THE POST-ORDER HEAP

Nicholas J. A. Harvey and Kevin Zatloukal
MIT Computer Science and Artificial Intelligence Laboratory
{nickh,kevinz @mit.edu

Abstract

We propose the post-order heap, a new data structure for implementing priority queues.
Our structure is a simple variant of the binary heap that requires@fily amortized

time for Insertoperations and (log n) time in the worst case fdDelete-Minopera-

tions. Like the binary heap, the post-order heap is an implicit data structure, meaning
that a structure containing elements can be stored using only the firédcations of

an array an@®(1) additional words of storage.

1. Introduction

The binary heap, due to Williams [4], is the canonical example of a priority queue. It
supports thénsertand Delete-Minoperations in worst-cas@(logn) time and also
supports a batch insert operation calBdld-Heap which constructs a binary heap of
n elements irO(n) time. In this paper, we present the post-order heap, a variant of the
binary heap, which performs insertions by executhgld-Heaponline. This allows
us to improve the cost dfisertto ©(1) in the amortized sense, without affecting the
cost ofDelete-Min

Post-order heaps are not the first priority queue to perfimisertin ©(1) time
and Delete-Minin O(logn) time. Fibonacci heaps [3] achieve these bounds in the
amortized sense and suppbhtion and Decrease-Kepperations in9(1) amortized
time. However, each node of a Fibonacci heap requires several pointers and additional
state. In contrast, post-order heaps are implicit, requiring ér{ly) storage in ad-
dition to an array of elements. Carlsson et al. [1] presented the first implicit priority
queue to supportinsertin ©(1) time andDelete-Minin O(logn) time, both in the
worst-case sense. Unlike their complex construction, however, post-order heaps are a
natural extension of the binary heap that is both simple and practical.

FUN with Algorithms

2. Overview

The binary heap’snsertoperation adds each new item at the bottom of the tree and
then swaps the itempwarduntil the heap order is satisfied. This makes the worst-
case running time proportional to the depth of the inserted node, whiellig;)

on average. On the other hand, tBeild-Heapoperation, due to Floyd [2], takes
advantage of the insight that the average height of a node (i.e., distance to a leaf)
is less thar2, whereas the average depth@glogn). The Build-Heap operation

adds each new item at the top of a tree of previously inserted items and then swaps
the itemdownwarduntil the heap order is satisfied. This process of swapping an
item downward in the tree is called a “heapify”. The running time of a heapify is
proportional to the height of the inserted node, whic®{8) on average.

As with binary heaps, the nodes of a post-order heap are organized into a partially-
constructed, heap-ordered binary tree. Whereas binary heaps insert new nodes into
this tree in the order given by a level-order traversal, post-order heaps insert new
nodes according to a post-order traversal, as shown in Figure 1. Since each new node
is the parent of two subtrees that have already been heapified, the post-order heap only
needs to heapify at the new node to restore the heap order. Thus, insertion requires
time proportional to the height of the inserted node, whicB (%) on average.

To store a heap in an array, we need to define a mapping between tree nodes and
array locations. As with the binary heap, we define the mapping for a post-order heap
to be the insertion order of the nodes. Thus, the labels on the nodes in Figure 1 also
indicate the locations of those nodes in the array. Since our insertion order differs
from that of a binary heap, the resulting data structure has many different properties.
We examine some of these properties in the next section.

3. Basic Properties

We can think of the nodes in a binary heap of sizas the firstx nodes visited by a
level-order traversal of a perfect binary tree of infinite size, that is, a tree with a fixed
root but growing infinitely downward. Similarly, we can think of the nodes in a post-
order heap of size as the firstn nodes visited by a post-order traversal on a perfect
binary treeg of infinite size. In this case, though, the ti@das a fixed left-most leaf
and grows infinitely upward and to the right from that node.

The subgraph of induced by these nodes is a foresk,,. For example, Figure 1
shows the foresfs4, which contains four trees. L&, = {¢1,...,t;} be the trees of
F,, ordered by the roots’ positions in the array. Each treis a perfect binary tree
since the post-order traversal visits a node only after completely visiting both of its
subtrees. To simplify our notation, we lgtrefer to both the tree and its root node.

The Post-Order Heap

Figure 1: A post-order heap inserts nodes in the order given by a post-order traversal.

The numbers in the nodes indicate the insertion order, not the actual values stored in
those nodes. At this point, the heap consists of four trees. Notice that the last two trees
are both of sizd. The next node inserted would be the parent of those two trees.

