catches my attention. I already have a 
bunch of cellular automata at home, that I can 
run on my personal computer, but this one claims 

to be invertible: its global map T has an inverse 
r-l, and by running r -’ I can watch the automa- 

ton go backwards in time! I send my check. Four 
days later I receive a diskette containing a data 
file SPRIZE.LOC (which, I presume, tabulates the 
local map X of SPRIZE). I bring up my cellular- 
automaton simulation program, load SPRIZE. LOC, 
initialize the screen with a blob of random junk on 
a clear background, and hit the RUN key. The blob 
starts churning - perhaps it’s spreading a bit - yes, 
it’s spreading, but very slowly - rather boring, I’d 
say. Wait - look at that long caterpillar crawling 
up the screen! How the heck did it get started? 

Can I go backwards in time and see exactly how 
the caterpillar emerged out of the random blob? I 
look in the diskette directory, and I find a second 
file labeled -SPRIZE.LOC. That must be it - the 
local map 1 of SPRIZE’s inverse! I load it. There 
goes the caterpillar crawling backwards, curling 
up into some sort of cocoon at the edge of the 
blob, and finally dissolving into randomness! 

I make a few more experiments. Indeed, the cel- 

lular automaton SPRIZE defined by the local map 

A is invertible and 1 is the local map of its inverse. 

That’s a happy conclusion - but the story could 
have ended differently. 

Suppose I didn’t find a file -SPRIZE. LOC. What 
good is knowing that SPRIZE is invertible if I don’t 
have an effective way to run its inverse? Worse yet, 
in this situation how can I be sure that John’s 
ad was truthful - that SPRIZE is invertible? Can 
I prove it? Or perhaps disprove it and claim a 
refund? 

Assuming that SPRIZE is after all invertible, can 
I find x by myself, starting from X? How long will 
that take? By definition, 1 is a finite object, and I 
can sequentially generate all possible candidates. 
But how would I recognize the right one? And 
is the very existence of 3 guaranteed? In other 
words, if the global map r has a local description, 
does it follow that also its inverse r-l has a local 
description - that the inverse of a cellular automa- 
ton is again a cellular automaton? 

4.2. The jinitary connection 

To summarize, for any given cellular automaton 
we would like to know whether or not it is invert- 
ible; if it is, we would like to have a finite recipe 
also for its backward evolution, i.e., the inverse 
local map - as contrasted to the direct local map 
of the forward process. 

For the sake of comparison, let’s look at a dy- 
namical system defined by a differential equation. 
Consider, for example, the evolution of the tem- 
perature distribution q(z, t) along a metal bar, ac- 
cording to the “heat” equation 

&? a24 
at = 622’ 

(4) 

This equation can be thought of as a local recipe 
for an “infinitesimal” forward step, 

q(t + dt)lz = q(t)\, + 2 dt 
* 

and by just turning +‘s into --‘s one immediately 
obtains a local recipe for an infinitesimal back- 
ward step. Thus, whenever the forward evolution 
is defined, so is the backward one, and a local in- 
verse recipe is known as soon as a direct one is. In 
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conclusion, with differential equations there is an 
immediate connection between direct and inverse 
local recipes. (However, one should keep in mind 
that, as noted in section 2, these local recipes are 
of a less effective kind than those of cellular au- 
tomata.)  

On the other hand, with ICA, the only connec- 
tion we have in principle between direct and in- 
verse local maps is through a non-finitary route, 
as is illustrated by the following diagram: 

f initary non-finitary 
constructs constructs 

direct local map ~ direct global map (6) 

1 
inverse local map ( inverse global map 

Under what conditions can we establish a f initary 
route from a direct local map to an inverse one? 

4.3. The fundamental  lemmas 

Whatever the technical difficulties in charting 
such a route, it is important  to know that the 
endpoint exists and is recognizable, as shown by 
the following two lemmas. 

L e m m a  4.1 (Richardson [60]) I f  a cellular au- 
tomaton is invertible, then its inverse is a cellular 
automaton. 

This is a fundamental result. It tells us that if 
the global process described by a local map is in- 
vertible, then also the inverse global process has a 
local map, i.e., it can be described in local terms. 
On the other hand, the proof (which is based on 
topological arguments of a general nature) doesn't  
give any explicit method for constructing the in- 
verse local map. 

L e m m a  4.2 There is an effective procedure for 
deciding, for any two local maps A and A' defined 
on the same set of configurations, whether the cor- 
responding global maps r and ~-' are the inverses 
of one another. 

Proof. The composition A" = A'A is a new map 
operating on the neighborhood consisting of the 
neighbors (according to A) of the neighbors (ac- 
cording to A') of the generic cell. If for any value 

a of this cell the map A" returns the value a, in- 
dependently of the values of the other neighbors, 
then 7'T is obviously the identity function. If  a 
value different from a is returned from some choice 
of values for the other neighbors, then 7-'7- obvi- 
ously differs from the identity. [] 

The construction in the above proof provides a 
way to verify whether an alleged inverse local map 
A' of a direct local map A is indeed such an inverse. 
This test is our touchstone for certifying that a cel- 
lular automaton is invertible. Whether the candi- 
date A t was generated by a rigorous construction, 
suggested by heuristic methods, dictated by an or- 
acle, encountered on a search, or even arrived at 
by faulty arguments, if it passes the test it can be 
accepted without further question. 

Conceivably, it might be possible to prove the 
invertibility of a cellular automaton without ex- 
hibiting a local map for its inverse. However, we 
don' t  know of any cases where this has been done. 
For all of the IcA known today, the inverse local 
map comes "bundled", as it were, with the direct 
one. 

4.4. The fundamental  theorems 

From lemma 4.2 one immediately obtains 

T h e o r e m  4.3 The class of invertible cellular au- 
tomata is recursively enumerable. 

Proof. Sequentially generate all local maps, say, in 
order of increasing complexity (measured in terms 
of state-alphabet size and neighborhood radius). 
For each item A in this sequence, start a new enu- 
meration of all local maps, and for each item A' of 
this enumeration test whether A' is the inverse lo- 
cal map of A. Each match yields an ICA, and every 
ICA will eventually turn up in the course of this 
double enumeration. [] 

In other words, invertibility in cellular au- 
tomata  is at least semidecidable: if a specific cellu- 
lar automaton is invertible, the above procedure 
will positively let us know; however, if it is not 
invertible, at no moment in time will we be posi- 
tively told of that. 

How about full  decidability? One partial result 
was already mentioned in section 2.3, namely, 
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Theorem 4.4 (Amoroso and Patt [2]) There is 

an effective procedure for deciding whether OT not 

an arbitrary one-dimensional cellular automaton, 

given in terms of a local map, is invertible. 

Amoroso and Patt thought that the techniques 
employed by them were “in principle extendable 
to arrays of higher dimension”. Since, however, 
these techniques were “difficult to manage beyond 
dimension one”, they expected that “generaliza- 
tions of their results to higher dimensions” would 
“most likely require a different approach”. 

Since then, for almost twenty years a quest for 
these “generalizations” to more than one dimen- 
sion went on with little success. (Invertibility and 
related properties for the one-dimensional case 
were revisited in [54,87,14,29].) Many equivalent 
characterizations of ICA were given [90,47,48,35], 
but none that offered a finitary handle on invert- 
ibility. 

Finally, quite recently, Kari proved that 

Theorem 4.5 (Kari [38,39]) There is no eflec- 
tive procedure for deciding whether or not an ar- 

bitrary two-dimensional cellular automaton, given 
in terms of a local map, is invertible. 

His proof is by reduction to the undecidability of 
the tiling problem, and depends on the availabil- 
ity of a set of tiles having certain properties. He 
exhibits such a set, but the construction runs over 
fifteen pages; given the importance of the result, 
we hope that a shorter proof will be found soon. 

