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  Abstract—We consider the problem of detecting network faults. 
Our focus is on detection schemes that send probes both 
proactively and non-adaptively. Such schemes are particularly 
relevant to all-optical networks, due to these networks’ 
operational characteristics and strict performance requirements. 
This fault diagnosis problem motivates a new technical 
framework that we introduce: group testing with graph-based 
constraints. Using this framework, we develop several new 
probing schemes to detect network faults. The efficiency of our 
schemes often depends on the network topology; in many cases 
we can show that our schemes are optimal or near-optimal by 
providing tight lower bounds. 

I. INTRODUCTION 
Network management is a crucial but expensive component of 
any network operation [1]. Typical network management 
activities include configuration, performance, security, 
account management and fault management. In current 
networks, much of the effort and cost lies in fault management 
[2], specifically in failure detection and isolation. Due to the 
cost and importance of fault diagnosis, it has been an active 
research topic in various contexts, such as the Internet [3-5], 
wireless networks [6,7],  and optical networks [8-10]. In this 
work, we focus on fault diagnosis in all-optical networks. The 
unique characteristics of all-optical networks yield not only 
technical challenges but also cost-reduction opportunity for 
fault diagnosis, as we explain below.  

The promise of all-optical networks is compelling: 
broadband network services can potentially be delivered to 
large populations at much lower cost than today’s 
technologies   [11,12]. The significant cost savings are due to 
optical switching of high data-rate lightpaths at intermediate 
network nodes, thereby reducing electronic processing costs. 
However, as with other networks, all-optical networks are 
susceptible to physical failures, e.g., fiber cuts, switch node 
failures, transmitter/receiver breakdowns, and optical 
amplifier breakdowns. These failures can result in the 
disruption of communication, and can be costly to detect and 
localize with the current management framework. Since all-
optical networks lack parity checks at the end of each fiber 
link (a consequence of optical switching), new mechanisms 
are needed to diagnose link failures. 

 Two key objectives for network fault detection are 

(i) detecting faults quickly, and (ii) minimizing the cost of the 
detection scheme. The importance of objective (i) stems from 
the current SONET standard [13], in which the fault detection 
and restoration time is around 50ms. Indeed, this will 
probably be reduced further in future all-optical networks to 
avoid large amount of data loss during a short period of 
communication disruption. Hence, when parts of a network 
are malfunctioning, it is critical to locate and identify these 
failures as soon as possible. In the context of all-optical 
networks, objective (ii) requires minimizing the capital and/or 
operational cost of fault diagnosis, which in turn requires 
careful selection of probes, as we explain in Section II.B. 
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Our fault diagnosis methodology works by sending probes 
proactively. That is, probing signals are sent to test the health 
of the network, and probe syndromes (i.e., results of the 
probes) are used to differentiate failure patterns. There are two 
predominant designs for choosing probes: adaptive probing, 
and non-adaptive probing. Each design has its advantages and 
disadvantages. 

In adaptive fault diagnosis schemes [14], a set of probing 
signals are sequentially sent to probe the health of the 
network, and subsequent probes are chosen based on the 
results of previous probes. Due to its sequential nature, the 
probes can be chosen carefully, and the number of probes 
required is usually quite small. On the other hand, the 
diagnosis delay (i.e., the delay to identify failures) might be 
quite large for some failure patterns. Furthermore, scheduling 
these probes requires careful coordination among the 
monitoring modules, thereby complicating the design. 

In non-adaptive fault diagnosis schemes [15], a set of 
probing signals are sent independently within a specified time 
window; network failures are then identified through the set of 
probe syndromes. We now outline a natural design for 
implementing non-adaptive schemes. First, the network 
management system (NMS) examines the network topology 
and determines an appropriate set of probing signals. Next, the 
NMS configures network nodes to send these probing signals 
periodically. The probe syndromes are gathered at one or 
more central nodes (via out-of-band mechanisms, or a 
dedicated control channel). Should some network faults occur, 
the failure pattern can be detected by examining the probe 
syndromes. 

This non-adaptive probing scheme offers several practical 
benefits. First, it requires very little synchronization, in 
contrast with the adaptive fault diagnosis scheme; this quality 
makes it considerably more appealing for use in practice. 
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Second, a snapshot of the entire network health is available at 
any time at the central nodes. There are some disadvantages, 
however. Non-adaptive schemes might require more probes 
than adaptive schemes since the information revealed by 
previous probes cannot be leveraged to choose subsequent 
probes. 

Previous research has investigated adaptive fault diagnosis 
schemes for all-optical networks [8-10] with probabilistic 
node/link failures. In particular, based on information 
theoretic insights, the run-length probing scheme has been 
developed, and its performance has been shown to be within 
5% of the entropy lower bound. However, this scheme may 
require significant delay to identify failures in some large 
networks and/or under certain network failure patterns. 

In this paper, we consider an alternative, non-adaptive 
approach to diagnosing failures in all-optical networks. First, 
instead of the probabilistic failure model in previous work, 
this paper allows arbitrary failure patterns, assuming only that 
the number of failures is upper bounded, i.e., a worst-case 
failure model. Second, instead of sending optical probing 
signals sequentially, a pre-determined set of probing signals 
are sent independently to probe the network state of health. 
The objective of this research is to develop algorithms to 
choose efficient non-adaptive probing schemes, thereby 
obtaining inexpensive fault diagnosis mechanisms. 

