THE POST-ORDER HEAP

Nicholas J. A. Harvey and Kevin Zatloukal MIT Computer Science and Artificial Intelligence Laboratory {nickh,kevinz}@mit.edu

Abstract

We propose the post-order heap, a new data structure for implementing priority queues. Our structure is a simple variant of the binary heap that requires only $\Theta(1)$ amortized time for *Insert* operations and $O(\log n)$ time in the worst case for *Delete-Min* operations. Like the binary heap, the post-order heap is an implicit data structure, meaning that a structure containing *n* elements can be stored using only the first *n* locations of an array and $\Theta(1)$ additional words of storage.

1. Introduction

The binary heap, due to Williams [4], is the canonical example of a priority queue. It supports the *Insert* and *Delete-Min* operations in worst-case $\Theta(\log n)$ time and also supports a batch insert operation called *Build-Heap*, which constructs a binary heap of n elements in $\Theta(n)$ time. In this paper, we present the post-order heap, a variant of the binary heap, which performs insertions by executing *Build-Heap* online. This allows us to improve the cost of *Insert* to $\Theta(1)$ in the amortized sense, without affecting the cost of *Delete-Min*.

Post-order heaps are not the first priority queue to perform *Insert* in $\Theta(1)$ time and *Delete-Min* in $O(\log n)$ time. Fibonacci heaps [3] achieve these bounds in the amortized sense and support *Union* and *Decrease-Key* operations in $\Theta(1)$ amortized time. However, each node of a Fibonacci heap requires several pointers and additional state. In contrast, post-order heaps are implicit, requiring only $\Theta(1)$ storage in addition to an array of elements. Carlsson et al. [1] presented the first implicit priority queue to support *Insert* in $\Theta(1)$ time and *Delete-Min* in $O(\log n)$ time, both in the worst-case sense. Unlike their complex construction, however, post-order heaps are a natural extension of the binary heap that is both simple and practical.

2. Overview

The binary heap's *Insert* operation adds each new item at the bottom of the tree and then swaps the item *upward* until the heap order is satisfied. This makes the worstcase running time proportional to the depth of the inserted node, which is $\Theta(\log n)$ on average. On the other hand, the *Build-Heap* operation, due to Floyd [2], takes advantage of the insight that the average height of a node (i.e., distance to a leaf) is less than 2, whereas the average depth is $\Theta(\log n)$. The *Build-Heap* operation adds each new item at the top of a tree of previously inserted items and then swaps the item *downward* until the heap order is satisfied. This process of swapping an item downward in the tree is called a "heapify". The running time of a heapify is proportional to the height of the inserted node, which is $\Theta(1)$ on average.

As with binary heaps, the nodes of a post-order heap are organized into a partiallyconstructed, heap-ordered binary tree. Whereas binary heaps insert new nodes into this tree in the order given by a level-order traversal, post-order heaps insert new nodes according to a post-order traversal, as shown in Figure 1. Since each new node is the parent of two subtrees that have already been heapified, the post-order heap only needs to heapify at the new node to restore the heap order. Thus, insertion requires time proportional to the height of the inserted node, which is $\Theta(1)$ on average.

To store a heap in an array, we need to define a mapping between tree nodes and array locations. As with the binary heap, we define the mapping for a post-order heap to be the insertion order of the nodes. Thus, the labels on the nodes in Figure 1 also indicate the locations of those nodes in the array. Since our insertion order differs from that of a binary heap, the resulting data structure has many different properties. We examine some of these properties in the next section.

3. Basic Properties

We can think of the nodes in a binary heap of size n as the first n nodes visited by a level-order traversal of a perfect binary tree of infinite size, that is, a tree with a fixed root but growing infinitely downward. Similarly, we can think of the nodes in a post-order heap of size n as the first n nodes visited by a post-order traversal on a perfect binary tree \mathcal{G} of infinite size. In this case, though, the tree \mathcal{G} has a fixed left-most leaf and grows infinitely upward and to the right from that node.

The subgraph of \mathcal{G} induced by these *n* nodes is a forest F_n . For example, Figure 1 shows the forest F_{24} , which contains four trees. Let $T_n = \{t_1, ..., t_k\}$ be the trees of F_n ordered by the roots' positions in the array. Each tree t_i is a perfect binary tree since the post-order traversal visits a node only after completely visiting both of its subtrees. To simplify our notation, we let t_i refer to both the tree and its root node.

