
THE POST-ORDER HEAP

Nicholas J. A. Harvey and Kevin Zatloukal
MIT Computer Science and Artificial Intelligence Laboratory
{nickh,kevinz}@mit.edu

Abstract

We propose the post-order heap, a new data structure for implementing priority queues.
Our structure is a simple variant of the binary heap that requires onlyΘ(1) amortized
time for Insertoperations andO(log n) time in the worst case forDelete-Minopera-
tions. Like the binary heap, the post-order heap is an implicit data structure, meaning
that a structure containingn elements can be stored using only the firstn locations of
an array andΘ(1) additional words of storage.

1. Introduction

The binary heap, due to Williams [4], is the canonical example of a priority queue. It
supports theInsert andDelete-Minoperations in worst-caseΘ(log n) time and also
supports a batch insert operation calledBuild-Heap, which constructs a binary heap of
n elements inΘ(n) time. In this paper, we present the post-order heap, a variant of the
binary heap, which performs insertions by executingBuild-Heaponline. This allows
us to improve the cost ofInsert to Θ(1) in the amortized sense, without affecting the
cost ofDelete-Min.

Post-order heaps are not the first priority queue to performInsert in Θ(1) time
andDelete-Minin O(log n) time. Fibonacci heaps [3] achieve these bounds in the
amortized sense and supportUnion andDecrease-Keyoperations inΘ(1) amortized
time. However, each node of a Fibonacci heap requires several pointers and additional
state. In contrast, post-order heaps are implicit, requiring onlyΘ(1) storage in ad-
dition to an array of elements. Carlsson et al. [1] presented the first implicit priority
queue to supportInsert in Θ(1) time andDelete-Minin O(log n) time, both in the
worst-case sense. Unlike their complex construction, however, post-order heaps are a
natural extension of the binary heap that is both simple and practical.



FUN with Algorithms

2. Overview

The binary heap’sInsertoperation adds each new item at the bottom of the tree and
then swaps the itemupwarduntil the heap order is satisfied. This makes the worst-
case running time proportional to the depth of the inserted node, which isΘ(log n)
on average. On the other hand, theBuild-Heapoperation, due to Floyd [2], takes
advantage of the insight that the average height of a node (i.e., distance to a leaf)
is less than2, whereas the average depth isΘ(log n). The Build-Heapoperation
adds each new item at the top of a tree of previously inserted items and then swaps
the itemdownwarduntil the heap order is satisfied. This process of swapping an
item downward in the tree is called a “heapify”. The running time of a heapify is
proportional to the height of the inserted node, which isΘ(1) on average.

As with binary heaps, the nodes of a post-order heap are organized into a partially-
constructed, heap-ordered binary tree. Whereas binary heaps insert new nodes into
this tree in the order given by a level-order traversal, post-order heaps insert new
nodes according to a post-order traversal, as shown in Figure 1. Since each new node
is the parent of two subtrees that have already been heapified, the post-order heap only
needs to heapify at the new node to restore the heap order. Thus, insertion requires
time proportional to the height of the inserted node, which isΘ(1) on average.

To store a heap in an array, we need to define a mapping between tree nodes and
array locations. As with the binary heap, we define the mapping for a post-order heap
to be the insertion order of the nodes. Thus, the labels on the nodes in Figure 1 also
indicate the locations of those nodes in the array. Since our insertion order differs
from that of a binary heap, the resulting data structure has many different properties.
We examine some of these properties in the next section.

3. Basic Properties

We can think of the nodes in a binary heap of sizen as the firstn nodes visited by a
level-order traversal of a perfect binary tree of infinite size, that is, a tree with a fixed
root but growing infinitely downward. Similarly, we can think of the nodes in a post-
order heap of sizen as the firstn nodes visited by a post-order traversal on a perfect
binary treeG of infinite size. In this case, though, the treeG has a fixed left-most leaf
and grows infinitely upward and to the right from that node.