Our fault detection methods are based on techniques from 
the field of combinatorial group testing (CGT) [16]. This field 
has a wide variety of practical applications, such as HIV 
screening, DNA testing, MAC design, and much more [17]. It 
has also been used in network management applications (see, 
e.g., [18]), but only to a limited degree. We believe that CGT 
is a powerful tool that can be used in a wide variety of 
network failure detection contexts, and we hope that our work 
will instigate its use more widely. The present paper considers 
only the context of all-optical networks since their unique 
characteristics lead to a natural application of CGT. More 
specifically, the switching characteristics of all-optical 
networks imply that probing several interconnected edges in a 
lightpath costs no more (in terms of transmitter/receiver 
and/or wavelength cost) than probing a single network link.  

In this work, we propose a variant of classical CGT in 
which the valid tests are determined by the structure of a 
graph. In the all-optical network context, this graph 
corresponds to the network topology, and the constraint on 
valid tests is due to the obvious condition that lightpaths can 
only traverse interconnected edges.  To the best of our 
knowledge, this is a novel framework for CGTT

 

1, and we 
believe it to deserve further study. We formally analyze the 
number of tests needed for certain interesting classes of 
graphs, and even arbitrary graphs (with performance 
depending on the topology). In some cases, we can give 
matching upper- and lower-bounds on the number of tests 
needed. Our algorithms have a common theme, which 

suggests a practical rule-of-thumb for efficient fault diagnosis 
schemes: a fault-free sub-graph in the network topology 
should be identified, and used as a “hub” to diagnose other 
failures in the network.  

1 There is another notion of group testing on graphs [16, Chapter 12], 
although it is completely unrelated to the framework that we propose herein. 

The remainder of this paper is organized as follows. In 
Section II, we formulate the non-adaptive fault diagnosis 
problem. In Section III, we reinterpret this problem as the 
combinatorial group testing problem on graphs. In Section IV, 
we describe algorithms and lower bounds for various classes 
of important network topologies: linear networks, complete 
networks, grid networks. In Section V, we consider trees and 
arbitrary graphs, and obtain efficient algorithms when the 
diameter is small and/or the graph does not have small cuts. 
Section VI concludes this paper. 

II. NON-ADAPTIVE FAULT DIAGNOSIS SCHEMES FOR ALL-
OPTICAL NETWORKS  

A. Permanent Link Failure Model 
In this paper, all-optical networks are abstracted as 

undirected graphs. An undirected graph  is an ordered pair 
of sets 

G
( ),V E , where V  is the set of nodes, and  is the set 

of edges, which are unordered pairs of nodes. The number of 
nodes is  and the number of edges is .  The terms links 
and edges are used interchangeably in this paper.  

E

n m

In our model, we assume links fail and nodes do not. This 
assumption is realistic: in all-optical networks, the passive 
optics used in network nodes is highly reliable. On the other 
hand, graph edges correspond to fiber links, optical amplifiers 
and transmitter/receivers, which are significantly more prone 
to failures [19].  We consider a permanent failure model, i.e., 
an edge is either failed or intact, and the failure status does not 
change over the period of diagnosis. We do not place any 
restriction on the edge failure patterns. Since it is unlikely that 
numerous edge failures happen simultaneously, we assume 
that the number of edges failures is upper bounded by a 
constant ( )s m≤  at any instant. In this paper, we generally 
allow s  to be arbitrary, although the case of 1s =  is often 
central.     

B. Non-Adaptive Fault Diagnosis Scheme 
In this paper, we diagnose network failures by sending 

optical probing signals along certain lightpaths to determine 
the network’s state. We illustrate this probing model in this 
sub-section. 

A probe in the network corresponds to a walk (a sequence 
of adjacent edges, allowing repetitions) in the corresponding 
graph. Physically, each probe corresponds to a lightpath in the 
network. For example, a walk in the graph can constitute a 
sub-tree in the graph as in Fig. 1(a), which can be translated to 
a lightpath in practical all-optical networks as in Fig. 1(b). In 
Fig. 1(a), the network is abstracted as undirected graph, whose 
nodes correspond to the optical switches and links correspond 
to the optical fibers. In practical all-optical networks, each 
link represents two parallel optical fibers transmitting signals 
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(a)           (b) 
Fig. 1. A walk over undirected graph can be implemented with a lightpath 
in a practical all-optical network.  
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(a)           (b) 
Fig. 2. Two non-adaptive fault diagnosis algorithms for the 3-node ring 
network.   

in opposite directions. As shown in Fig. 1(b), we can replace 
each link in Fig. 1(a) by two directed arcs in opposite 
directions. In this way, each walk can be implemented as a 
probe by sending a diagnosis signal along the directed 
lightpath, as illustrated in Fig. 1(b). Moreover, to avoid the 
fiber lasing effect, a physically feasible probe must satisfy one 
additional property: each network link is traversed at most 
once in each direction. We call such a probe a permissible 
probe. The probes generated by our algorithms in Section IV 
and V are all permissible probes. 