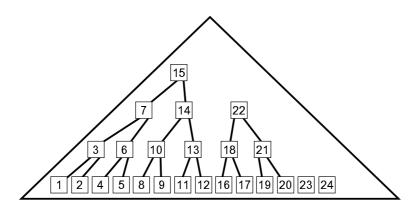


Figure 1: A post-order heap inserts nodes in the order given by a post-order traversal. The numbers in the nodes indicate the insertion order, not the actual values stored in those nodes. At this point, the heap consists of four trees. Notice that the last two trees are both of size 1. The next node inserted would be the parent of those two trees.

PROPOSITION 3.1 For every i < k, the root t_i is the left child of its parent in \mathcal{G} . That is, every root t_i is a left child except possibly for t_k . For any pair i < j, t_j is contained in the right subtree of t_i 's parent.

Proof: Consider any root t_i with parent p_i . Since t_i is a root, we must not yet have inserted p_i . The post-order insertion rule at p_i says to insert the left subtree, then the right subtree, and then p_i . If t_i is right child of p_i , then p_i would be the next node to be inserted after t_i . Since it has not been inserted, t_i must be the last node in the array, which means i = k. If i < k, then t_i must be a left child. Since p_i has not been inserted, all of the nodes inserted after t_i must be in the right subtree of p_i .

COROLLARY 3.2 The heights of the trees are decreasing, with equality only possible for t_{k-1} and t_k .

Proof: For any t_i with i < k, $t_{i+1}, ..., t_k$ are contained in the right subtree of t_i 's parent, so clearly their heights are no greater than t_i 's. Equality is only possible if t_{i+1} is the entire right subtree, in which case t_{i+1} is a right child, so i + 1 = k. \Box

Since each tree t_i is perfect, a tree of height h has exactly $2^{h+1} - 1$ nodes. If a post-order heap of size n consists of exactly one tree of height h, then we must have $n = 2^{h+1} - 1$ and $h = \lg(n+1) - 1$. In general, if we know the number of nodes in a post-order heap, we can deduce the height of the first tree t_1 .

DEFINITION 3.3 Let $s(h) = 2^{h+1} - 1$ and $h(n) = \lfloor \lg(n+1) \rfloor - 1$.

THEOREM 3.4 In a post-order heap containing n nodes, the height of t_1 is h(n).

Proof: We argued the case k = 1 above, so suppose that k > 1. Let h_1 be the height of t_1 . Proposition 3.1 shows that the trees $t_2, ..., t_k$ are all contained in the right sibling of t_1 . It follows that t_1 contains at least n/2 nodes: $s(h_1) = 2^{h_1+1} - 1 \ge n/2 \implies h_1 \ge \lg(n+2) - 2 > \lfloor \lg(n+1) \rfloor - 2$. Since t_2 exists, we know that t_1 contains fewer than n nodes: $s(h_1) = 2^{h_1+1} - 1 < n \implies h_1 < \lg(n+1) - 1 \le \lfloor \lg(n+1) \rfloor$. Since h_1 is an integer, we must have $h_1 = \lfloor \lg(n+1) \rfloor - 1 = h(n)$. Thus, tree t_1 has height h(n).

Corollary 3.2 implies that no tree is taller than t_1 . Thus, Theorem 3.4 tells us that the maximum height of any tree is $h(n) = \lfloor \lg(n+1) \rfloor - 1$. Furthermore, since t_i is strictly taller than t_j if i < j < k, it follows that the number of trees, k, is at most $\lfloor \lg(n+1) \rfloor + 1$.

We now consider how to determine the height of an arbitrary node in a post-order heap. Let v_i be the *i*-th node in the array, and let

$$H(i) = \begin{cases} h(i) & \text{if } i = s(h(i)) \\ H(i - s(h(i))) & \text{otherwise.} \end{cases}$$

THEOREM 3.5 H(i) is the height of node v_i .