The subgraph ofG induced by thesen nodes is a forestFn. For example, Figure 1
shows the forestF24, which contains four trees. LetTn = {t1, ..., tk} be the trees of
Fn ordered by the roots’ positions in the array. Each treeti is a perfect binary tree
since the post-order traversal visits a node only after completely visiting both of its
subtrees. To simplify our notation, we letti refer to both the tree and its root node.

2



The Post-Order Heap

� � � � � � ��� ��� �	� ��
 �	� �� ��� ���

� � �	� ��� ��� ���


 ��� ���

�	�

Figure 1: A post-order heap inserts nodes in the order given by a post-order traversal.
The numbers in the nodes indicate the insertion order, not the actual values stored in
those nodes. At this point, the heap consists of four trees. Notice that the last two trees
are both of size1. The next node inserted would be the parent of those two trees.

PROPOSITION3.1 For everyi < k, the rootti is the left child of its parent inG. That
is, every rootti is a left child except possibly fortk. For any pairi < j, tj is contained
in the right subtree ofti’s parent.

Proof: Consider any rootti with parentpi. Sinceti is a root, we must not yet have
insertedpi. The post-order insertion rule atpi says to insert the left subtree, then the
right subtree, and thenpi. If ti is right child of pi, thenpi would be the next node
to be inserted afterti. Since it has not been inserted,ti must be the last node in the
array, which meansi = k. If i < k, thenti must be a left child. Sincepi has not been
inserted, all of the nodes inserted afterti must be in the right subtree ofpi. 2

COROLLARY 3.2 The heights of the trees are decreasing, with equality only possible
for tk−1 andtk.

Proof: For anyti with i < k, ti+1, ..., tk are contained in the right subtree ofti’s
parent, so clearly their heights are no greater thanti’s. Equality is only possible if
ti+1 is the entire right subtree, in which caseti+1 is a right child, soi + 1 = k. 2

Since each treeti is perfect, a tree of heighth has exactly2h+1 − 1 nodes. If a
post-order heap of sizen consists of exactly one tree of heighth, then we must have
n = 2h+1 − 1 andh = lg(n + 1)− 1. In general, if we know the number of nodes in
a post-order heap, we can deduce the height of the first treet1.

3



FUN with Algorithms

DEFINITION 3.3 Lets(h) = 2h+1 − 1 andh(n) = blg(n + 1)c − 1.

THEOREM 3.4 In a post-order heap containingn nodes, the height oft1 is h(n).

Proof: We argued the casek = 1 above, so suppose thatk > 1. Let h1 be the height
of t1. Proposition 3.1 shows that the treest2, ..., tk are all contained in the right sibling
of t1. It follows thatt1 contains at leastn/2 nodes:s(h1) = 2h1+1 − 1 ≥ n/2 =⇒
h1 ≥ lg(n+2)−2 > blg(n + 1)c−2. Sincet2 exists, we know thatt1 contains fewer
thann nodes:s(h1) = 2h1+1 − 1 < n =⇒ h1 < lg(n + 1) − 1 ≤ blg(n + 1)c.
Sinceh1 is an integer, we must haveh1 = blg(n + 1)c − 1 = h(n). Thus, treet1 has
heighth(n). 2

Corollary 3.2 implies that no tree is taller thant1. Thus, Theorem 3.4 tells us that
the maximum height of any tree ish(n) = blg(n + 1)c − 1. Futhermore, sinceti is
strictly taller thantj if i < j < k, it follows that the number of trees,k, is at most
blg(n + 1)c+ 1.

We now consider how to determine the height of an arbitrary node in a post-order
heap. Letvi be thei-th node in the array, and let

H(i) =

{
h(i) if i = s(h(i))
H

(
i− s(h(i))

)
otherwise.

THEOREM 3.5 H(i) is the height of nodevi.