ProPOSITION3.1 For everyi < k, the roott; is the left child of its parent iigy. That
is, every root; is a left child except possibly féf,. For any pairi < j, t; is contained
in the right subtree of;’s parent.

Proof: Consider any root; with parentp;. Sincet; is a root, we must not yet have
insertedp;. The post-order insertion rule at says to insert the left subtree, then the
right subtree, and thep;. If ¢; is right child of p;, thenp; would be the next node
to be inserted aftef;. Since it has not been inserteg,must be the last node in the
array, which means= k. If i < k, thent; must be a left child. Sincg; has not been
inserted, all of the nodes inserted aftemust be in the right subtree pf. O

COROLLARY 3.2 The heights of the trees are decreasing, with equality only possible
for t;,_, andt,.

Proof: For anyt; with i < k, t;11,...,t; are contained in the right subtree g%
parent, so clearly their heights are no greater th&n Equality is only possible if
t;+1 is the entire right subtree, in which case; is arightchild,sa +1=%k. O

Since each treg is perfect, a tree of heiglit has exactly2"*! — 1 nodes. If a
post-order heap of size consists of exactly one tree of heightthen we must have
n =2"*1 —1andh =1g(n + 1) — 1. In general, if we know the number of nodes in
a post-order heap, we can deduce the height of the firsttree

FUN with Algorithms

DEFINITION 3.3 Lets(h) = 2" — 1 andh(n) = |lg(n +1)] — 1.
THEOREM 3.4 In a post-order heap containing nodes, the height af is h(n).

Proof: We argued the case= 1 above, so suppose that> 1. Let h; be the height
of t;. Proposition 3.1 shows that the tregs..., ¢, are all contained in the right sibling
of ¢;. It follows thatt; contains at least/2 nodes:s(hy) = 2"+ —1 > n/2 =
hi >1g(n+2)—2 > |lg(n + 1)] —2. Sincet, exists, we know that; contains fewer
thann nodes:s(hy) = 2m+!l — 1 <n = hy <lgn+1)—1 < |lg(n+1)].
Sinceh, is an integer, we must havg = |lg(n + 1)| — 1 = h(n). Thus, treg; has
heighth(n). a

Corollary 3.2 implies that no tree is taller then Thus, Theorem 3.4 tells us that
the maximum height of any tree ign) = |lg(n + 1)| — 1. Futhermore, sincg is
strictly taller thant; if ¢ < j < k, it follows that the number of trees, is at most
llg(n+1)] + 1.

We now consider how to determine the height of an arbitrary node in a post-order
heap. Lety; be thei-th node in the array, and let

[n6) if i = s(h(i)
(i) = {H(z — s(h(i))) otherwise.

THEOREM 3.5 H(i) is the height of node,;.

Proof: Imagine thatv; has just been inserted. By Theorem 3.4, we can hiave
s(h(2)) if and only if¢; is the only tree. In that case, the post-order insertion rule tells
us thatv;, the last node inserted, must be the rootgfwhose height ig.(7). This
proves the first case in the definition Bf. Now, suppose that; is not the root of; .
Then, by Proposition 3.1, node must be int;’s right sibling sincev; was inserted
later. By symmetry, thg-th node inserted im; has the same height as thi¢h node
inserted int,'s right sibling. If v; is the latter node, then the former node has index
i — s(h(i)) sinces(h(7)) is the size of tree;. O

4. The Insert operation

In this section, we show that thesertoperation requires onlg)(1) amortized time.
Inserting then-th element into a post-order heap involves copying the new value into
the nodev,, and then heapifying at,,. To perform the heapify, we must compute the
location ofwv,,’s left and right children in the array so that we can compare their values
to v,,’s new value. We now show how to compute these array locations.

4

The Post-Order Heap

The post-order insertion rule tells us that the left and right child,pofvere the
last nodes inserted in each of their respective subtrees and that the nodes in the right
subtree were added just after the left child. This means that the right child was inserted
just beforev,,, so its index is» — 1. The index of the left child must be — 1 minus
the number of nodes in the right subtree. Sifitg:) is the height ofv,,, the size of
the right subtree is(H (n) — 1), so the index of the left child is — 1 — s(H (n) — 1).

This gives us a way of computing the locationsvgfs left and right child. Un-
fortunately, computind? (n) directly from its definition may requir®(logn) time in
the worst-case. We will now show how we can compute the height of ©(1) time
by keeping track of some additional information.