Fig. 3. The cost comparison between the two non-adaptive fault diagnosis 
algorithms in Fig. 2.  

 Scheme 2(a) Scheme 2(b) 
Number of Wavelengths 1 2 
Number of Tx/Rx 3 2 

 When an optical signal is sent along a given lightpath, the 
signal will arrive at the destination if all edges along the 
lightpath are intact. Otherwise, if there is at least one failed 
edge on the lightpath, the signal never reaches the destination 
(or the quality of the signal is unacceptable). The result of 
each probe is called the probe syndrome, denoted as 0r =  if 
the probing signal arrives successfully; and  otherwise.  1r =

A non-adaptive fault diagnosis scheme is a method for 
sending optical signals (i.e., probes) along a set of pre-
determined lightpaths in the network such that up to s  edge 
failures can be identified by examining the set of probe 
syndromes. For example, as shown in Fig. 2, both sets of 
probes can identify any single edge failure. 

In addition to the diagnosis delay (cf. objective (i) in 
Section I), another key design consideration of our research is 
the cost of the fault diagnosis scheme (cf. objective (ii)). For 
all-optical networks, the cost of a lightpath probe includes the 
cost of the transmitter/receiver pair and the wavelength usage.  
As an example, Fig. 3 summarizes the cost break-down for the 
diagnosis schemes in Fig. 2. If the usage of wavelengths is the 
dominant cost, Scheme 2(a) is preferable to Scheme 2(b). On 
the other hand, if the cost of transmitter/receiver pairs 
dominates, Scheme 2(b) outperforms Scheme 2(a). Since in 
practical optical networks the cost of wavelengths is 
negligible compared to the cost of hardware, our design 
considers only the transmitter/receiver cost. It follows that 
minimizing the diagnosis cost is equivalent to minimizing the 
number of probes. This design objective has an additional 
benefit: minimizing the number of probes also reduces the 
amount of management information, with commensurate 
improvements in transferring, storing and processing this 
information. 

In summary, the objective of this research is to develop 
efficient non-adaptive fault diagnosis schemes using the 
minimum number of probes, thereby minimizing the fault 
diagnosis cost.  

III. COMBINATORIAL GROUP TESTING (CGT) ON GRAPHS 
In this section, we present theoretical background on 

combinatorial group testing (CGT) and its connection to the 
non-adaptive fault diagnosis problem.  

The general CGT problem is defined as follows. Consider a 
set  of m  elements, each of which is either intact or failed. 
The maximum number of failed elements is bounded by 

S
s , 

which we consider to be small relative to . We are allowed 
to perform group tests of the following form: specify a subset 

, run the test on , and learn if there is at least one failed 
element in . Our objective is to discover all faulty elements, 
while using the smallest possible number of group tests. It has 
been shown that the non-adaptive combinatorial group testing 
problem is equivalent to the superimposed code problem [20] 
from information theory.  

m

t S⊂ t
t

Let ( ),T m s∗  denote the minimum number of non-adaptive 
group tests needed to locate up to s  failed elements in a set of 
size . It is obvious that , since we can test each 
element individually. The total number of failure patterns 

is , so the minimum number of probes 

needed to distinguish between these patterns is at least 

m ( , )T m s m∗ ≤

( )
0

,
s

k

m
N m s

k=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑

( )2log ,N m s .  Hence, ( )2log , ( , )N m s T m s m∗≤ ≤ . In particular, 
if 1s = , the minimum number of non-adaptive probes needed 
is bounded as follows: 
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( )2 ( ,1)log 1 T m mm ∗≤ ≤+ .        (1) 
For arbitrary s  and sufficiently large , it has been shown 
that  can be bounded

m
( ,T m s∗ ) 2 as, 

( ) (
2

2log , log
log

s m T m s s m
s

∗⎛ ⎞
Ω ≤ ≤ Ο⎜ ⎟

⎝ ⎠
)

)
)

,     (2) 

where the upper bound comes from [20] and is essentially 
based on a simple random superimposed coding argument, 
and the lower bound is due to D’yachkov and Rykov [21].  

Any non-adaptive combinatorial group testing algorithm 
with  tests can be expressed as a testing matrix  

with  rows and 

( ,T m s C

( ,T m s ( ),N m s  columns, where each row 
corresponds to a group test and each column corresponds to a 
failure pattern. We set  if group test i would fail under 

failure pattern 

1
ij

c =

j ; otherwise, . As a simple illustration, 
consider the case of  and ;  the testing matrix is 
shown in Fig. 4. In this case, the algorithm performs three 
group tests. The elements involved in these tests are 
respectively {4, 5, 6, 7}, {2, 3, 6, 7} and {1, 3, 5, 7}. If 
element  has failed, the results of the tests are identical to 
column , which is the binary representation of i . If no 
element has failed, all tests return zero. Thus 

0ijc =

1s = 7m =

i
i

( )7,1 3T = , 
which corresponds to the lower bound of (1). 