Thus, the invertibility of a cellular automaton 
is, in general, undecidable. This has important im- 
plications, some of which we intend to discuss (sec- 
tion 8). But, lest the readers feel that they are 
groping completely in the dark, let us first balance 
the negative result of theorem 4.5 with a body of 
positive results concerning ICA. 

5. Ways to make invertible cellular 

automata 

Suppose one wanted to get a general feeling for 
what kinds of behavior are possible with ICA. One 
could start with a good assortment of these au- 
tomata, and study a number of cases in detail. 

The problem is, how does one put together such 
an assortment? 

In our experience, rather than spend an inor- 

It turns out that of all cellular automata the 
invertible ones constitute a vanishingly small sub- 

dinate amount of resources on a blind search for 

class [62]. Moreover, as we have seen in section 
4, there is no effective procedure for determining 

these objects that are rare, hard-to-recognize, and 

whether or not an arbitrary cellular automaton (as 
specified by a local map) is invertible. Finally, even 

more often than not quite plain, it is more reward- 

if one were willing to fall back on a brute-force 
search (theorem 4.3), a long search time would 

ing to attempt the direct synthesis of special cases 

generate only a few items, and even those would 
be for the most part quite uninteresting. 

having certain desirable features. In this section, 
we shall discuss a number of synthesis techniques 
which yield a rich variety of ICA. 

5.1. Trivial cases 

Let us consider the following two cases: 

(a) Each cell is allowed to look only at itself as a 
neighbor. Then the cellular automaton reduces 
to a collection of finite, isolated systems - one per 
cell. 

(b) Each cell is instructed to copy, say, its 

left neighbor. Then the whole configuration will 
shift one cell to the right at each time step. This 
‘uniform shift’ behavior can be factored out of the 
dynamics by a simple coordinate transformation 
of the form z H z - t. After this transformation, 
the global map reduces to the identity, and again 
the cellular automaton collapses into a collection 
of finite, noninteracting systems. 

A cellular automaton whose neighborhood con- 
sists of at most one cell, as in (a) or (b) above, is 
called trivial [2]. 

Clearly, a trivial cellular automaton is invertible 
if and only if its effective neighborhood X consists 
of exactly one element, and its table, of the format 

AL A, is invertible, i.e., is a permutation of the 
state alphabet A. 
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5.2. The incredible shrinking neighborhood q~ (Tf~ -1-t÷l = ) . ( s )  

It would be nice if the invertibility of a cellu- 
lar au tomaton  could always be reduced, as in the 
previous section, to the invertibility of its table. 
Unfortunately, when the neighborhood X consists 
of more than one element, the table f as such can- 
not be invertible, since the two sets tha t  appear  

in A x ~ A have different cardinalities. 
Let us concentrate on this point. From the view- 

point of the global map,  qold ~ qneW, the configu- 
ration qold contains all the information needed to 
construct qneW (via 7-); if the au tomaton  is invert- 
ible, also qneW contains all the information needed 
to construct qold (via 7--1). This symmet ry  be- 
tween the two directions of t ime is not preserved, 
in general, when the same dynamics is expressed 

~old A n e w  by a local map  ui+x qi ; in fact, while the new 
state of a cell is completely determined by the old 
state of its neighbors, the la t ter  is not completely 
determined by the former - even i f  the cellular 
automaton is invertible. #6 

Yet, the only way we know to construct  ICA is to 
somehow manage to overcome the above difficulty 
of format,  and in the end express the local map  
in terms of permuta t ions  of the s tate  alphabet .  
Different ways of doing this are presented in the 
next three sections; here we'll t ry to capture the 
flavor of this approach.  

In a trivial ICA (cf. previous section), a new con- 
figuration is obtained from an old one by apply- 
ing a given permuta t ion  of the state a lphabet ,  lr, 
to each cell, i.e., qOld~ . . . .  • q/ , of course, 1: itself is 
independent of i. Consider now the set II  of all 
permuta t ions  of the state alphabet ,  and make a 
dynamical  system where each site i uses a permu- 
tat ion ~-~ E I I  that  may be different from site to 
site and from moment  to moment ,  i.e., 

q~+l ---- 7r~q~. (7) 

This system is not a cellular au tomaton ,  because 
its dynamics is space- and t ime-dependent ,  but 
is still invertible. In fact, since the ~r~ are assigned 
once and for all for each i and t, the inverse system 
is explicitly given by 

#6 Intuitively, the neighbors of site i will also affect sites 
other than i; in turn, when time is made to flow back- 
ward, they may be affected by sites other than i. 

Now, the trick to restore space- and time-invarian- 
ce is to make the choice of 7r~ depend on i and t 
not directly, but only indirectly, as a function of 
the "landscape" that  can be seen from site i at  
t ime t (i.e., the state of the neighborhood not in- 
cluding the center cell itself). Now we are back to 
a cellular automaton,  but, unless we are careful, 
we may lose invertibility, since the landscape itself 
will in general change under the action of the local 
map.  All that  is left to do is make sure of the fol- 
lowing: If  the "old" landscape of site i told us (by 
means of a definite recipe p) to use permuta t ion  
7r[ at site i and t ime t while going forward in time, 
then the "new" landscape of site i must be able 
to point (by means of a matching recipe ~) at the 

(which we will then invert) same permuta t ion  7r i 
when going backwards in time. 

In section 5.3, this is done by making sure that  
the relevant landscape does not change at all, so 
that  7r~ does not in fact depend on t. In section 
5.4, only half of the state variables are allowed to 
change at each step, while the other half, which 
does not change, provides a landscape that  is rec- 
ognizable from either direction of time-travel; the 
two halves exchange roles after each step. Finally, 
in section 5.5, center cell and landscape are fused 
into an indivisible block of cells, and the dynamics 
is effectively given by a permuta t ion  that  acts on 
the entire block rather  than on a single cell. 

5.3. Conserved-landscape permutations 

In 1971, Pa t t  [56J conducted a search for non- 
trivial ICA, restricting himself to one dimension 
(where a decision procedure is known), two states 
per cell, and contiguous neighbors. He found none 
for neighborhoods of size 2 and 3. His search 
stopped at size 4, where he found exactly eight 
cases (out of 65,536). All the eight cases are vari- 
ants (obtained by reflection or complementat ion)  
of a single cellular automaton,  described by the 
following local map  (where the center cell is un- 
derscored): 

00_00~-,Q 0!00~-, L 1000~-~0 1100~-, 1 
0Q01~0 0 ! 0 1 H ~  1Q01~0 1 1 0 1 ~ !  
0Q10~-~!* 0!10~-,Q* 1010~-*0 1110~-,1 
0Qll~-,0 0111~-~1 1011,-~0 1111~-~1. 

(9) 
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What makes this cellular automaton invertible? 
Note that the local map specifies ‘no change’ ex- 
cept for those two entries (starred in the table) 
where the center cell is surrounded by the land- 
scape 0010 - in which case the cell itself invariably 
“flips”, i.e., complements its state. What property 
of this landscape is crucial to the automaton’s in- 
vertibility? #’ 

It turns out that, with local map (9), changing 
the state of the center cell in the landscape 0010 
cannot lead to the creation or the destruction of 
other occurrences of that landscape - the land- 
scape is conserved. This is easier to verify if the 
local map, of the form 

is explicitly tabulated as follows (‘-’ denotes a 
“don’t care” argument) 

landscape(i) 1 z 

“;:-:I 

In these circumstances, if one attempted to 
“undo” one step of the dynamics, one would know 
exactly which cells have just been changed (be- 
cause wherever a change was permitted the cor- 
responding landscape was conserved), and how to 
undo the changes (because the effect of a ‘flip’ can 
be reversed by flipping again). In fact, the inverse 
local map for this dynamics is identical to the di- 
rect one. 

Note that a conserved landscape prevents most 
of the cells of a configuration from ever changing 
state; at a higher hierarchical level, those cells can 
be regarded as structural parameters of the ma- 
chinery rather than state variables. The remaining 
cells, which constitute the effective state variables, 
are decoupled from each other, leading to a situ- 
ation where invertibility is determined in a trivial 
way, much as in the previous section. 