Letp,(H (n)+j) denote the node that is thiegh ancestor of,, in G. For example,
pn(H(n)) is v, itself andp,,(H (n) + 1) is the parent of,,. We now defineD,,, an
infinite {0, 1} string, which records the whethey’s ancestors are left or right children
of their respective parents. L&, (k) denote thé:-th bit of D,,. Then, we define

0 if h < H(n)
D, (h) =<0 if p,(h) is the left child ofp, (h + 1)
1 if p,(h) is the right child ofp,, (h + 1).

PropPOSITION4.1 D, (h) = 0for h > h(n).

Proof: By Theorem 3.4, the height af is h(n). Since its parentp;, has not yet
been inserted, every existing node is a descendant afhe post-order insertion rule
implies that the left subtree is fully inserted before any nodes in the right subtree. Thus
p1 must be the left child of its parent. Similarly;’s parent must be a left child, etc.
Since the height af, is h(n) + 1, we have shown thaD,,(h) = 0for b > h(n). O

This proposition shows that we can stdpg in O(logn) bits: we need not record
D,,(h) for h > h(n) since we know it i). In particular, we will recordD,, as an
integer and comput®,, (k) by standard arithmetic 49, /2" | mod 2. This will give
aresult ofd for anyh > h(n). We will now show thatD,,; andH (n + 1) are easily
computed fromD,, andH (n).

THEOREM4.2 D,,.1 andH(n + 1) are related toD,, and H (n) by

D D, + 280 if D, (H(n)) =0
o D, —2H™ if D, (H(n)) =1
o if D,,(H(n)) =0

Hin+1) = {H(n) 1 i Du(H(n) =1

FUN with Algorithms

Proof: First, suppose thab,,(H(n)) = 0. This means that,, is the left child of
its parent,p,,. The post-order insertion rule requires the next node insetted,,
to be the leftmost leaf ip,,’s right subtree, so its heigh# (n + 1) is 0. Nodesuv,,
and v, .1 have the same ancestgy, at heightH(n) + 1, so D,,(h) = D,11(h)
for h > H(n). Sincev,y; is the leftmost leaf in the right subtree pf, all of its
ancestors up to heigtif (n) — 1 are left children, which means thax, ., (k) = 0 for
h < H(n), and by definition, we hav®,,(h) = 0 for h < H(n). Lastly, whereas
vy, IS the left child ofp,,, nodev, 1, is a descendant of the right child pf,, which
means thatD,,1(H(n)) = 1 while D,,(H(n)) = 0. In summary, we have shown
thatD,,, = D, + 2™,

Now, suppose thab,,(H(n)) = 1. This means that,, is the right child ofp,,.
The post-order insertion rule requires; ; to bep,,. Thus, we will haveH (n + 1) =
H(n) + 1. Sincev,, andv,,4+1 have the same ancestors at heifflii. + 1) and above,
we haveD,,(h) = D,11(h) for h > H(n). By definition, we know thab,, 1 (k) =0
for h < H(n). SinceD,,(h) = 0for h < H(n) andv, is the right child ofp,,, the only
difference betweem,,; and D,, is thatD,,1(H(n)) = 0 while D,,(H(n)) = 1.
Therefore, we have shown that, | = D,, — 2H("), O

This shows that we can compute the height and ancestry string.@f namely
H(n + 1) and D,,11, given the height and ancestry string«f, namelyH (n) and
D,,. GivenH (n+1), we can efficiently compute the array location®f ;'s left and
right children:n — s(H (n+1) — 1) andn respectively. The heights of the children are
one less than the height of 1;, so we can compute the indices of their children, and
so on. This means that we have enough information to efficiently perform a heapify
atwv,.1. Thus, in order to perform thimsertoperation, we maintain (1) the index
of the last node in the array, (2) the heidi{n) of v,,, and (3) its ancestry string,,.
By Proposition 4.1, this data can be stored in three words. By Theorem 4.2, it can be
updated in9(1) time.

THEOREM 4.3 We can implement the Insert operationdxil) amortized time.

Proof: As we saw above, thinsert operation does only constant work aside from
the heapify a,,.;. To prove that the heapify runs (1) amortized time, we use

a potential function that is the sum of the heights of each#re®hen the inserted
node has height, the heapify does only constant work and the potential is unchanged,
so the amortized cost ®(1). Otherwise, by the post-order insertion rule, we are
inserting the new node of heightas the parent of two subtrees of height 1. The

real cost of the heapify is proportional kg but the potential decreases by — 1) —

h = h — 2, so the amortized cost is just]

The Post-Order Heap

5. The DeleteMin operation

To delete the minimum value in a post-order heap, we must first search for the node
containing the minimum value. Since each ttges heap-ordered, we know that the
minimum value must be at the root of some Below, we will see how to enumerate
the tree roots irO(log n) time. Once we have found the rogtwith the minimum
value, we swap its value with the value in the last nogeThen, we must heapify at
t; to restore the heap-order, which takeSog n) time. Finally, we remove,,, which
now contains the minimum value. Below, we will also see how to update the values
of H(n) andD,, in O(logn) time.