Proof: Imagine thatvi has just been inserted. By Theorem 3.4, we can havei =
s(h(i)) if and only if t1 is the only tree. In that case, the post-order insertion rule tells
us thatvi, the last node inserted, must be the root oft1, whose height ish(i). This
proves the first case in the definition ofH. Now, suppose thatvi is not the root oft1.
Then, by Proposition 3.1, nodevi must be inti’s right sibling sincevi was inserted
later. By symmetry, thej-th node inserted int1 has the same height as thej-th node
inserted int1’s right sibling. If vi is the latter node, then the former node has index
i− s(h(i)) sinces(h(i)) is the size of treet1. 2

4. The Insert operation

In this section, we show that theInsertoperation requires onlyΘ(1) amortized time.
Inserting then-th element into a post-order heap involves copying the new value into
the nodevn and then heapifying atvn. To perform the heapify, we must compute the
location ofvn’s left and right children in the array so that we can compare their values
to vn’s new value. We now show how to compute these array locations.

4



The Post-Order Heap

The post-order insertion rule tells us that the left and right child ofvn were the
last nodes inserted in each of their respective subtrees and that the nodes in the right
subtree were added just after the left child. This means that the right child was inserted
just beforevn, so its index isn − 1. The index of the left child must ben − 1 minus
the number of nodes in the right subtree. SinceH(n) is the height ofvn, the size of
the right subtree iss(H(n)− 1), so the index of the left child isn− 1− s(H(n)− 1).

This gives us a way of computing the locations ofvn’s left and right child. Un-
fortunately, computingH(n) directly from its definition may requireΘ(log n) time in
the worst-case. We will now show how we can compute the height ofvn in Θ(1) time
by keeping track of some additional information.

Letpn(H(n)+j) denote the node that is thej-th ancestor ofvn in G. For example,
pn(H(n)) is vn itself andpn(H(n) + 1) is the parent ofvn. We now defineDn, an
infinite{0, 1} string, which records the whethervn’s ancestors are left or right children
of their respective parents. LetDn(h) denote theh-th bit of Dn. Then, we define

Dn(h) =





0 if h < H(n)
0 if pn(h) is the left child ofpn(h + 1)
1 if pn(h) is the right child ofpn(h + 1).

PROPOSITION4.1 Dn(h) = 0 for h > h(n).

Proof: By Theorem 3.4, the height oft1 is h(n). Since its parent,p1, has not yet
been inserted, every existing node is a descendant ofp1. The post-order insertion rule
implies that the left subtree is fully inserted before any nodes in the right subtree. Thus
p1 must be the left child of its parent. Similarly,p1’s parent must be a left child, etc.
Since the height ofp1 is h(n) + 1, we have shown thatDn(h) = 0 for h > h(n). 2

This proposition shows that we can storeDn in O(log n) bits: we need not record
Dn(h) for h > h(n) since we know it is0. In particular, we will recordDn as an
integer and computeDn(h) by standard arithmetic asbDn/2hc mod 2. This will give
a result of0 for anyh > h(n). We will now show thatDn+1 andH(n + 1) are easily
computed fromDn andH(n).

THEOREM 4.2 Dn+1 andH(n + 1) are related toDn andH(n) by

Dn+1 =

{
Dn + 2H(n) if Dn(H(n)) = 0
Dn − 2H(n) if Dn(H(n)) = 1

H(n + 1) =

{
0 if Dn(H(n)) = 0
H(n) + 1 if Dn(H(n)) = 1

5



FUN with Algorithms

Proof: First, suppose thatDn(H(n)) = 0. This means thatvn is the left child of
its parent,pn. The post-order insertion rule requires the next node inserted,vn+1,
to be the leftmost leaf inpn’s right subtree, so its heightH(n + 1) is 0. Nodesvn

and vn+1 have the same ancestorpn at heightH(n) + 1, so Dn(h) = Dn+1(h)
for h > H(n). Sincevn+1 is the leftmost leaf in the right subtree ofpn, all of its
ancestors up to heightH(n)− 1 are left children, which means thatDn+1(h) = 0 for
h < H(n), and by definition, we haveDn(h) = 0 for h < H(n). Lastly, whereas
vn is the left child ofpn, nodevn+1 is a descendant of the right child ofpn, which
means thatDn+1(H(n)) = 1 while Dn(H(n)) = 0. In summary, we have shown
thatDn+1 = Dn + 2H(n).