#7 Notice that when the flip is conditioned by a different 

landscape, the resulting cellular automaton is not, in 
general, invertible. For instance, with the rule where 

the center cell flips in the landscape 1000, the configu- 
ration . . 00000100000 . . has no predecessors. 

Invertibility in conserved-landscape cellular al 
tomata is not limited to trivial cases. For exan 
ple, by making use of several conserved landscape 
that partially overlap one another, one can selel 
tively retain some coupling between cells; in pa 
titular, one can construct ICA that simulate an 
second-order ICA (cf. section 5.4). 

5.4. Second-order cellular automata 

We shall give a simple method for obtainin: 
starting from an arbitrary cellular automaton, 
new one that is invertible and has a neighborhoo 
at least as large as that of the original - and tht 
is nontrivial if the original was nontrivial. 

To paraphrase Zeno, if we cut a single frame or 
of the movie of a flying bullet, we have no wr 
of knowing what the bullet is doing. However, 
we are given two consecutive frames, then we ca 
figure out the bullet’s trajectory. That is, fro: 
these two frames, interpreted as the bullet’s “pas1 
and “present” positions, we can construct a thil 
frame giving the bullet’s “future” position; th 
procedure can be iterated. 

The laws of Newtonian mechanics happen to 1 
such that, if for some reason the two frames gc 
exchanged, we would end up figuring the bullet 
trajectory in reverse. The present approach to il 
vertibility in cellular automata, suggested by E 
Fredkin of MIT, is based on the above mechanic 
metaphor. 

Let us start with a dynamical system in whit 
the sequence of configurations that make up a tr 
jectory is given by a relation of the form 

4 
t+1 _ - 7qt. (1 

For the moment, we can think of the qt as real vai 
ables. In general, (11) gives rise to a noninvertib 
dynamics (i.e., there may be no way, or no uniql 
way, to extend the sequence backwards). For tl 
dynamics to be invertible, r itself must be inver 
ible. 

Now, let us consider a new system, defined 1 
the relation 

Q 
t+1 = Tqt _ qt-‘. (1 

This is an example of second-order system, whe 
the “next” configuration is a function of both tl 
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(a) ,(b) 

Fig. 1. Equi l ibr ium configurations of q2It above the critical energy (left) and at the critical energy (right). 

"current" and the "previous" one - and thus it 
takes a pair  of consecutive configurations to com- 
pletely determine the forward trajectory. In gen- 
eral, second-order relations give rise to noninvert- 
ible dynamics.  However, a relation of the specific 
form (12) guarantees the invertibility of the dy- 
namics for an arbi trary r.  In fact, by solving (12) 
with respect to qt-1, one obtains the relation 

q t - 1  = 7_qt _ q t + l ;  (13)  

that  is, a pair of consecutive configurations suffice 
to determine in a unique way also the backward 
trajectory.  

The above considerations can immediate ly  be 
applied to cellular au t om a t a  (see ref. [77, ch. 6] 
for an intuitive presentation).  In equation (11), let 
the qt be configurations of a cellular au tomaton ,  
and r a global map.  The local map will be of the 
form 

q~+l = fq~+x" (14) 

We shall identify the r elements of the s tate  al- 
phabet  A with the integers 0 ,1 , . . . ,7"  - 1. Then 
(12), with " - "  denoting the di f ference #s  mod r 

#s  Of course, " - "  as an opera tor  on configurations is in- 
duced from " - "  as an opera tor  on single ceils, as used 
for instance in (15) below, by applying it in parallel to 
all sites. 

between two configurations, defines a part icular  
second-order  cellular au tomaton  whose local map 
is 

qt+l  t q t - 1  
= f q i + x  - (15) i i " 

Note that  the above equation can be rewrit ten as 

qt+l t 1 ( 1 6 )  i : 7rq,, x qi , 

where the permuta t ion  7r that  turns q~-l into q~+l 
changes, from site to site, as a function of the 
"landscape" qi+ x .  

With this method,  from any ordinary cellular 
au tomaton  with state a lphabet  A and global map 
r one immediate ly  obtains from (15) a second- 
order cellular au tomaton  that  is invertible. The 
latter,  in turn,  can always be written as an or- 
d inary  cellular automaton,  with state alphabet  
A x A, configurations of the form ( q t - l , q t )  and 
global map of the form 

(q t -1 ,  qt> ~_~ (qt, r q t _ q t - l > .  (17) 

Thus,  in spite of the great "rari ty" of ICA, the 
ones we can construct are at least "as n l a n y "  a s  

the noninvertible ones! 
Second-order recurrences in which the individ- 

ual s tate variables are real numbers (rather  than 
bits) are, of course, routinely used in constructing 
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finite-difference schemes for Lagrangian systems, 
and recurrences of the form (17), in particular, for 
obtaining invertible dynamics (cf. ref. [12]). Note, 
however, that - no matter whether the state vari- 
ables are real numbers or symbols from a finite 
state alphabet - a permutation operator of the 

form aqi+X, as in (16), is much more general than 
a difference operator of the form ‘fqf+X-‘, as in 

(15). 
We shall briefly present two examples of second- 

order ICA that combine richness of behavior with 
economy of means. #’ 

The q2R rule, introduced by GCrard Vichniac 
[83] (for more detail, see ref. [77, ch. 17]), is the 
simplest microcanonical model of a two-dimen- 
sional Ising spin system. The two elements of the 
state alphabet A = {T, J} can be thought of as the 
two orientations of a spin-k particle tied to each 
lattice site. The neighborhood consists of the four 
“first neighbors” of a cell (in the four directions 
of the compass). The operator K in (16) specifies 
‘flip’ if two of the four neighbors are spin-up and 
two spin-down, and ‘no change’ in all other cases. 
If one assigns one unit of potential energy to each 
occurrence of an antiparallel bond (TJ) between 
a cell and one of its neighbors, the above rule is 
equivalent to flipping a spin whenever this opera- 
tion is energetically indifferent. Thus, the state of 
the entire spin array moves, in phase space, along 
a surface of constant energy. #lo Innumerable vari- 
ants and generalizations of this basic model can, of 
course, be devised (cf. ref. [77]). But even in this 
bare form the model is adequate for illustrating 
the richness and the theoretical challenges of criti- 
cal phenomena theory (symmetry breaking, phase 
transitions, long-range correlations, etc.). Fig. 1 

#Q Another example is the earlier cellular-automaton re- 

alization (2 dimensions, 3 states, 9 neighbors) of the 
“billiard ball” model of computation [19], discussed by 
Margolus in ref. [41, appendix A]. The encouraging 
results obtained through this construction eventually 
lead to to a more compact realization of the billiard- 
ball model via the partitioning technique (section 5.5). 

#lo Q2R actually consists of two intermeshed but indepen- 
dent sublattices, one evolving in the “white” squares an 
the other in the “black” squares of a spacetime checker- 

board, and each separately conserving energy. In ref. 
[77], we discuss a number of ways to overcome this 

redundancy by using cellular automata of slightly dif- 
ferent formats. 

Fig. 2. A spacetime history from the SCABVES rule. Time 

progresses righwards. 

illustrates the onset of phase separation as one 
crosses the critical temperature. 

The SCARVES rule [77, p. 971, introduced and 
extensively studied by Charles Bennett, is a one- 
dimensional system; it supports a variety of “ele- 
mentary particles” that travel at different speeds 
and undergo various types of interaction, as illus- 
trated in fig. 2. The four neighbors are now the two 
Yirst neighbors” and the two “second neighbors” 
in the one-dimensional array; except for that, the 
operator K can be described by the same words as 
that for 4%. 

Other simple examples of second-order cellular 
automata relevant to statistical mechanics are dis- 
cussed in ref. [77] and in refs. [64,66]; the anal- 
ogy with Lagrangian and Hamiltonian mechanics 
is explored further in refs. [43,37]. 