A similar construction yields an efficient procedure to find 
a single failed element in any group of m elements. This 
procedure plays an important role in the fault diagnosis 
algorithms of Section IV and V. The construction involves a 
matrix with  rows (corresponding to the tests) and 
m+1 columns (corresponding to the m+1 possible failure 
patterns). Column 0 corresponds to the scenario in which all 
elements are intact, and column i  ( ) corresponds to 
the scenario in which element i  has failed. We set column i of 
the matrix to be the binary representation of i . Each row 
corresponds to a group test which tests the subset of objects 
which have a 1 entry in the row of the diagnosis matrix. It is 
easy to see that if item i has failed then the outcome of the 
tests will be precisely the binary representation of i. For 
convenience, we refer to this procedure as the logarithmic 
testing procedure (LTP). 

⎡ )1log( +m ⎤

m

 

1, ,i =

The non-adaptive network fault diagnosis problem can be 
formulated as a non-adaptive combinatorial group testing 

2 ( ) ( )( )f n g n= Ο  means that there exists a constant  and integer  such 

that 

c N

( ) ( )f n cg n≤  for all . n N> ( ) ( )( )f n g n= Ω  means that  ( ) ( )( )g n f n= Ο . 

( ) ( )( )f n g n= Θ  means both ( ) ( )( )f n g n= Ο  and ( ) ( )( )f n g n= Ω .  

problem, under some additional constraints. In particular, in 
our formulation of the non-adaptive fault diagnosis problem, 
there are up to s  edge failures among the set of  network 
edges. A set of permissible probes are sent concurrently to test 
whether any edge of the corresponding walk has failed. It 
follows that the non-adaptive fault diagnosis problem is 
equivalent to a non-adaptive combinatorial group testing 
problem, under the constraint that the group test can be 
performed only if it corresponds to a permissible probe. We 
call this variant of CGT the problem of combinatorial group 
testing on graphs. We address the non-adaptive fault 
diagnosis problem by proving several results concerning 
combinatorial group testing on graphs. 

m

 0 1 2 3 4 

IV. EFFICIENT FAULT DIAGNOSIS SCHEMES IN 
CERTAIN NETWORK CLASSES  

In this section, we present efficient non-adaptive fault 
diagnosis algorithms for certain classes of network topologies, 
and we characterize the minimum number of non-adaptive 
probes to identify up to s  failed edges in the network 
topology . This quantity is denoted G ( ),L G s∗  . The 
algorithms that we present can also be considered algorithms 
for combinatorial group testing on graphs. 

A. Networks with Linear or Ring Topologies  
Linear topologies are used intensively in optical networks.  

Ring topologies are also widely used and are largely similar to 
linear networks, from a fault diagnosis perspective. 

Consider a linear network consisting of  nodes, indexed 
by integers 

n
0,1, , 1n − . The edges are { }1, +ii  for 

20 −≤≤ ni . For linear networks, we can establish the 
following result. 

Theorem 1: The minimum number of non-adaptive probes to 
locate up to a single edge failure in a linear network of  
nodes, i.e., 

n
( ), 1L G s∗ = ,  is precisely 2n⎡ ⎤⎢ ⎥ .  

Proof: 
Let  be an arbitrary probe in a linear network. Let  the 

node with smallest index that is contained in , and b  the 
node with largest index contained in t . Note that probe t  is 
equivalent to a path from node  to node . We use the 
notation 

t a
t

a b
[ ],t a b=  and call ( )a b  the head (tail) of .  t

First we establish the lower bound. Let { }1, , lT t t=  be a 
set of probes that can detect a single edge failure. Suppose 
2l n< ; then there exists a node  that is neither a head or a 
tail of any test . Considering the following two cases: 

i

jt

• 0 or 1i n= − : In this case, no probe  includes an edge 
that is adjacent to node . Therefore, the probe 
algorithm cannot identify whether the edge adjacent to 
node i  has failed or not.  

jt
i

• 1 i n

5 6 7 
1 0 0 0 0 1 1 1 1 
2 0 0 1 1 0 0 1 1 
3 0 1 0 1 0 1 0 1 

Fig. 4. The diagnosis matrix for the logarithmic testing procedure (LTP) 
with m = 7. Columns correspond to elements to be tested, and rows 
correspond to tests. 

2≤ ≤ − :  In this case, every test  either contains 

both edge 
jt

{ }ii ,1−  and edge { , or contains }1, +ii
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neither. Therefore, the probe algorithm cannot 
distinguish between the case when edge { }ii ,1−  has 
failed and the case when edge {  has failed.  }1, +ii

In both cases, we arrive at a contradiction and conclude that 
2l n≥ ⎡⎢ ⎤⎥  is a necessary condition.  

Now, we proceed to the upper bound. Consider the probe 
test { }jt , where , 2jt j j n= ⎡ + ⎤⎢ ⎥⎣ ⎦⎣ ⎦  for 0 2 1

Fig. 5. The complete graph with 5n = , where node v  and its 
neighborhood are used to route probes. 

 

j n≤ ≤ −⎡ ⎤⎢ ⎥

2

. 