Proof: Imagine that v_i has just been inserted. By Theorem 3.4, we can have i = s(h(i)) if and only if t_1 is the only tree. In that case, the post-order insertion rule tells us that v_i , the last node inserted, must be the root of t_1 , whose height is h(i). This proves the first case in the definition of H. Now, suppose that v_i is not the root of t_1 . Then, by Proposition 3.1, node v_i must be in t_i 's right sibling since v_i was inserted later. By symmetry, the *j*-th node inserted in t_1 has the same height as the *j*-th node inserted in t_1 's right sibling. If v_i is the latter node, then the former node has index i - s(h(i)) since s(h(i)) is the size of tree t_1 .

4. The Insert operation

In this section, we show that the *Insert* operation requires only $\Theta(1)$ amortized time. Inserting the *n*-th element into a post-order heap involves copying the new value into the node v_n and then heapifying at v_n . To perform the heapify, we must compute the location of v_n 's left and right children in the array so that we can compare their values to v_n 's new value. We now show how to compute these array locations.

The post-order insertion rule tells us that the left and right child of v_n were the last nodes inserted in each of their respective subtrees and that the nodes in the right subtree were added just after the left child. This means that the right child was inserted just before v_n , so its index is n - 1. The index of the left child must be n - 1 minus the number of nodes in the right subtree. Since H(n) is the height of v_n , the size of the right subtree is s(H(n) - 1), so the index of the left child is n - 1 - s(H(n) - 1).

This gives us a way of computing the locations of v_n 's left and right child. Unfortunately, computing H(n) directly from its definition may require $\Theta(\log n)$ time in the worst-case. We will now show how we can compute the height of v_n in $\Theta(1)$ time by keeping track of some additional information.

Let $p_n(H(n)+j)$ denote the node that is the *j*-th ancestor of v_n in \mathcal{G} . For example, $p_n(H(n))$ is v_n itself and $p_n(H(n)+1)$ is the parent of v_n . We now define D_n , an infinite $\{0,1\}$ string, which records the whether v_n 's ancestors are left or right children of their respective parents. Let $D_n(h)$ denote the *h*-th bit of D_n . Then, we define

$$D_n(h) = \begin{cases} 0 & \text{if } h < H(n) \\ 0 & \text{if } p_n(h) \text{ is the left child of } p_n(h+1) \\ 1 & \text{if } p_n(h) \text{ is the right child of } p_n(h+1). \end{cases}$$

PROPOSITION 4.1 $D_n(h) = 0$ for h > h(n).

Proof: By Theorem 3.4, the height of t_1 is h(n). Since its parent, p_1 , has not yet been inserted, every existing node is a descendant of p_1 . The post-order insertion rule implies that the left subtree is fully inserted before any nodes in the right subtree. Thus p_1 must be the left child of its parent. Similarly, p_1 's parent must be a left child, etc. Since the height of p_1 is h(n) + 1, we have shown that $D_n(h) = 0$ for h > h(n).

This proposition shows that we can store D_n in $O(\log n)$ bits: we need not record $D_n(h)$ for h > h(n) since we know it is 0. In particular, we will record D_n as an integer and compute $D_n(h)$ by standard arithmetic as $\lfloor D_n/2^h \rfloor \mod 2$. This will give a result of 0 for any h > h(n). We will now show that D_{n+1} and H(n+1) are easily computed from D_n and H(n).

THEOREM 4.2 D_{n+1} and H(n+1) are related to D_n and H(n) by

$$D_{n+1} = \begin{cases} D_n + 2^{H(n)} & \text{if } D_n(H(n)) = 0\\ D_n - 2^{H(n)} & \text{if } D_n(H(n)) = 1 \end{cases}$$
$$H(n+1) = \begin{cases} 0 & \text{if } D_n(H(n)) = 0\\ H(n) + 1 & \text{if } D_n(H(n)) = 1 \end{cases}$$

Proof: First, suppose that $D_n(H(n)) = 0$. This means that v_n is the left child of its parent, p_n . The post-order insertion rule requires the next node inserted, v_{n+1} , to be the leftmost leaf in p_n 's right subtree, so its height H(n + 1) is 0. Nodes v_n and v_{n+1} have the same ancestor p_n at height H(n) + 1, so $D_n(h) = D_{n+1}(h)$ for h > H(n). Since v_{n+1} is the leftmost leaf in the right subtree of p_n , all of its ancestors up to height H(n) - 1 are left children, which means that $D_{n+1}(h) = 0$ for h < H(n), and by definition, we have $D_n(h) = 0$ for h < H(n). Lastly, whereas v_n is the left child of p_n , node v_{n+1} is a descendant of the right child of p_n , which means that $D_{n+1}(H(n)) = 1$ while $D_n(H(n)) = 0$. In summary, we have shown that $D_{n+1} = D_n + 2^{H(n)}$.