We can enumerate the roots of each treas follows. By the post-order insertion
rule, the root oft, must be the last node,,. Now, consider the previous treg ;.
The rule applied to the parent tf_; implies thatt;, and all of its descendants were
inserted just aftet;,_, which means that the index of rogt_; isn — s(H(n)). If h
is the height oft;,_;, then we know that,'s ancestor at heighit is the right sibling
of t;_1, which means thab,,(h) = 1. In general, ifD,,(h) = 1, then the left sibling
of v,,’s ancestor at height is some root;. Thus, we can find the heights of each of
the trees by finding thé bits in D,,. Futhermore, we can compute the indgxf the
previous tree; at heighth by the formulaj; = j;+1 — s(h) in ©(1) time. This shows
that we can enumerate the roots of the treg3(tog n) time.

After removing the minimum value, we must compute the valued of — 1) and
D,,_1. If H(n) > 0, then node,,_; is the right child ofv,,, so we haved (n — 1) =
H(n)—1andD,_; = D, +27(=1) Otherwise, node,_ is the left sibling of the
first ancestor ofy,, that is a right child of its parent. Thug(n — 1) is the position of
the rightmostl bitin D,, andD,,_; = D,, — 27(»=1)_ This discussion shows that we
can updatdd (n) andD,, in O(logn) time, which gives us the following result.

THEOREM5.1 We can implement the Delete operatiorCflog n) time.

6. Experiments

To verify the practicality of the post-order heap, we experimentally compared it to the
standard binary heap. Both heaps were implemented in a comparable manner in the
C# programming language. In each experiment, we inser@2tbit integers into the

heap, where: is randomly chosen betwednand 106. We performed experiments

with the data inserted in increasing, decreasing, and random order. For each ordering,
we performed 300 experiments and recorded both the number of comparisons and the
actual running time in seconds. Table 1 shows the average number of comparisons for

FUN with Algorithms

eachlnsertoperation and the total time required to run all experiments. We ran the
experiments on a 2.4GHz Pentium 4 machine with 512 MB of RAM.

For the binary heap, the best-case performance is achieved on increasing input.
Since each new item is placed at the bottom of the tree, it will not need to be moved
because its parent contains a smaller value. For the post-order heap, increasing input
is actually a bad case. Since each new item is placed at the top of a tree, it will need to
move all the way to the bottom. However, we proved above that the average height of
an inserted node, over a sequence of insertions, is just 2. We can see in Table 1 that the
post-order heap performed only 2 comparisons per insert, which is quite respectable.

On uniformly random input, the binary heap has similar performance since each
item will need to move only a constant number of places on average (most items
will stay at the bottom). We can see in Table 1 that the binary heap averages 2.38
comparisons per insert. On the other hand, the post-order heap averages only 1.87
comparisons per insert, more than 20% fewer.

The worst case for the binary heap is achieved on decreasing input. Here, each
item is moved to the top of the heap, costi®glogn) comparisons per operation.
Table 1 shows that the binary heap averages 17.32 comparisons per insert, a huge
jump over the increasing and uniformly random cases. Decreasing input is the best
case for the post-order heap since each item does not move at all. The resultis only 1
comparison per insert, which is a significant improvement over the binary heap.

Table 1 also shows the running time of theertoperations on each input ordering.
Here, we can see the cost of the extra bookkeeping required for the post-order heap.
However, it is important to note that these running times are for 32-bit integer data,
for which the cost of a comparison is extremely small. For larger integers, strings,
or other objects with less efficient comparisons, the running time would more closely
match the shape of the comparison data. As the time for a comparison increases to
infinity, the total running time will be proportional to the number of comparisons.

Ordering Binary Heap Post-Order Heap
Comparisons Total Time Comparisons Total Time
Increasing 1.00 231 2.00 7.59
Random 2.38 5.66 1.87 7.53
Decreasing 17.32 27.09 1.00 5.00

Table 1: Experimental comparison of the running times of theert operations of
binary and post-order heaps on three different types of input orderings. Since these
results are for small integer data, the running times would trend towards the compari-
son values for data types with slower comparisons.