Clearly, every edge  belongs to some test t .  Therefore all 

we need to show is that, for every pair of edges 

e j

1e e≠ there is 
a test  that contains exactly one of the edges. This will 
imply that, given all the probe syndromes, one can locate the 
faulty edge or decide that no failure has occurred. Let 

jt

[ ]1 1 1,e t h=  and [ ]2 2 2,e t . Without loss of generality, we 

assume .  Consider the following two cases: 

h=

21h t≤

• 1 2h n≥ ⎡ ⎤⎢ ⎥ : In this case, the test 1 2 ,h n h⎡ − ⎤⎢ ⎥⎣ ⎦⎣ 1 ⎦  

contains  but not e . 1e 2

• 1 2h n< ⎡ ⎤⎢ ⎥ : In this case, either the test 1 1, 2h h n⎡ + ⎤⎢ ⎥⎣ ⎦⎣ ⎦
]

 

or the test  contains e  but not .  ⎡ ⎤[ 1,12/ −− nn 2 1e
This completes the proof.  Q.E.D. 

This  bound for linear networks is much larger than 

the lower bound of 

( )nΘ

( )log n  in (1). Intuitively, the low 
connectivity of the network topology restricts the possible 
tests to such an extent that testing becomes inefficient. Note 
that with a linear lower bound, s  becomes irrelevant (we can 
handle any s  with m n  probes). 1= −

B. Networks with Fully-Connected Topologies  
This sub-section deals with the non-adaptive fault diagnosis 

problem for all-optical networks whose topologies are fully-
connected (i.e., complete graphs). For a topology of n  nodes, 
denoted nK , each node is connected to all other nodes in the 
network, resulting in ( )1 2m n  edges in the network. 
The case  is illustrated in Fig. 5. For such a network, we 
propose the following non-adaptive fault diagnosis algorithm. 

n= −

5n =

Algorithm 1: Testing for a single failure in complete 
networks 
Step 1a:  
 Arbitrarily pick a node v  and define its neighborhood sub-
graph ( )B v  as the  edges that connect it to all other 
nodes. As shown in Fig. 5, the neighborhood is a star centered 
at node . 

1n −

v
Step 1b: 
 Perform the LTP on the sub-graph ( )B v . Each LTP test 
becomes a valid probe due to the star topology. 
Step 2: 
 Perform the LTP on the subgraph obtained by deleting node 

. The sub-graph v ( )B v  is used to route the probes as needed. 

We now discuss the correctness of Algorithm 1. If the 
network topology did not impose any constraints on the 
choice of probes then (that is, if an arbitrary subset of edges 
formed a permissible probe) then one could directly apply the 
LTP procedure, using the individual edges as elements to be 
tested. Unfortunately, the topology restricts our choice of 
probes to sequences of adjacent edges, so the probes are 
chosen more carefully. At a high level, the approach is first to 
identify a fault-free sub-graph, then to use this sub-graph to 
route the probes for an LTP procedure. Algorithm 1 uses two 
LTPs, of size ( )1n −  and size ( )( )1 2n n− − 2  respectively, 

and therefore the total number of probes required is )(log nΟ . 
Combining this result with the lower bound of (1), we have 
established our main result for complete networks as follows. 

Theorem 2: )(log nΘ  probes are necessary and sufficient to 
identify a single edge failure in a fully connected network 
with  nodes. n

C. Networks with 2-D Grid Topologies 
The sub-section considers two-dimensional grid networks 

of size nn × . Such structures are also commonly used as 
interconnection networks [22]; in the context of all-optical 
networks, they are sometimes called Manhattan networks. 
Fig. 6 illustrates the case of n=25. The following algorithm 
gives an optimal non-adaptive fault diagnosis scheme for 2-D 
grids. 

Algorithm 2: Testing for a single failure in 2-D grid networks 
Step 1a:  
 Test all edges in column 1 using a single probe. 
Step 1b: 
 Perform the LTP on the edges in column 1 using edges 
between column 1 and column 2 and edges in column 2 to 
route the probes as necessary. Fig. 6(b) illustrates a single 
probe to test edge 1 and edge 3 in column 1, numbering the 
edges in increasing order from top to bottom. 
Step 2a: 
 Test all edges in row 1 using a single probe. 
Step 2b: 

Perform the LTP on the edges in row 1 using edges 
between row 1 and row 2 and edges in row 2 to route the 
probes as necessary. (This is similar to Step 1b.) 
Step 3a: 

v
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 Perform the LTP on row 2 through row n . This step 
differs from Steps 1b and 2b in that an entire row is treated as 

a single element for testing purposes. The edges in column 1 
are used to route between rows. Fig. 6(c) illustrates a single 
probe to test row 2 and row 4.  
Step 3b: 

Perform the LTP on the individual row edges (the elements 
are nss ,,1 , where { }njjisi ≤≤= 2:  row of edge th ). 

The column edges and the edges of row 1 are used to route 
between rows. Fig. 6(d) illustrates a single probe to test the 2nd 
edges in all rows and the 4th edge in all rows. 
Step 4a:  
 Perform the LTP on column 2 through column n , in a 
manner analogous to Step 3a. 
Step 4b: 

Perform the LTP on the column edges, in a manner 
analogous to Step 3a. 