Now, suppose that $D_n(H(n)) = 1$. This means that v_n is the right child of p_n . The post-order insertion rule requires v_{n+1} to be p_n . Thus, we will have H(n+1) = H(n) + 1. Since v_n and v_{n+1} have the same ancestors at height H(n+1) and above, we have $D_n(h) = D_{n+1}(h)$ for h > H(n). By definition, we know that $D_{n+1}(h) = 0$ for $h \le H(n)$. Since $D_n(h) = 0$ for h < H(n) and v_n is the right child of p_n , the only difference between D_{n+1} and D_n is that $D_{n+1}(H(n)) = 0$ while $D_n(H(n)) = 1$. Therefore, we have shown that $D_{n+1} = D_n - 2^{H(n)}$.

This shows that we can compute the height and ancestry string of v_{n+1} , namely H(n+1) and D_{n+1} , given the height and ancestry string of v_n , namely H(n) and D_n . Given H(n+1), we can efficiently compute the array locations of v_{n+1} 's left and right children: n - s(H(n+1) - 1) and n respectively. The heights of the children are one less than the height of v_{n+1} , so we can compute the indices of their children, and so on. This means that we have enough information to efficiently perform a heapify at v_{n+1} . Thus, in order to perform the *Insert* operation, we maintain (1) the index n of the last node in the array, (2) the height H(n) of v_n , and (3) its ancestry string D_n . By Proposition 4.1, this data can be stored in three words. By Theorem 4.2, it can be updated in $\Theta(1)$ time.

THEOREM 4.3 We can implement the Insert operation in $\Theta(1)$ amortized time.

Proof: As we saw above, the *Insert* operation does only constant work aside from the heapify at v_{n+1} . To prove that the heapify runs in $\Theta(1)$ amortized time, we use a potential function that is the sum of the heights of each tree t_i . When the inserted node has height 0, the heapify does only constant work and the potential is unchanged, so the amortized cost is $\Theta(1)$. Otherwise, by the post-order insertion rule, we are inserting the new node of height h as the parent of two subtrees of height h - 1. The real cost of the heapify is proportional to h, but the potential decreases by 2(h-1) - h = h - 2, so the amortized cost is just 2.

5. The DeleteMin operation

To delete the minimum value in a post-order heap, we must first search for the node containing the minimum value. Since each tree t_i is heap-ordered, we know that the minimum value must be at the root of some t_i . Below, we will see how to enumerate the tree roots in $O(\log n)$ time. Once we have found the root t_i with the minimum value, we swap its value with the value in the last node v_n . Then, we must heapify at t_i to restore the heap-order, which takes $O(\log n)$ time. Finally, we remove v_n , which now contains the minimum value. Below, we will also see how to update the values of H(n) and D_n in $O(\log n)$ time.

We can enumerate the roots of each tree t_i as follows. By the post-order insertion rule, the root of t_k must be the last node, v_n . Now, consider the previous tree t_{k-1} . The rule applied to the parent of t_{k-1} implies that t_k and all of its descendants were inserted just after t_{k-1} , which means that the index of root t_{k-1} is n - s(H(n)). If his the height of t_{k-1} , then we know that t_k 's ancestor at height h is the right sibling of t_{k-1} , which means that $D_n(h) = 1$. In general, if $D_n(h) = 1$, then the left sibling of v_n 's ancestor at height h is some root t_i . Thus, we can find the heights of each of the trees by finding the 1 bits in D_n . Futhermore, we can compute the index j_i of the previous tree t_i at height h by the formula $j_i = j_{i+1} - s(h)$ in $\Theta(1)$ time. This shows that we can enumerate the roots of the trees in $O(\log n)$ time.