The Post-Order Heap

We also tested the performancel@életeoperations for both data structures. The
number of comparisons were roughly equivalent between the two: the post-order heap
performed 15% more on random input but more than 20% less on increasing and
decreasing input. However, f@eleteoperations, the extra costs for the post-order
heap are more prominent, as it has to search througiVthez »n) trees to find the
minimum. The running time for the post-order heap is a factor of 2.0-2.5 worse than
that of the binary heap. Again, it is important to keep in mind, though, that this is for
32-bit integer data, and that for other data types, this factor will decrease.

These results show that the post-order heap does indeed smooth out the poor worst-
case behavior of the binary heap, albeit at the cost of a small constant factor slowdown
in other cases. As noted above, the size of this constant factor will decrease on data
types with slower comparisons, shrinking to less than 1 in the limitrfsert oper-
ations on uniformly random inputs. These results show that the post-order heap is a
practical data structure, suitable for use in real-world applications.

7.Conclusion

We have presented the post-order heap, a variant of the standard binary heap. Like
the binary heap, the post-order heap is an implicit data structure, requiring only three
words of storage in addition to the array of elements. Unlike the binary heap, however,
an Insertoperation requires onl®(1) amortized time. Unlike the data structure of
Carlsson et al. [1], the post-order heap is quite simple, as we saw above and as is clear
from the pseudocode in the appendix. We also presented experimental results demon-
strating that the post-order heap is a practical data structure that should be considered
for real-world applications. Thus, we have seen that the post-order heap is a simple
and practical variant of the binary heap that delivers improved performaniceert
operations with only three words of additional storage and little added complication.

References

[1] S. Carlsson, J. I. Munro, and P. V. Poblete. An implicit binomial queue with constant
insertion time. InProceedings of the 1st Scandinavian Workshop on Algorithm Theory
volume 318 ofLecture Notes in Computer Scienpages 1-13, July 1988.

[2] R.W. Floyd. Algorithm 245 (TreesortlCommunications of the ACM(12):701, 1964.

[3] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved network
optimization algorithmsJournal of the ACM34(3):596—615, 1987.

[4] J. W. J. Williams. Algorithm 232 (HeapsortCommunications of the ACM(1):347-348,
1964.

FUN with Algorithms

A. Pseudocode

The pseudocode maintains four variablasthe ar-

> Remove min element from heap and return it.

ray containing the heap values, the number of DelETE-MIN()

nodes in the heap, the value ofH (n), andD, the 1
value of D,,. The H-th bit of the integerD is de- 2
notedD[H]. The pseudocode also uses the function3
s(h) = 2"*+1 — 1, as given in Definition 3.3. 4

5
> Get left child of node, which is at heighh. 6
LEFT-CHILD (%, h) 7
1 retuni—1—s(h—1) 8

9

> Get right child of node, which is at heighh. 10
RIGHT-CHILD (i, h) 11
1 returni—1 12
13

> Restore heap property at node 14
HEAPIFY(i, h) 15
1 if h=0then 16
2 return 17
3 [« LEFT-CHILD(i, h) 18
4 7 — RIGHT-CHILD (%, h) 19
5 if A[l] < Al 20
6 then smallest— ! 21
7 else smallest— ¢ 22
8 if A[r] < Amallestthen 23
9 smallest— r 24
10 if smallest# ¢ then 25
11 A[i] — Abmallest 26

12 HEAPIFY(smallesth — 1)

> Insert a new value into heap.
INSERT(KeY)
1 > ComputeD(n + 1) andH(n + 1)
2 if n > 0then
3 ifD[H]=0
then D[H] « 1
H=0
else D[H] —0
H«—H-+1

© o0o~NOO O b

> Add new node to array; restore heap property
n—n-+1

Aln] « key

HEAPIFY(n, H)

10

> Enumerate all roots and find min element
minLoc«+— n
minHeight— H
z—n—s(H)
h+—H-1
while z > 0
do repeath <« h + 1 until D[h] =1
if Alz] < AjminLog then
minLoc«+— =
minHeight— h
z —x —s(h)

> Swap min to end; restore heap property
AminLod < A[n|
HEAPIFY(minLocminHeigh)

> Updaten, H, andD
minNode— Aln]
n«—n-—1
if n > 0then
if H>0
then H=H — 1
D[H] =1
else whileD[H]=0doH «— H +1
D[H] =0
return minNode