Now, suppose thatDn(H(n)) = 1. This means thatvn is the right child ofpn.
The post-order insertion rule requiresvn+1 to bepn. Thus, we will haveH(n + 1) =
H(n) + 1. Sincevn andvn+1 have the same ancestors at heightH(n + 1) and above,
we haveDn(h) = Dn+1(h) for h > H(n). By definition, we know thatDn+1(h) = 0
for h ≤ H(n). SinceDn(h) = 0 for h < H(n) andvn is the right child ofpn, the only
difference betweenDn+1 andDn is thatDn+1(H(n)) = 0 while Dn(H(n)) = 1.
Therefore, we have shown thatDn+1 = Dn − 2H(n). 2

This shows that we can compute the height and ancestry string ofvn+1, namely
H(n + 1) andDn+1, given the height and ancestry string ofvn, namelyH(n) and
Dn. GivenH(n+1), we can efficiently compute the array locations ofvn+1’s left and
right children:n−s(H(n+1)−1) andn respectively. The heights of the children are
one less than the height ofvn+1, so we can compute the indices of their children, and
so on. This means that we have enough information to efficiently perform a heapify
at vn+1. Thus, in order to perform theInsertoperation, we maintain (1) the indexn
of the last node in the array, (2) the heightH(n) of vn, and (3) its ancestry stringDn.
By Proposition 4.1, this data can be stored in three words. By Theorem 4.2, it can be
updated inΘ(1) time.

THEOREM 4.3 We can implement the Insert operation inΘ(1) amortized time.

Proof: As we saw above, theInsert operation does only constant work aside from
the heapify atvn+1. To prove that the heapify runs inΘ(1) amortized time, we use
a potential function that is the sum of the heights of each treeti. When the inserted
node has height0, the heapify does only constant work and the potential is unchanged,
so the amortized cost isΘ(1). Otherwise, by the post-order insertion rule, we are
inserting the new node of heighth as the parent of two subtrees of heighth− 1. The
real cost of the heapify is proportional toh, but the potential decreases by2(h− 1)−
h = h− 2, so the amortized cost is just2. 2

6



The Post-Order Heap

5. The DeleteMin operation

To delete the minimum value in a post-order heap, we must first search for the node
containing the minimum value. Since each treeti is heap-ordered, we know that the
minimum value must be at the root of someti. Below, we will see how to enumerate
the tree roots inO(log n) time. Once we have found the rootti with the minimum
value, we swap its value with the value in the last nodevn. Then, we must heapify at
ti to restore the heap-order, which takesO(log n) time. Finally, we removevn, which
now contains the minimum value. Below, we will also see how to update the values
of H(n) andDn in O(log n) time.

We can enumerate the roots of each treeti as follows. By the post-order insertion
rule, the root oftk must be the last node,vn. Now, consider the previous treetk−1.
The rule applied to the parent oftk−1 implies thattk and all of its descendants were
inserted just aftertk−1, which means that the index of roottk−1 is n− s(H(n)). If h
is the height oftk−1, then we know thattk ’s ancestor at heighth is the right sibling
of tk−1, which means thatDn(h) = 1. In general, ifDn(h) = 1, then the left sibling
of vn’s ancestor at heighth is some rootti. Thus, we can find the heights of each of
the trees by finding the1 bits inDn. Futhermore, we can compute the indexji of the
previous treeti at heighth by the formulaji = ji+1 − s(h) in Θ(1) time. This shows
that we can enumerate the roots of the trees inO(log n) time.