The correctness of Algorithm 2 is shown in Appendix A. 
As with Algorithm 1, the strategy is first to identify a fault-
free sub-graph (either column 1 or row 1), and then to use the 
fault-free sub-graph to route the necessary probes required by 
the LTPs. Algorithm 2 uses only 6 LTPs, each over a set of 

n  elements, plus two additional probes. It follows that the 
total number of probes used is only . Combining this 
result with the lower bound of (1), we have established our 

main result for 2-D grid networks as follows. 

)(log nΟ

Theorem 3: )(log nΘ  probes are needed to identify a single 

edge failure in a 2-D grid network of size nn × .  

(a)           (b) 

 
   

   

   

   

   

    

 
   

   

   

   

   

Fig. 6. (a) A 2-D grid with 25 nodes. If at most 7 failures are allowed, 
then Theorem 4 shows that the failure of edge e cannot be detected 
efficiently by non-adaptive tests. (b) A single probe to test edge 1 and 
edge 3 on column 1. (c) A single probe to test column 2 and column 4. (d) 
Single probes to test the 2nd edge on all rows and the 4th edge on all rows. 

(c)           (d) 

 
     

     

     

     

     

e 

In general, if multiple failures can occur simultaneously, 
more probes are needed. This phenomenon can be intuitively 
explained as follows. An edge  can hide behind a small cut 
which separates it from the rest of the network. If all the edges 
of this cut have failed, the only way to test whether edge e  
has also failed is to probe edge  by itself.  Theorem 4 
explains this phenomenon formally. 

e

e

Theorem 4: If at least 7 failures can occur, )(nΘ  probes are 
needed to identify all the edge failures in a 2-D grid network.  
Proof: 

Consider Fig. 6(a), in which the 6 edges adjacent to edge e  
have failed. The only way to test whether edge e  has also 
failed is to probe edge  itself. However, the identity of edge 

  is not known when the algorithm chooses its probes, due to 
the non-adaptive nature of the algorithm.  Therefore, the 
algorithm can only know whether edge  has also failed if it 
performs 

e
e

e
)()( nm Ω=Ω  probes. Combining this with the 

upper bound of (1) completes the proof.  Q.E.D. 
 

V. EFFICIENT DIAGNOSIS WITH ARBITRARY TOPOLOGIES  
We now provide efficient testing algorithms for arbitrary 

graphs and trees. The algorithms depend on the diameter 
and/or the connectivity of the graph. On practical networks, 
we expect the diameter to be relatively small, and the 
connectivity to be large (for failure resilience). 

A. Networks with Well-Connected Topologies 
As shown in Section IV, identifying multiple failed edges in 

some networks (e.g., 2-D grid networks) requires 
exponentially more probes than required for a single failed 
edge. This high complexity is caused by edge failures that can 
hide behind small cuts. One might conjecture that this 
phenomenon does not occur in graphs with sufficiently high 
connectivity.  The following theorem proves such a result. 

Theorem 5: If a graph  contains G 1s +  edge-disjoint 
spanning trees3, the minimum number of non-adaptive probes 
required to identify up to s  failed edges, i.e., , is 
bounded by , where 

( , )L G s∗

* *( , ) ( , ) ( ( , )T m s L G s s T m s∗≤ ≤ Ο ⋅ ) ( ),T m s∗  
is as defined in Section III. In particular, this holds in a 
network topology with edge-connectivity4 at least ( )2 1s + . 
Proof: 

The lower bound is immediate since the non-adaptive fault 
diagnosis problem is simply the combinatorial group testing 
 

3 A spanning tree of a graph is an acyclic sub-graph containing all nodes. 
4 Edge-connectivity means the minimum cardinality of any subset of edges 

whose removal disconnects the network.   
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problem with an additional restriction on the feasible probes. 
The Tutte–Nash-Williams theorem [23,24] implies that a 

network with edge connectivity of at least  ( )2 1s +  has at 
least 1s +  edge-disjoint spanning trees. It follows that at least 
one of the spanning trees, call it , contains no edge failures. 
A single probe suffices to test if all edges of a tree are intact, 
therefore we can identify  using only 

TG

TG 1s +  probes. For 
every non-tree edge { , we create a virtual node  and 

replace {  with {
},u v 'v

},u v }, 'u v . After this transformation, all non-

tree edges are at the bottom of , i.e., they have height zero. TG
We now think of these non-trees edges as the elements to 

be tested, and we can use any CGT algorithm to do so. Pick a 
root for  arbitrarily; we think of the CGT algorithm as 
running at this root node. By our choice of , the path from 
the root to each of the non-tree edges contains no failures. The 
CGT algorithm produces a sequence of tests, each of which 
specifies a set of elements to test. For each such set, we send a 
probe from the root node which traverses the tree and visits 
only the non-tree edges in the specified set. Therefore a probe 
fails if and only if one of the elements in the corresponding 
CGT test has failed. The results of these probes are returned to 
the CGT algorithm, and it identifies the failed edges. 

TG

TG

To summarize, the optimal non-adaptive CGT algorithm 
can be applied to the set of non-tree edges, using the edges of 

 to route from the root to the non-tree edges. This approach 

uses 
TG

( )( ,T m s∗Ο )  probes. Since we have to perform these 

tests for all 1s +  trees, ( )( , )s T m s∗Ο ⋅  probes are sufficient. 