5.5. Partitioning cellular automata 

The advantage of trivial cellular automata is 
that the domain and the range of the table are the 
same set, so that invertibility of the table implies 
invertibility of the dynamics; the disadvantage, of 
course, is that each cell is its only neighbor, so 
that there is no communication between cells. 

Following refs. [41,43], let us try to keep the 
advantage and remove the disadvantage. At time 
0, let us cut up space into finite regions, obtain- 
ing a partition po of the set of sites (in fig. 3, the 
thick lines delimit regions consisting of four-cell 
squares). Let us introduce a new kind of local map 
that takes as input the contents of a region and 
produces as output the new state of the whole re- 
gion (rather than of a single cell). Such a map fo 
allows information to be exchanged between cells 
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Fig. 3. Even (thick lines) and odd (thin lines) partitions of 
a two-dimensional array into four-cell blocks. One block in 
each partition is shown shaded. 

of a region,  bu t  not  across  region bounda r i e s .  I f  
f0 is inver t ib le  (note  t h a t  the  fo rma t  of f0 is "four 
cells to four  cel ls") ,  the  co r r e spond ing  g loba l  m a p  
To is also inver t ib le .  I f  we kept  i t e r a t i n g  To, in- 
f o r m a t i o n  would  r ema in  locked up  wi th in  each re- 
gion. In s t ead ,  a t  the  next  s t ep  let  us use a different 

pa r t i t i on , / °1  ( th in  l ines in fig. 3), and  a local  m a p  
f l  of  the  same  k ind  as f0, bu t  ac t ing  on the  regions  
of P1. Aga in ,  if  f l  is inver t ib le  so is the  co r r e spond-  
ing global  m a p  r l .  The  regions  of P1 s t r a d d l e  the  
b o u n d a r i e s  be tween  regions of  P0, and  so in forma-  
t ion t h a t  a t  s t ep  0 had  been  d a m m e d  up wi th in  
a region of  P0 m a y  a t  s t ep  1 spil l  over ad j acen t  
regions.  We shal l  keep a l t e r n a t i n g  be tween  To and  
r l ,  r e spec t ive ly  at  even and  o d d  t ime  s teps .  

We have thus  achieved our  two m a i n  goals,  
namely ,  we have c o n s t r u c t e d  a s t ruc tu re ,  ca l led  
a part i t ioning cel lu lar  a u t o m a t o n  (genera l i za t ions  
to la rger  regions  and  longer  t i m e - s t e p  cycles  a re  
obvious) ,  in which (a) g loba l  i nve r t ib i l i t y  der ives  
in a s t r a i g h t f o r w a r d  way  from local  inver t ib i l -  
i ty,  and  (b) i n f o r m a t i o n  can  be t r a n s m i t t e d  over 
any  d i s t ance  (i.e., the  s y s t e m  is an i n t e r a c t i n g  
whole  r a t h e r  t h a n  a col lect ion of  i so la ted  subsys-  
t ems) .  #11 

The  p a r t i t i o n i n g  t echn ique  is p a r t i c u l a r l y  use- 
ful for c o n s t r u c t i n g  sy s t ems  cons is t ing  of moving  

#11 The definition of partitioning cellular automata intro- 
duces a minor departure from uniformity in space and 
time; but the full uniformity of an ordinary cellular 
automaton can easily be restored; in the present ex- 
ample, one would consider "super-cells" (each consist- 
ing of the four cells that make up a region of partition 
P0) and "super-steps" (consisting of the composition 
of two consecutive steps) - yielding a global map of the 
form r = rlr0. Quite generally, a wide class of finitary 
rules that have a periodic spacetime structure can be 
recast as ordinary cellular automata. 

par t ic les .  To "move"  a pa r t i c l e  in a ce l lu lar  au- 
t o m a t o n  one mus t  ac tua l l y  erase the  pa r t i c l e  f rom 
i ts  cur ren t  s i te  i and  create a new copy of it  on 
an ad jacen t  s i te  j .  These  two ope ra t i ons  mus t  be 
carefu l ly  m a t c h e d ,  lest  pa r t i c l e s  vanish or  mul t i -  
ply;  un fo r tuna te ly ,  in o r d i n a r y  cel lular  a u t o m a t a  
the  i n fo rma t ion  avai lab le  to the  local  m a p  when 
ac t ing  on si te  i (i.e., the  s t a t e  of the  ne ighbor-  
hood  of i) is different  from tha t  on si te  j ,  and  
t h a t  makes  i t  difficult  for two d i s t inc t  a pp l i c a t i ons  
of the  local  m a p  to ca r ry  out  the  two halves  of 
the  same decis ion ( 'move '  or ' no t  move ' ) .  Specia l  
ha ndsha ke s  mus t  be devised.  #12 W i t h  pa r t i t i on -  
ing ce l lu lar  a u t o m a t a ,  the  two halves of a 'move '  
o p e r a t i o n  can be m a d e  to fall wi th in  the  scope of 
the  same  ne ighbo rhood ,  and  thus  coo rd ina t i on  is 
t r iv ia l .  Th is  fea tu re  has  an i m m e d i a t e  a p p l i c a t i o n  
in l a t t i ce  gases (sect ion 5.6) and  s imi la r  in te rac t -  
ing pa r t i c l e  sys tems .  

In the  s ame  way as one insures  the  conserva-  
t ion of  the  n u m b e r  of  par t i c les ,  one can insure  the  
conse rva t ion  of  o the r  quan t i t i e s  of phys ica l  in ter -  
est  (var iab les  t h a t  represent  m o m e n t u m ,  charge,  
etc.) .  

5.6. Lattice gases 

In tu i t ive ly ,  a lattice gas is a sy s t em of pa r t i c l es  
t h a t  move in d i sc re te  d i rec t ions  at  d iscre te  speeds ,  
and  undergo  d i sc re te  in te rac t ions .  I t  will be clear  
in a m o m e n t  t h a t  a l a t t i c e  gas is bu t  a specia l  
fo rma t  of ce l lu lar  a u t o m a t o n ;  however,  it  will  be 
useful to s t a r t  wi th  a e xa mp le  in which the  more  
p ic tu resque  t e r m i n o l o g y  of  con t inuous  m o t i o n  is 
r e ta ined .  

In  the  H P P  l a t t i ce  gas [26], ident ica l  pa r t i c l e s  
move at  uni t  speed  on a two-d imens iona l  o r thog-  
onal  l a t t i ce ,  in one of the  four poss ib le  d i rec t ions .  
I so l a t ed  pa r t i c l e s  move in s t r a igh t  lines. W h e n  two 
par t i c l es  coming  from oppos i t e  d i rec t ions  mee t ,  
the  pa i r  is " a n n i h i l a t e d "  a n d  a new pai r ,  t ravel -  
ing at  r ight  angles  to the  or ig ina l  one, is " c r ea t ed"  
(fig. 4a). In  all  o the r  cases,  i.e., when two par t i c l es  
cross one a n o t h e r ' s  p a t h s  at  r ight  angles  (fig. 4b) 
or  when more  t h a n  two pa r t i c l e s  mee t ,  all pa r t i c l e s  
j u s t  cont inue  s t r a igh t  on the i r  pa ths .  

#12 The "firing-squad" problem, of which this is a special 
case, dates back to the origins of cellular automata [52]. 
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Fig. 4. In the HPP gas, particles colliding head-on are scat- 

tered at right angles (a), while particles crossing one an- 
other’s paths go through unaffected (b). 