After removing the minimum value, we must compute the values of H(n-1) and D_{n-1} . If H(n) > 0, then node v_{n-1} is the right child of v_n , so we have H(n-1) = H(n) - 1 and $D_{n-1} = D_n + 2^{H(n-1)}$. Otherwise, node v_{n-1} is the left sibling of the first ancestor of v_n that is a right child of its parent. Thus H(n-1) is the position of the rightmost 1 bit in D_n and $D_{n-1} = D_n - 2^{H(n-1)}$. This discussion shows that we can update H(n) and D_n in $O(\log n)$ time, which gives us the following result.

THEOREM 5.1 We can implement the Delete operation in $O(\log n)$ time.

6. Experiments

To verify the practicality of the post-order heap, we experimentally compared it to the standard binary heap. Both heaps were implemented in a comparable manner in the C# programming language. In each experiment, we inserted n 32-bit integers into the heap, where n is randomly chosen between 1 and 10^6 . We performed experiments with the data inserted in increasing, decreasing, and random order. For each ordering, we performed 300 experiments and recorded both the number of comparisons and the actual running time in seconds. Table 1 shows the average number of comparisons for

each *Insert* operation and the total time required to run all experiments. We ran the experiments on a 2.4GHz Pentium 4 machine with 512 MB of RAM.

For the binary heap, the best-case performance is achieved on increasing input. Since each new item is placed at the bottom of the tree, it will not need to be moved because its parent contains a smaller value. For the post-order heap, increasing input is actually a bad case. Since each new item is placed at the top of a tree, it will need to move all the way to the bottom. However, we proved above that the average height of an inserted node, over a sequence of insertions, is just 2. We can see in Table 1 that the post-order heap performed only 2 comparisons per insert, which is quite respectable.

On uniformly random input, the binary heap has similar performance since each item will need to move only a constant number of places on average (most items will stay at the bottom). We can see in Table 1 that the binary heap averages 2.38 comparisons per insert. On the other hand, the post-order heap averages only 1.87 comparisons per insert, more than 20% fewer.

The worst case for the binary heap is achieved on decreasing input. Here, each item is moved to the top of the heap, $\operatorname{costing} \Theta(\log n)$ comparisons per operation. Table 1 shows that the binary heap averages 17.32 comparisons per insert, a huge jump over the increasing and uniformly random cases. Decreasing input is the best case for the post-order heap since each item does not move at all. The result is only 1 comparison per insert, which is a significant improvement over the binary heap.

Table 1 also shows the running time of the *Insert* operations on each input ordering. Here, we can see the cost of the extra bookkeeping required for the post-order heap. However, it is important to note that these running times are for 32-bit integer data, for which the cost of a comparison is extremely small. For larger integers, strings, or other objects with less efficient comparisons, the running time would more closely match the shape of the comparison data. As the time for a comparison increases to infinity, the total running time will be proportional to the number of comparisons.

Ordering	Binary Heap		Post-Order Heap	
	Comparisons	Total Time	Comparisons	Total Time
Increasing	1.00	2.31	2.00	7.59
Random	2.38	5.66	1.87	7.53
Decreasing	17.32	27.09	1.00	5.00

Table 1: Experimental comparison of the running times of the *Insert* operations of binary and post-order heaps on three different types of input orderings. Since these results are for small integer data, the running times would trend towards the comparison values for data types with slower comparisons.

We also tested the performance of *Delete* operations for both data structures. The number of comparisons were roughly equivalent between the two: the post-order heap performed 15% more on random input but more than 20% less on increasing and decreasing input. However, for *Delete* operations, the extra costs for the post-order heap are more prominent, as it has to search through the $O(\log n)$ trees to find the minimum. The running time for the post-order heap is a factor of 2.0-2.5 worse than that of the binary heap. Again, it is important to keep in mind, though, that this is for 32-bit integer data, and that for other data types, this factor will decrease.

These results show that the post-order heap does indeed smooth out the poor worstcase behavior of the binary heap, albeit at the cost of a small constant factor slowdown in other cases. As noted above, the size of this constant factor will decrease on data types with slower comparisons, shrinking to less than 1 in the limit for *Insert* operations on uniformly random inputs. These results show that the post-order heap is a practical data structure, suitable for use in real-world applications.