Q.E.D. 

We now illustrate this theorem by comparing it to our 
earlier results. A 2-D grid network has edge-connectivity 2, 
since the corner nodes have degree only 2. Therefore Theorem 
5 yields no result for 2-D grids. On the other hand, consider a 
2-D torus, i.e., a grid in which the edges wrap around. Such a 
graph is shown in Fig. 7(a). Any 2-D torus has edge 
connectivity 4, so it has two disjoint spanning trees. An 
example of two spanning trees in a 2-D torus is shown in 
Fig. 7(b). As consequences of Theorem 5, we have the 
following two corollaries.  

Corollary 1: In a 2-D torus with n edges,  probes are 
sufficient to identify a single edge failure.  

)(log nΘ

Fig. 7. (a) A 2-D torus of 4x4. (b) Two edge-disjoint spanning trees 
contained in the 2-D torus. 

  

(a)           (b) 

Corollary 2: In a complete (i.e., fully connected) network 
with nodes, n ( )( ),s T m s∗Ο ⋅  probes are sufficient to identify 

up to ( )3 / 2s n≤ −  failed edges.  

Theorem 5 also suggests the following general paradigm for 
applying classical CGT procedures (such as LTP) to problems 
on graphs. 
Preprocessing: 
1. Identify 1+s  edge-disjoint connected sub-graphs. Each 

sub-graph will be used in turn as a “hub” to reach the edges 
of the graph outside itself. 

2. For each hub, use a CGT algorithm to generate tests for 
the set of edges outside it. 

Probing the network non-adaptively: 
3. For each hub, verify that its edges are intact. 
4. For each hub, each test from Step 2 is implemented by a 

permissible probe as follows: the probe traverses the interior 
of the hub, and steps out only onto the neighboring edges 
that are to be tested. Note that, assuming the hub is intact, 
the probe fails if and only if one of the edges to be tested has 
failed. 

Diagnosis: 
5. Since there are at most s  failures and 1+s  edge-disjoint 

hubs, at least one contains no failed edge. Such a hub can be 
identified based on the results of Step 3. All other hubs are 
ignored by the diagnosis algorithm. 

6. Run the CGT algorithm on the results of Step 4 for the 
good hub, thus identifying all failed edges.  

It can be seen that Algorithm 1 is a special case of this general 
procedure with 1s = . Similar fault diagnosis algorithms can be 
designed for other regular networks of degree .  d

B. Networks with Tree Topologies 
We now consider networks with tree topologies, and obtain 

bounds in terms of the diameter5. Note that the depth, the 
most commonly used measure for trees, is within a factor of 2 
of the diameter, for any choice of a root. 
Theorem 6: For any tree , when , we have: TG 1=s

2

( log )
( log ) ( ,1) min

( log )
T D n

D n L G
D n

∗ Ο ⋅⎧ ⎫
Ω + ≤ ≤ ⎨ ⎬Ο +⎩ ⎭

,    (3) 

where D  is the diameter of the graph . TG

The proof of Theorem 6 is given in Appendix B. 

C. Networks with Arbitrary Topologies 
In this sub-section, we address the fault diagnosis problem 

for networks with arbitrary topologies. The main result is 
summarized as follows.  

 
5 The diameter of a graph is the maximum shortest distance between any 

two nodes in the graph.  
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Theorem 7: If a graph G  contains s  edge-disjoint spanning 
trees , then the minimum number of non-adaptive 
probes to identify up to 

sTT ,...,1

s  failed edges is upper bound by 

*

1

( , ) ( , ) ( , 1)
s

i
i

L G s s T m s L T s∗

=

⎛
≤ Ο ⋅ + =⎜

⎝
∑ ∗ ⎞

⎟
⎠

.    (4) 

Proof: 
For each chosen spanning tree, we perform the following 

probes independently: 
1. Probe the entire spanning tree. 
2. Assuming there is exactly one failure in the edges of the 

spanning tree, use probes to find the failure. ( , 1)iL T s∗ =

3. Assuming there is no failure inside the spanning tree, use it 
as a hub to diagnose at most s  failures among the remaining 
edges. This needs ( ),T m s∗  probes. 
The diagnosis algorithm proceeds as follows. If one of the 

spanning trees contains no failure (this can be inferred from 
Step 1), the information gathered in Step 3 for this spanning 
tree will solve the problem. Otherwise, each tree contains 
exactly one failed edge. Step 2 identifies a unique failed edge 
inside each spanning tree.  Q.E.D. 

Theorem 7 implies an upper bound for arbitrary graphs as 
follows. 

Corollary 3: For an arbitrary graph G  and , we have: 1=s

 2( ,1) ( log )L G D∗ ≤ Ο + n ,      (5) 

where D  is the diameter of the graph. 
Proof: 

Choose the spanning tree to be a shortest path tree from an 
arbitrary starting node. This guarantees that the depth of the 
tree is at most the diameter of . It follows from Theorem 6 
that 

G
( )2( , 1) logiL T s D n∗ = = Ο +  and from the LTP that 

( ), 1 logT m s n∗ = = .   Q.E.D. 