As soon as the numbers involved become large 
enough for averages to be meaningful - say, av- 

erages over spacetime volume elements contain- 
ing thousands of particles and involving thou- 
sands of collisions - a definite continuum dynamics 
emerges. And, in the present example, it is a rudi- 
mentary fluid dynamics, with quantities recogniz- 
ably playing the roles of density, pressure, flow 
velocity, viscosity, speed of sound, etc. Fig. 5 illus- 
trates sound-wave propagation in this model. Note 
that, even though the microscopic interactions 
only display a more limited form of rotational 
symmetry (namely, invariance for quarter-turn ro- 

Fig. 5. Wave propagation in the HPP lattice gas. Note the emergence of circular symmetry. 
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tat ions) ,  the speed of sound is fully isotropic. 
Unlike sound speed, sound a t t enua t ion  is not 

isotropic in the H P P  model.  It  tu rns  out  tha t ,  be- 
sides conserving energy and m o m e n t u m  (see sec- 
t ion 6.1), H P P  separately  conserves the horizon- 
tal componen t  of  m o m e n t u m  on each horizontal  
row and the vertical componen t  on each vertical 
column.  These spurious conservat ions ( they have 
no counte rpar t  in ord inary  physics) lead to sig- 
nificant depar tu res  from the behavior  one would 
expect  f rom a physical  fluid. 

The  slightly more  compl ica ted  F H P  latt ice gas 
model  [21] - which uses six ra ther  than  four parti-  
cle directions (always in two dimensions)  - gives, 
in an appropr ia te  macroscopic  limit, a fluid obey- 
ing the well-known Navier-Stokes equat ion,  and 
which is thus suitable for model ing actual  hydro-  
dynamics  (see ref. [27] for a tutorial) .  Recently,  
analogous results for three-dimensional  models  
have been obta ined  by a number  of  researchers 
[22]. 

Lat t ice  gases are rapidly  beginning to encroach 
into model ing niches domina ted  until recently by 
differential equat ions  [16,49]; their  success in this 
role is chiefly due to the ease with which they  can 
be made  to satisfy local cont inui ty  equations,  #13 
as discussed below and, more  leisurely, in refs. 
[72,75]). 

Let us consider the spacet ime texture  induced 
by a latt ice gas such as HPP.  #14 In fig. 6, the  arcs 
represent the spacet ime pa ths  available to the par- 
ticles (a, b, c, d denote  the four possible direct ions 
of  mot ion)  and the nodes (labeled f )  represent the 
available collision sites; the entire s t ruc ture  is iter- 
a ted in space and time, yielding a body-centered  
cubic lattice. Thus ,  we have a spacet ime d iagram 
(the arcs are signals and the nodes events) of a 
kind tha t  is rout inely  used in i l lustrat ing special- 
relat ivi ty arguments .  From this d iagram,  a par- 
t icular h is tory  is obta ined by assigning, as initial 
condit ions,  a definite occupa t ion  state  ( 'par t ic le '  

#1a In this traditional but unfortunate term, 'continuity' 
does not refer to the continuum, in opposition to 'dis- 
creteness'; rather, it refers to "continuity of existence" 
- detailed balance, in other words, as in Kirkhhol~"s 
laws. 

#14 Much as in the case of [~2It (cf. footnote #10), also in 
HPP the lattice splits into two intermeshed but inde- 
pendent sublattices. Here we shall consider only one of 
these sublattices. 

4-\-_ 

\ I , r 

Fig. 6. Spaeetime layout of the ttPP gas. 

i b 
~ - - -  1 7 - 3  

. . . . .  t . . o  

Fig. 7. Evenly spaced spacelike surfaces of the form 
t=constant in a lattice-gas spacetime diagram. 

or 'no  part icle ' ,  which may  be denoted by '0 '  and 
'1 '  respectively) to each arc t ha t  crosses a given 
spacelike surface, and then extending the s ta te  as- 
s ignment  t imewards ,  using the following table at 
each event 

in out  
abcd abcd 
0000 0000 
0001 0001 
0010 0010 
0011 0011 
0100 0100 

* 0 1 0 1  1 0 1 0  

0110 0110 
0111 0111 

in out  
abcd abcd 
1000 1000 
1001 1001 
1010 0101 
1011 1011 
1100 1100 
1101 1101 
1110 1110 
1111 1111 

(18) 

The  table itself represents the collision rule given 
in words above. Note tha t  in only two cases 
(marked with an asterisk) out  of  sixteen does an 
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interaction take place; in all other cases, each of 
the four signals proceeds undisturbed. 

Since the function f represented by this table is 
invertible, the spacetime history may be extended 
backwards as well as forwards in time. 

If one now considers surfaces of the form t = 
constant, drawn midway between rows of events, 
as in fig. 7 (where, for clarity, only one spatial di- 
mension is indicated), it is clear that the collective 
state of the signals that traverse each such surface 
can be thought of as the configuration of a cel- 
lular automaton. If one groups together the four 
signals that converge on the same event (fig. 4), 
and notes the regular alternation, at odd and even 
times, of these groupings (cf. fig. 7), it will be evi- 
dent (cf. fig. 3) that the updating scheme of fig. 4 
is isomorphic to that described in section 5.5. 

In other words, lattice gases and partitioning 
cellular automata are formally the same thing. 
Nonetheless, the tendency is to reserve the term 
‘lattice gas’ for cellular automata in which the 
‘gas’ metaphor can be defended [33]. Typically, 
one has a distinguished “vacuum” state (‘0’ in ta- 
ble (18)) on whose background isolated “particles” 
(‘1’ in table (18)) t ravel with inertial motion. 

Figs. 6 and 7 make it clear not only that (a) the 
global dynamics is invertible if f is invertible, but 
also that (b) any additive quantity carried by in- 
dividual signals (occupation number, momentum, 
etc.) is globally conserved if it is conserved by 
f. For example, in ref. [9] we show how certain 
second-order ICA can be rewritten in a straightfor- 
ward way as lattice-gas ICA; conserved quantities 
(such as bond energy) that in the second-order 
format it took some effort to discover [58] are im- 
mediately visible in the lattice-gas format. 

6. Physical modeling 

The question that we are most often asked 
about cellular automata is the following. 

“I’ve been shown cellular automata that make 
surprisingly good models of, say, hydrodynamics, 
heat conduction, wave scattering, flow through 
porous media, nucleation, dendritic growth, phase 
separation, etc. But I’m left with the impression 
that these are all ad hoc models, arrived at by 
some sort of magic.” 

“I’m a scientist, not a magician. Are there well- 
established correspondence rules that I can use 
to translate features of the system I want to 
model into specifications for an adequate cellular- 
automaton model of it?” 

Physical modeling with cellular automata is a 
young discipline. Similar questions were certainly 
asked when differential equations were new - and, 
despite three centuries of accumulated experience, 
modeling with differential equations still requires 
a bit of magic. Mainly, we get new models by 
dressing up old models, or by microdynamical 
analogy. As it stands, a “rational” or “analyti- 
cal” mechanics of cellular automata is beginning 
to take shape (cf., e.g., refs. [24,25]). Ironically, the 
most mature aspects of this understanding con- 
cern the modeling of continuum phenomena. In 
the rest of this section, we’ll try to convey at least 
a feeling for the issues involved. 

6. I. HPP versus Navier-Stokes 

How does a ridiculously simple interaction such 
as that of fig. 4a (represented, in the two possible 
spatial orientations, by the starred entries in table 
(18)) possibly come close to capturing the richness 
of the Navier-Stokes equation? 

Let us attempt to sketch an answer, using dras- 
tically simplified arguments. 

By inspection of table (18), one concludes that 
(a’) the dynamics specified by this local map is 
invertible; (b’) energy, represented simply by par- 
ticle count, is conserved by each event; (c’) the 
two components of momentum, obtained by sepa- 
rately counting (with a + or - sign depending on 
the sense) particles traveling in the two orthog- 
onal directions, are similarly conserved; (d’) the 
dynamics is rotationally invariant for quarter-turn 
rotations; and (e’) there is some coupling between 
the two spatial directions. 