After removing the minimum value, we must compute the values ofH(n−1) and
Dn−1. If H(n) > 0, then nodevn−1 is the right child ofvn, so we haveH(n− 1) =
H(n)− 1 andDn−1 = Dn +2H(n−1). Otherwise, nodevn−1 is the left sibling of the
first ancestor ofvn that is a right child of its parent. ThusH(n− 1) is the position of
the rightmost1 bit in Dn andDn−1 = Dn − 2H(n−1). This discussion shows that we
can updateH(n) andDn in O(log n) time, which gives us the following result.

THEOREM 5.1 We can implement the Delete operation inO(log n) time.

6. Experiments

To verify the practicality of the post-order heap, we experimentally compared it to the
standard binary heap. Both heaps were implemented in a comparable manner in the
C# programming language. In each experiment, we insertedn 32-bit integers into the
heap, wheren is randomly chosen between1 and106. We performed experiments
with the data inserted in increasing, decreasing, and random order. For each ordering,
we performed 300 experiments and recorded both the number of comparisons and the
actual running time in seconds. Table 1 shows the average number of comparisons for

7



FUN with Algorithms

eachInsert operation and the total time required to run all experiments. We ran the
experiments on a 2.4GHz Pentium 4 machine with 512 MB of RAM.

For the binary heap, the best-case performance is achieved on increasing input.
Since each new item is placed at the bottom of the tree, it will not need to be moved
because its parent contains a smaller value. For the post-order heap, increasing input
is actually a bad case. Since each new item is placed at the top of a tree, it will need to
move all the way to the bottom. However, we proved above that the average height of
an inserted node, over a sequence of insertions, is just 2. We can see in Table 1 that the
post-order heap performed only 2 comparisons per insert, which is quite respectable.

On uniformly random input, the binary heap has similar performance since each
item will need to move only a constant number of places on average (most items
will stay at the bottom). We can see in Table 1 that the binary heap averages 2.38
comparisons per insert. On the other hand, the post-order heap averages only 1.87
comparisons per insert, more than 20% fewer.

The worst case for the binary heap is achieved on decreasing input. Here, each
item is moved to the top of the heap, costingΘ(log n) comparisons per operation.
Table 1 shows that the binary heap averages 17.32 comparisons per insert, a huge
jump over the increasing and uniformly random cases. Decreasing input is the best
case for the post-order heap since each item does not move at all. The result is only 1
comparison per insert, which is a significant improvement over the binary heap.

Table 1 also shows the running time of theInsertoperations on each input ordering.
Here, we can see the cost of the extra bookkeeping required for the post-order heap.
However, it is important to note that these running times are for 32-bit integer data,
for which the cost of a comparison is extremely small. For larger integers, strings,
or other objects with less efficient comparisons, the running time would more closely
match the shape of the comparison data. As the time for a comparison increases to
infinity, the total running time will be proportional to the number of comparisons.

Ordering Binary Heap Post-Order Heap
Comparisons Total Time Comparisons Total Time

Increasing 1.00 2.31 2.00 7.59
Random 2.38 5.66 1.87 7.53
Decreasing 17.32 27.09 1.00 5.00

Table 1: Experimental comparison of the running times of theInsert operations of
binary and post-order heaps on three different types of input orderings. Since these
results are for small integer data, the running times would trend towards the compari-
son values for data types with slower comparisons.

8



The Post-Order Heap

We also tested the performance ofDeleteoperations for both data structures. The
number of comparisons were roughly equivalent between the two: the post-order heap
performed 15% more on random input but more than 20% less on increasing and
decreasing input. However, forDeleteoperations, the extra costs for the post-order
heap are more prominent, as it has to search through theO(log n) trees to find the
minimum. The running time for the post-order heap is a factor of 2.0-2.5 worse than
that of the binary heap. Again, it is important to keep in mind, though, that this is for
32-bit integer data, and that for other data types, this factor will decrease.