7. Conclusion

We have presented the post-order heap, a variant of the standard binary heap. Like the binary heap, the post-order heap is an implicit data structure, requiring only three words of storage in addition to the array of elements. Unlike the binary heap, however, an *Insert* operation requires only $\Theta(1)$ amortized time. Unlike the data structure of Carlsson et al. [1], the post-order heap is quite simple, as we saw above and as is clear from the pseudocode in the appendix. We also presented experimental results demonstrating that the post-order heap is a practical data structure that should be considered for real-world applications. Thus, we have seen that the post-order heap is a simple and practical variant of the binary heap that delivers improved performance on *Insert* operations with only three words of additional storage and little added complication.

References

- S. Carlsson, J. I. Munro, and P. V. Poblete. An implicit binomial queue with constant insertion time. In *Proceedings of the 1st Scandinavian Workshop on Algorithm Theory*, volume 318 of *Lecture Notes in Computer Science*, pages 1–13, July 1988.
- [2] R. W. Floyd. Algorithm 245 (Treesort). Communications of the ACM, 7(12):701, 1964.
- [3] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved network optimization algorithms. *Journal of the ACM*, 34(3):596–615, 1987.
- [4] J. W. J. Williams. Algorithm 232 (Heapsort). *Communications of the ACM*, 7(1):347–348, 1964.

A. Pseudocode

The pseudocode maintains four variables: A, the ar- \triangleright Remove min element from heap and return it. ray containing the heap values, *n*, the number of nodes in the heap, H, the value of H(n), and D, the value of D_n . The *H*-th bit of the integer *D* is denoted D[H]. The pseudocode also uses the function $s(h) = 2^{h+1} - 1$, as given in Definition 3.3.

 \triangleright Get left child of node *i*, which is at height *h*. LEFT-CHILD(i, h)1 return i - 1 - s(h - 1)Get right child of node *i*, which is at height *h*. \triangleright

```
RIGHT-CHILD(i, h)
1 return i - 1
\triangleright Restore heap property at node i.
HEAPIFY(i, h)
```

1 if h = 0 then 2 return 3 $l \leftarrow \text{LEFT-CHILD}(i, h)$ 4 $r \leftarrow \text{RIGHT-CHILD}(i, h)$ 5 **if** A[l] < A[i]6 **then** smallest $\leftarrow l$ $\textbf{else} \hspace{0.1in} \textit{smallest} \leftarrow i$ 7 8 if A[r] < A[smallest] then 9 smallest $\leftarrow r$ 10 **if** smallest $\neq i$ **then** 11 $A[i] \leftrightarrow A[smallest]$ HEAPIFY (smallest, h - 1) 12 ▷ Insert a new value into heap. INSERT(key) 1 \triangleright Compute D(n+1) and H(n+1)

if n > 0 then 2 $\operatorname{if} D[H] = 0$ 3 then $D[H] \leftarrow 1$ 4 H = 05 else $D[H] \leftarrow 0$ 6 7 $H \leftarrow H + 1$ 8 9 > Add new node to array; restore heap property 10 $n \leftarrow n+1$ 11 $A[n] \leftarrow key$ 12 HEAPIFY(n, H)

DELETE-MIN()

1 \triangleright Enumerate all roots and find min element

2 $minLoc \leftarrow n$ 3 minHeight $\leftarrow H$ 4 $x \leftarrow n - s(H)$ 5 $h \leftarrow H - 1$ while x > 06 do repeat $h \leftarrow h + 1$ until D[h] = 17 8 if A[x] < A[minLoc] then $minLoc \leftarrow x$ 9 10 $minHeight \leftarrow h$ 11 $x \leftarrow x - s(h)$ 12 13 ▷ Swap min to end; restore heap property $A[\!\mathit{minLoc}] \leftrightarrow A[n]$ 14 15 HEAPIFY (minLoc, minHeight) 16 17 \triangleright Update n, H, and D18 $minNode \leftarrow A[n]$ 19 $n \leftarrow n-1$ $20 \quad \text{if} \ n>0 \ \text{then} \\$ 21 **if** H > 022 then H = H - 123 D[H] = 124 else while D[H] = 0 do $H \leftarrow H + 1$ 25 D[H] = 0

```
26 return minNode
```