By inspecting the Navier-Stokes equation, one 
concludes that this equation specifies that (a) 
the dynamics is invertible; (b) that energy and 
(c) momentum are conserved by contact processes 
(no action-at-a-distance); (d) the dynamics is TO- 

tationally invariant for continuous rotations; (e) 
pressure is a scalar quantity, i.e., is independent 
of direction; and (f) nothing else that doesn’t al- 
ready follow from (a)-(e). 
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In the cel lular-automaton model, the moment  
one puts on macroscopic glasses, as it were, and 
is only able to see details that  are much coarser 
than the pitch of the lattice, the discreteness of 
energy, momentum,  and position washes out, so 
that  points (a ') ,  (b ') ,  and (c') above closely match 
(a), (b), and (c). 

As for point (dr), it is well known that  90 ° rota- 
tional invariance is sufficient to yield full isotropy 
for diffusive phenomena.  #as However, in a lat- 
tice gas not too far from equilibrium (cf. ref. [73]) 
the chief t ranspor t  mechanisms are both diffusive 
t ranspor t  and wavelike t ranspor t ,  and for the full 
isotropy of wavelike phenomena it turns out that  
one needs nondiffusive t ranspor t  of horizontal mo- 
men tum in the vertical direction and vice versa - 
which is hard to achieve with 90 ° invariance and is 
much easier to achieve with six particle directions 
and 60 ° invariance (cf., e.g., ref. [88]). This is why 
the fluid modeled by the H P P  gas significantly de- 
parts  from the Navier-Stokes equation (cf. section 
5.6), and why a model such as F H P  manages  to 
achieve the goal. 

As for point (er), by considerations similar to 
the above one can show that  almost any coupling 
between the x and y directions leads to equaliza- 
tion of pressure in all directions. 

The only philosophical difficulty lies with the 
'nothing else' of point (f). Like sorcerer 's appren- 
tices, we commanded H P P  to conserve a certain 
few quantities. H P P  complied; but it d idn ' t  warn 
us that  it had taken the initiative to conserve an 
infinity of other quantities as well (section 5.6). 
And these spurious conservations undermined our 
modeling efforts. 

How do we know that  something like this will 

#15 Cons ider  the  set  of  all poss ib le  a l go r i t hms  te l l ing an  
ind iv idua l  how to move,  one block a t  a t ime ,  Nor th ,  
South ,  Eas t ,  or Wes t  on an  o r thogona l  s t ree t  gr id  
(at  each s tep ,  the  choice m a y  take  into accoun t  lo- 
cal l andscape  fea tures ,  the  ac t ions  of ne ighbor ing  in- 
d iv iduals ,  t he  weather ,  etc.) .  Almost all such  algo- 
r i t h m s  yield an  exp lora t ion  p a t t e r n  t ha t  is close to 
a s u p e r p o s i t i o n  of  i n d e p e n d e n t  r a n d o m  walks in the  
two o r thogona l  di rect ions .  In  the  l imit  as the  b i nom-  
ial d i s t r ibu t ion  goes over to t he  G a u s s i a n  d i s t r ibu t ion ,  
such  a p a t t e r n  d i sp lays  full ro ta t iona l  invar iance  (i.e., 
exp(z2)  exp(y2)  = exp(z2 + y2) ~_ exp( r2) )  _ and  th i s  
in spi te  of  t he  fact t ha t  t he  microscopic  rule can  at  
bes t  have  q u a r t e r - t u r n  invar iance .  

not happen to us the next t ime? How can one 
tell that  a model has no spurious invariants [15]? 
(For that  mat ter ,  how does one know that  a cer- 
tain unanticipated invariance is ' spur ious '?  may 
it not turn out to be a "feature" rather  than a 
"bug"? #16) A general method for keeping spuri- 
ous constraints out of a cel lular-automaton model 
is suggested by Jaynes ' s  max imum entropy prin- 
ciple [36]. The idea is to make the local map max- 
imally random with respect to any features that  
are not explicitly demanded by the modeling con- 
text.  #17 Unfortunately,  to guarantee a closer and 
closer approximat ion to this ideal of maximal  ran- 
domness one may  have to introduce larger and 
larger state a lphabets  and neighborhoods, at a 
corresponding sacrifice in simulation efficiency. In 
the end, one must  know where to draw the line 
between accuracy and efficiency. 

6.2. Invertibility, symmetries, and conserved 
quantities 

An invertible cellular au tomaton  shares certain 
impor tan t  trai ts  with physical systems even when 
it does not manifestly support  waves, particles, en- 
ergy, momentum,  and similar symptoms  of "phys- 
icalness". 

Even in dynamical  systems tha t  have very little 
s t ructure  one can show some connections between 
symmetr ies  and conservation laws. #18 However, 
such connections manifest themselves with spe- 
cial s t rength in Hamil tonian systems, where, ac- 
cording to Noether 's  theorem, to each continuous 
one-parameter  group of t ransformations that  com- 
mutes with the dynamics there is associated a real- 
valued, conserved quantity. Thus,  energy is asso- 
ciated with time-invariance of the dynamics,  the 
three components  of momen tum with translat ion 
invariance, etc. These quantities are functions of 

# t o  For ins tance ,  ce r ta in  cons t r a in t s  t h a t  in la t t ice  gases  
lead to a d e p a r t u r e  f rom Gal i lean  invar iance  [28] m a y  
ac tua l ly  bias  the  s y s t e m  toward  Lorentz invar iance  [75] 
(also cf. ref. [65]). 

# 1¢ HSnon ' s  s t r a t e g y  for rule op t im iza t i on  in la t t ice  gas  hy- 
d r o d y n a m i c s  [32] is s o m e w h a t  re la ted  to th is  approach .  

# i s  Given  any  g roup  of t r a n s f o r m a t i o n s  t h a t  c o m m u t e s  
wi th  t he  d y n a m i c s ,  each conf igura t ion  be longs  to a def- 
ini te s y m m e t r y  class  (a n o r m a l  s u b g r o u p  of the  g roup  
itself);  all t he  po in t s  of  an  orbi t  be long  to t he  s a m e  
s y m m e t r y  class ,  which  is t hus  a conserved quantity. 
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the system’s state as such (i.e., its “mechanical” [SS]). They are also suitable for the the modeling 
or “microscopic” state); one can literally speak of, of an increasingly important type of generalized 
say, the energ content of a certain st.ate. mechanical activity, namely computation [43]. 

The Hamiltonian structure itself, i.e., invariance 
with respect to canonical transformations, leads to 
the conservation of an additional quantity, called 
(fine-grained) entropy, which is defined not on in- 
dividual mechanical states but on statistical states 
(probability distributions on the set. of mechanical 
states); a special case of this conservation is the 
well-known “incompressibility” of volume in phase 
space (Liouville’s theorem). In other words, (a) 
the Hamiltonian structure provides an unequivo- 
cal way of measuring the information content [17, 
ch. II] of a statistical state, and (b) t,he quantity 
thus measured is conserved by the dynamics. 

Continuum dynamical systems that do not have 
a Hamiltonian structure lack, in general, an in- 
t,rinsic “yardstick” for measuring the information 
content of a (statistical) state, and thus do not, 
come with a built-in statistical mechanics. Cellu- 
lar automata, on the other hand, owing to their 
local finiteness (the lattice is discrete, and state 
alphabet and neighborhood are finit.e), do possess 
a natural information measure. #lg And the fore- 
most property of invertible cellular automata is, 
of course, that they are information-conserving. 

In physics, additive invariants, whether repre- 
sented by mechanical quantities such as energy or 
statistical quantities such as entropy, bear a ma- 
jor responsibility for the emergence of nontrivial 
macroscopic properties. Intuitively, one may ex- 
pect that almost every detail of the microscopic 
interactions will be washed out by macroscopic 
averaging; only features that are supported by a 
definite conspiracy (such as a particular symmetry 
or conservation law) will bubble up all the way to 
the macroscopic surface and emerge there as rec- 
ognizable laws. The study of invariants in ICA has 
barely started. Here we can only refer the reader to 
a few literature items, such as refs. [58,43,15,66]. 
It must be noted that in general the problem of 
discovering the invariants of a cellular automaton 
is presumably of a difficulty comparable to that 
of deciding its invertibility (cf. section 4). Much 
as for invertibility, it is much easier to directly 
synthesize a cellular automaton having certain de- 
sired invariants than to figure out the invariants 
of a given one. 