These results show that the post-order heap does indeed smooth out the poor worst-
case behavior of the binary heap, albeit at the cost of a small constant factor slowdown
in other cases. As noted above, the size of this constant factor will decrease on data
types with slower comparisons, shrinking to less than 1 in the limit forInsert oper-
ations on uniformly random inputs. These results show that the post-order heap is a
practical data structure, suitable for use in real-world applications.

7. Conclusion

We have presented the post-order heap, a variant of the standard binary heap. Like
the binary heap, the post-order heap is an implicit data structure, requiring only three
words of storage in addition to the array of elements. Unlike the binary heap, however,
an Insert operation requires onlyΘ(1) amortized time. Unlike the data structure of
Carlsson et al. [1], the post-order heap is quite simple, as we saw above and as is clear
from the pseudocode in the appendix. We also presented experimental results demon-
strating that the post-order heap is a practical data structure that should be considered
for real-world applications. Thus, we have seen that the post-order heap is a simple
and practical variant of the binary heap that delivers improved performance onInsert
operations with only three words of additional storage and little added complication.

References

[1] S. Carlsson, J. I. Munro, and P. V. Poblete. An implicit binomial queue with constant
insertion time. InProceedings of the 1st Scandinavian Workshop on Algorithm Theory,
volume 318 ofLecture Notes in Computer Science, pages 1–13, July 1988.

[2] R. W. Floyd. Algorithm 245 (Treesort).Communications of the ACM, 7(12):701, 1964.

[3] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved network
optimization algorithms.Journal of the ACM, 34(3):596–615, 1987.

[4] J. W. J. Williams. Algorithm 232 (Heapsort).Communications of the ACM, 7(1):347–348,
1964.

9



FUN with Algorithms

A. Pseudocode

The pseudocode maintains four variables:A, the ar-
ray containing the heap values,n, the number of
nodes in the heap,H, the value ofH(n), andD, the
value ofDn. TheH-th bit of the integerD is de-
notedD[H]. The pseudocode also uses the function
s(h) = 2h+1 − 1, as given in Definition 3.3.

¤ Get left child of nodei, which is at heighth.
LEFT-CHILD(i, h)
1 return i− 1− s(h− 1)

¤ Get right child of nodei, which is at heighth.
RIGHT-CHILD(i, h)
1 return i− 1

¤ Restore heap property at nodei.
HEAPIFY(i, h)

1 if h = 0 then
2 return
3 l ← LEFT-CHILD(i, h)
4 r ← RIGHT-CHILD(i, h)
5 if A[l] < A[i]
6 then smallest← l
7 else smallest← i
8 if A[r] < A[smallest] then
9 smallest← r

10 if smallest6= i then
11 A[i] ↔ A[smallest]
12 HEAPIFY(smallest, h− 1)

¤ Insert a new value into heap.
INSERT(key)

1 ¤ ComputeD(n + 1) andH(n + 1)
2 if n > 0 then
3 if D[H] = 0
4 then D[H] ← 1
5 H = 0
6 else D[H] ← 0
7 H ← H + 1
8
9 ¤ Add new node to array; restore heap property

10 n ← n + 1
11 A[n] ← key
12 HEAPIFY(n, H)

¤ Remove min element from heap and return it.
DELETE-M IN()

1 ¤ Enumerate all roots and find min element
2 minLoc← n
3 minHeight← H
4 x ← n− s(H)
5 h ← H − 1
6 while x > 0
7 do repeath ← h + 1 until D[h] = 1
8 if A[x] < A[minLoc] then
9 minLoc← x

10 minHeight← h
11 x ← x− s(h)
12
13 ¤ Swap min to end; restore heap property
14 A[minLoc] ↔ A[n]
15 HEAPIFY(minLoc,minHeight)
16
17 ¤ Updaten, H, andD
18 minNode← A[n]
19 n ← n− 1
20 if n > 0 then
21 if H > 0
22 then H = H − 1
23 D[H] = 1
24 else whileD[H] = 0 do H ← H + 1
25 D[H] = 0
26 return minNode

10