VI. CONCLUSION 
In this paper, we have considered the fault diagnosis 

problem for all-optical networks. We focused on the proactive 
fault diagnosis framework, in which a set of probes are sent 
along lightpaths to test whether they have failed; the network 
failure pattern is identified using the results of the probes. We 
proposed a non-adaptive probing design, due to its 
asynchronous nature and ease of implementation. The key 
objective of our design is to minimize the number of probes 
sent, in order to minimize the total diagnosis cost. 

The non-adaptive fault diagnosis problem for all-optical 
networks is equivalent to the combinatorial group testing 
problem on graphs. In the latter problem, probes can only be 
sent over walks over the graph, and therefore such probes 
correspond to lightpaths in all-optical networks. In this 
framework, we developed efficient fault diagnosis algorithms 
for different classes of network topologies, and obtained upper 
and/or lower bounds on the number of non-adaptive probes 

needed. The non-adaptive fault diagnosis algorithms that we 
proposed share a common theme: a fault-free sub-graph 
should be identified in the network and serve as a hub to route 
other necessary probes to diagnose failures in the network.  

Although this research was presented in the context of all-
optical networks, we believe that our methods based on 
combinatorial group testing on graphs can be employed in 
other network contexts to solve fault diagnosis problems.  

APPENDIX 

A. Correctness of Algorithm 2 
The correctness of Algorithm 2 can be established as 

follows. 
• Suppose that the edge failure happens in column 1. 

This fact will be uncovered in Step 1a. The edges in all 
other columns and in all rows are intact, and therefore 
it is valid to use them for routing in Step 1b. It follows 
that Step 1b correctly performs the LTP on the edges of 
column 1 and identifies the edge failure. 

• Suppose that the edge failure happens in row 1. A 
similar argument shows that Step 2 identifies the edge 
failure. 

• Suppose that the edge failure happens on the ith edge in 
row . All column edges are intact, and can be 
used to route probes in Step 3a. It follows that Step 3a 
correctly performs the LTP on all rows and identifies 
the row containing the edge failure. The edges of row 1 
are intact, and can be used for routing probes in Step 
3b to identify the edge failure. 

2j ≥

• Suppose that the edge failure happens on the ith edge in 
column .  A similar argument shows that Step 4 
identifies the edge. 

2j ≥

B. Proof of Theorem 6 for Tree Topologies 
For the proof, we fix an arbitrary root. First consider the 

lower bound. The )(lg nΩ bound is inherited from the CGT 
lower bound of (1). The ( )DΩ  bound follows from the lower 
bound for linear networks of Theorem 2, as follows. Consider 
only the path from the root to the deepest leaf, which has 
length at least . By truncating every probe to its 
intersection with this path, we obtain a solution to the problem 
on the path (a linear network). 

/ 2D

We now show the upper bound of ( lg )D nΟ ⋅ . This 
dominates in the case of trees of sub-logarithmic depth (which 
necessarily have high degree). The strategy is quite simple. 
For each depth [0, 1]d D∈ − , we do the following: 
1. Probe the sub-tree containing the root and all nodes up to 

depth d . 
2. Assuming that the failed edge is at level 1+d , use the 

sub-tree of depth  as a hub to test nodes at depth d 1+d . 
The diagnosis algorithm first looks at probes of type 1, and 
determines the level at which the failure occurred. Then, it 
uses the probes of type 2 made at the relevant level. 
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The problem with this direct approach is that it involves a 
CGT step at every level of the tree, which is potentially 
wasteful when the tree has depth much larger than . To 

handle unbalanced trees more efficiently, we use a technique 
known as the heavy-light decomposition. 

nlg

Define the weight of a node to be the number of nodes 
under it. For each non-leaf node, define a heavy edge to go 
from the node to its heaviest child. Preferred paths are defined 
as the maximal paths in the graph containing only heavy 
edges. For convenience, we will also consider the light edge 
immediately above a preferred path to be a part of the path. 
Thus, all edges of the tree are in a preferred path. 

For each edge, its light depth is the number of light edges 
on the path from the edge to the root. All heavy edges in a 
preferred path have the same light depth, so we can also talk 
about the light depth of a preferred path. A standard argument 
shows the light depth is always , because each time we 
follow a light edge, the number of nodes under the current 
node decreases by at least a factor of 2. An example of heavy-
light decomposition is illustrated in Fig. 8. 

(lg )nΟ

Our solution performs the following probes: 
1. For each depth , probe the sub-tree containing 

the root and all nodes up to depth . 
[0, 1]d D∈ −

d
2. For each light depth : 

A. Probe the sub-tree containing all preferred paths up to 
light depth . 

B. Under the hypothesis that the sub-tree does not contain 
a failure, use it as a hub to test the preferred paths at 
light depth . Such a preferred path is viewed as a 
single element for the CGT algorithm; each probe 
either includes all edges in the path or none. 

1+

The diagnosis algorithm works as follows. By examining data 
from Step 1, it determines the depth of the failed edge. Then, 
it only needs to find out the preferred path containing the 
failure. From the data of Step 2A, one can gather the light 
depth of the failure. Finally, the analysis only considers the 
relevant hub among the data from Step 2B.  
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