6.3. Modeling first principles ? 

Because of this “information-1osslessness” 
(ach!), ICA automatically obey the second princi- 
ple of thermodynamics and, more generally, dis- 
play a full-featured statistical mechanics analo- 
gous to that of Hamiltonian systems. As addi- 
tional structure is introduced (for instance, par- 
ticle conservation), macroscopic mechanical fea- 
tures such as elasticity, inertia, etc. naturally 
emerge out of st,atistics itself. In sum, once we 
make sure that it is conserved, information has an 
irresistible tendency to take on a strikingly tangi- 
ble aspect (cf. ref. [73]) - to materialize itself. 

As we hinted in sections 5.6-6.2, ICA are quite 
successful at explaining complex macroscopic phe- 
nomenology in terms of the collective behavior of 
an enormous number of very simple subsystems. 
So much so, that one begins to wonder whether 
aspects of physics that are usually regarded as 
primitive (such as the principles of analytical me- 
chanics) are not, after all, similarly derivable as 
emergent aspects of an extremely fine-grained un- 
derlying dynamical structure. 

For the above reasons, and because they lend 
themselves to very efficient computer simulations, 
ICA are an ideal medium for the qualitative study 
of the connections between microscopic mechanics 
and statistical mechanics on one hand (cf. refs. 
[43,77,85,13]), and between statistical mechanics 
and macroscopic mechanics on the other (cf. ref. 

In this role, ICA have been used with some suc- 
cess as fine-grained models of basic aspects of spe- 
cial and general relativity [75,80,65] and of quan- 
tum mechanics [34] 

7. Decidability, revisited 

Now that we have some concrete examples of 
ICA in mind, let us pick up the trail that we left 
off at the end of section 4.4. 

#I0 This is the unifoorm measure, which gives equal weight 
to all configurations. 
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injective surjective 

generic 

Fig. 8. Venn diagram for surjectivity and injectivity. 

cellular au tomata :  
invertible nonsurjective (r.e) I properly 

surjective I (r.e.) 

Fig. 9. Surjectivity and injectivity in cellular automata; 
'r.e.' denotes a recursively enumerable set. 

A dynamica l  sys t em is surjective if every s t a te  
has at  least  one predecessor;  injective, if it has  at  
mos t  one predecessor .  I f  it is b o t h  surject ive and  
injective it is, of course,  inver t ible  (or bijective). I t  
will be  convenient  to call properly surjective a sur- 
jec t ive  sys t em tha t  is not  invert ible,  and  s imi lar ly  
properly injective an injective sys t em tha t  is not  
invert ible.  T h e  s i tua t ion  is s u m m e d  up in fig. 8. 

For cel lular  a u t o m a t a ,  the  ' p r o p e r l y  inject ive '  
lobe in fig. 8 is empty ,  i.e., in ject ivi ty  is equivalent  
to inver t ib i l i ty  (Richardson [60]), leaving us wi th  
the  s impler  s i tua t ion  of fig. 9. 

As we have seen in sect ion 4.4, the left set of  
fig. 9 (i.e., the class o f inver t ib le  cellular a u t o m a t a )  
is recursively enumerab le  ( theo rem 4.3). T h e  right 
set too is recurs ively  enumerab le ,  according to the 
following 

T h e o r e m  7.1 The class of nonsurjective cellular 
automata is recursively enumerable. 

Proof. According  to Myhi l l ' s  t heo rem [53] (cf. sec- 
t ion 2.3), if a conf igurat ion has  no predecessors  
there  mus t  exist  a conf igurat ion having two prede-  
cessors tha t  are  identical  except  over a finite area.  
I f  such a pa i r  exists,  brute-force  enumera t ion  (ap- 
ply the local m a p  to larger  and  larger  finite areas)  
will even tua l ly  tu rn  it up. [] 

I f  also the middle  set in fig. 9, i.e., the  set of  
p rope r ly  sur ject ive (PS) cel lular  a u t o m a t a ,  were 
recurs ively  enumerab le ,  then  all three  sets would 
be fully recursive (i.e., the cor responding  predi-  
cates  would be decidable) .  F rom theo rem 4.5, we 

cellular au tomata :  

I properly I nonsurjective 
invertible I surjective (r.e.) 

(r.e.) ~I l°callyn°ninvertible(r.e.) 

residual class 
Fig. 10. Between invertibility and local noninvertibility, 
which are both semidecidable, there is a no man's land 
that is not semidecidable. 

mus t  conclude t ha t  the middle  set is not even re- 
cursively enumerable .  We shall examine  the make-  
up of this PS set in more  detail .  

Let  us app ly  the  local m a p  of a cellular au- 
t o m a t o n  on a finite, w r a p p e d - a r o u n d  space a r r ay  
(which is equivalent  to impos ing  periodic  bound-  
a ry  condi t ions a long each dimension) .  #20 T h e  re- 
sul t ing finite cellular automaton will be invert-  
ible if the original was invert ible,  and nonsurjec-  
t i r e  if the original was nonsurject ive.  If, however ,  
the  original was PS, then  the resul t ing cellular au- 
t o m a t o n  will be forced to a b a n d o n  'Ps-ness '  and  
"choose" be tween being inver t ible  and being non- 
surject ive (by a s imple  count ing  a rgumen t ,  the  
PS middle  g round  is forbidden);  note  tha t  e i ther  
choice m a y  occur  wi th  the  same local map ,  for 
different sizes of  the  finite space.  

Those  cellular a u t o m a t a  t ha t  become  nonsur-  
jec t ive  when thus forced on a finite space (at least  
for some space size), toge ther  wi th  those t ha t  were 
nonsur jec t ive  to begin with,  will be called locally 
noninvertible ( they  are exac t ly  those cellular au- 
t o m a t a  whose noninver t ib i l i ty  can be verified by 
local a rgumen t s ) .  Local  noninver t ib i l i ty  is semide-  
c idable  ( the p roo f  is s imilar  to t ha t  of t heo rem 
7.1). W h a t  is left (fig. 10) is a residual  class of  
cel lular  a u t o m a t a  having r a the r  counter in tu i t ive  
behavior ;  tha t  is, they  

- are invert ible  on all finite spaces,  but  
- become  noninver t ib le  (specifically, p rope r ly  sur- 
jec t ive)  on the infinite array.  

Because  of t h e o r e m  4.5, this  residual  class can- 
not  be  empty ;  on the o ther  hand ,  no ins tance  of 

#20 To simplify the statement of some of the assertions 
below, we shall consider only finite spaces that are large 
enough to keep all of the neighbors of a cell distinct. 
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Fig. 11. An invertible function with an asymmetric depen- 

dency pattern. 

this class has, to our knowledge, ever been exhib- 
ited. 

Let us go back to the enumeration in the proof 
of theorem 4.3. If from X we could determine an 
upper bound to the neighborhood radius of its 
hypothetical inverse, then we would, eventually, 
positively know whether or not this inverse exists. 
From theorem 4.5, we must conclude that this is 
not the case; in particular, for any n there must be 
ICA for which the radius of the inverse neighbor- 
hood (the neighborhood of the inverse) is at least 
n times larger than the radius of the direct neigh- 
borhood. 

We shall show how to construct such an ICA, 
for any n (note that in this example n, though 
arbitrarily large, is a known function of the size of 
the state alphabet, so that we do have an upper 
bound for the neighborhood radius). Consider the 
function with n binary inputs x1,. . . , x, and n 
binary outputs ~1,. . . , yn defined by 

Yl = 21 

y2 = 22 @ Xl (‘22 @ Yl), 

y3 = 23 CB x2 e3 21 (=x3 @ Y2), 
. . . 

Yn =2, @2,-l @..*@21 (=2n @ yn_l), 

(19) 

where @ denotes Boolean exclusive-OR. This func- 
tion, pictorially shown in fig. 11, is invertible, and 
its inverse is given by 

Xl = Yl, 

22 = Y2 @3Yl, 

x3 = y3@y2, 

. . . 

2, = Yn @Yn-1. (20) 

Note the asymmetric dependency pattern: a y may 

Fig. 12. Infinite juxtaposition of copies of function (19) 
yields a one-dimensional ica having n bits per cell. Here 

n = 4 for definiteness. 

depend on up to n of the x’s, while each x depends 
on no more than two of the y’s. 

From (19), by using a step-and-repeat construc- 
tion (fig. 12), we obtain a one-dimensional cellular 
automaton having n bits per cell. This cellular au- 
tomaton is invertible; going forward in time, the 
new state of each cell depends on the current state 
of itself and the n - 1 cells to its left; going back- 
wards, each cell depends only on itself and the cell 
on its left. The neighborhood radii for the direct 
local map X and the inverse local map 1 are, re- 
spectively, n and 1. 

This cellular automaton is an invertible system 
governed by local and uniform laws, but the cause- 
and-effect tree (the “light cone”) in one direction 
of time is much wider than in the opposite direc- 
tion. #21 Such behavior doesn’t seem to have any 
counterpart in physics. 

8. Structural invertibility 

The usual definition of a cellular automaton, as 
given in section 2.1, is a structural one; i.e., one ex- 
plicitly tells how a cellular automaton is made. #22 
The structure in question is a uniform sequential 

#‘l See ref. [57] for a related discussion on different aspects 
of causality. 

gz2 One can think of the overall state of the system as a 
point in some abstract space, and of a configuration 
as a way of expressing this point in a convenient coor- 
dinate system (each site represents a coordinate); the 
local map tells how to update the state-component as- 
sociated with each coordinate. In section 2.4 we men- 
tioned the possibility of an equivalent functional defi- 
nition, where the global map is characterized in terms 

of what it does to the state points themselves, without 
making recourse to coordinates. 
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(i) One can construct, out of the same technol- 
ogy, a machine A that has the same orbit structure 
as A but follows each orbit in reverse. 

(ii) From the detailed design plans of machine 
A one should be able to arrive in a straightforward 
way at the design plans for machine A. 

Fig. 13. A cellular automaton as a sequential network. We 
illustrate the case of one dimension and neighborhood X = 
(-1, 0, +11. The table is denoted by f. 

p~ 
!÷A _~  ..2. 

k 

Fig. 14. The cellular automaton of fig. 13, re-expressed as 
a combinational network. The f nodes denote occurrences 
of the table~ the black dots, occurrences of fan-out. 

network: the state ql of a cell (a square in fig. 13) 
is realized by a collection of flip-flops or similar 
memory elements, and the table f (a circle in the 
same figure) by a composition of NAND gates or 
similar logic elements. Both kinds of element have 
a straightforward implementation in a number of 
technologies. 

Since a flip-flop is simply a digital sample-and- 
hold device, used for regulating the traffic in and 
out of the gates, #23 it will be conceptually simpler 
to represent the design of a cellular automaton as a 
uniform combinational  network, where each usage 
of a table is explicitly represented by a separate 
node, as in fig. 14a. 

Now, if we were given the design of a determin- 
istic physical machine A whose behavior happens 
to be invertible (i.e., for any possible state there is 
a unique way one can arrive at it), we would tend 
to think that 

#23 Each gate is used over and over, at each time step eval- 
uating the same function on a new set of arguments. 

Both points are certainly true if the "technol- 
ogy" in question is Newtonian mechanics (think 
of the sun and the planets). In fact, since this 
mechanics is time-reversal invariant (cf. footnote 
#2) ,  we can use the same machinery (A -- A), 
and just reverse the direction of each particle in 
order to traverse orbits backwards. 

Lemma 4.1 tells us that point (i) above is 
true also for more practical technologies, where 
non-Newtonian devices such as amplifiers, latches, 
dampers, and other dissipative devices are avail- 
able. Note that the usual way cellular au tomata  
are specified tacitly implies the availability of such 
a dissipative technology. In fact, the f nodes in 
fig. 13 are typically noninvertible because they 
are noninjective,  and the fan-out nodes noninvert- 
ible because they are nonsurjective; as explained 
in [19], nonsurjective computing primitives imply 
the availability of a power supply, and noninjective 
ones imply a heat sink. 

However, theorem 4.5 says that,  in this dissipa- 
tive context, point (ii) is no longer tenable. That  
is, from design plans of the type represented by 
fig. 14 we do not know, in general, how to make 
similar design plans for a new machine that, if the 
original machine was invertible, will have exactly 
the inverse behavior. Thus, to rescue point (ii) we 
have to turn our attention to design plans that  do 
not imply dissipative primitives. For f inite invert- 
ible automata  this is always possible [70,19[ (see 
also [69] for the analogous problem in continuous 
systems); is it possible for cellular automata? 

Now that the job of motivating it is done, let 
us reword the above question. Given an arbitrary 
1CA, which can always be thought of as realized 
by a uniform combinational network of the type of 
fig. 14, is it always possible to give an alternative 
realization of it by means of a uniform combina- 
tional network in which (a) all nodes stand for in- 
vertible functions, and (b) no extra state variables 
are introduced? We shall call such a realization 
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Fig. 15. (a) Combinational network representation of the 

ica defined by table (9). (b) The same ICA, in a version that 

exhibits structural invertibility; the nodes are all invertible 
Boolean functions. 

structurally invertible; #24 we shall also call struc- 

turally invertible an ICA for which a structurally 
invertible realization exists. 

It is clear that from a structurally invertible re- 
alization one immediately obtain design plans for 
the inverse automaton. 

We have succeeded in exhibiting structural in- 
vertible realizations for every ICA for which we 
tried (here we shall give only one example, in 
fig. 15), and apparently all ICA we are aware of 
are structurally invertible. From the above con- 
siderations, we are led to the following 

Conjecture 8.1 All invertible ce&_dar automata 

are structurally invertible, i.e., can be (isomorphi- 

tally) expressed in spacetime as a uniform compo- 

sition of finite invertible logic primitives. 

In other words, we conjecture that there are no 
cellular automata for which invertibility (a func- 
tional property) cannot be explained in terms of 
structural invertibility, which is, of course, a struc- 

tural property. 
For an example, fig. 15 shows a structurally 

invertible design for the conserved-landscape ICA 

discussed in section 5.3, and contrasts it with the 

#24 Condition (b) simply asks for an isomorphic realiza- 
tion. Realizations that satisfy (a) but make use of ex- 
tra state variables can be obtained by a straightforward 
procedure, as shown in ref. [35]. 

conventional design. The function f is given by 
table (9); g is an invertible Boolean function with 
four inputs and four outputs obtained in a straigh- 
forward way from f as follows: 

Yl = 21, 

Y2 = f(Zlrz2,23,Z4) = (,l .z3’c4)@22, 

Y3 = 23, 

Y4 = 24, (21) 

where a dot denotes Boolean AND, a bar denotes 
Boolean complement, and the order (1, 2, 3, 4) of 
inputs and outputs corresponds to left-to-right in 
fig. 15. 

Note that, even though the new network is uni- 
form, its spatial “pitch” is coarser than that of 
the original network; in other words, in fig. 15b 
we have a structure whose function is left invari- 
ant by shifting, say, one position to the left, but 
whose structure needs to be shifted four positions 
before it again coincides with itself! #25 We conjec- 
ture that, for a structurally invertible realization, 
recourse to a network having a coarser pitch than 
the original one is, in general, unavoidable. 

9. Conclusions 

We have presented invertible cellular automata 
from a number of angles, trying to illustrate the 
concrete motivations of many theoretical ques- 
tions. 

This paper also constitutes an original contribu- 
tion to the study of the mechanisms and pathways 
of causality in distributed reversible systems. 
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