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Notary is a new design for a hardware wallet, a device that is used 
to perform sensitive transactional operations like cryptocurrency 
transfers. Notary aims to be more secure than past hardware wallets 
by eliminating classes of bugs by design and by formally proving 

the correctness of the key operation used in its implementation. We built a 
physical prototype of Notary and showed that it achieves functionality similar 
to existing hardware wallets while avoiding many bugs that affect them.
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Hardware wallets, small devices with a display, 
buttons, and the ability to run custom code, 
aim to provide a secure environment for run-
ning isolated approval agents for confirming 
operations such as bank transfers or crypto-
currency transactions. In the absence of such 
a device, these operations are often performed 
using an app running on a smartphone, which 
is relatively complex and bug-prone. Hardware 
wallets achieve overall application security 
without the need to trust the smartphone. 
Today’s wallets run multiple applications,  
written by third-party developers, that need  
to be isolated from each other. Existing wallets 
do this using a traditional operating system 
design that relies on hardware mechanisms 
like CPU privilege levels and memory protec-
tion, but unfortunately existing wallets suffer 
from bugs similar to those that plague tradi-
tional operating systems.

Notary avoids such bugs with a simple 
design that does not rely on complicated 
hardware or OS protection mechanisms, 

instead using a physically separate system-on-
a-chip for running third-party code, running 
only one agent at a time, and provably clearing 
secrets when switching agents.

THE HARDWARE WALLET 
PARADIGM
Users routinely rely on apps running on their 
smartphones to perform security-critical 
operations. These operations include 
financial operations, such as bank transfers 
and cryptocurrency transactions, and 
non-financial operations, such as system 
administration tasks like deleting backups 
or modifying DNS records. The security of 
these operations relies on the security of the 
application as well as the underlying software 
and hardware. Unfortunately, smartphones 
are inadequate for providing strong security 
and isolation for applications, because they 
have complicated software stacks that have a 
history of vulnerabilities. While smartphones 
are getting more secure over time, they 

are also getting more complex, and bugs 
continue to be found [1]. On a smartphone, 
a buggy or malicious app might be able 
to break into the operating system and 
tamper with another application, corrupting 
security-critical operations. 

Modern smartphones have started 
including security-related hardware, such 
as the Secure Enclave chip in iPhones or 
the Titan M chip in Google’s Pixel phones. 
This hardware enhances certain aspects 
of security by providing features such as 
secure boot. There are other aspects the 
enclave cannot help with, such as removing 
the operating system or main CPU from 
the trusted computing base (TCB) for 
third-party applications. This is because the 
enclave chip does not support running third-
party code, and it does not have a way to 
directly communicate with the user because 
it is not directly connected to the display 
or touch input. Most functionality is still 
provided by the main CPU, an ARM A-series 
processor. In Android, the main processor 
provides a trusted execution environment 
(TEE), built on top of ARM TrustZone, 
and the operating system provides a service 
called Android Protected Confirmation [2], 
which removes the operating system from 
the TCB for obtaining confirmation from 
the user of a short prompt string (in the form 
of a signature on the string). This can support 
applications specially designed to work with 
Android Protected Confirmation (e.g., a 
new banking app), but it cannot provide 
strong security for applications relying on 
a specific transaction format or signature 
scheme, such as existing applications or 
cryptocurrencies. Furthermore, the relatively 
complex main processor, TrustZone, and 
TEE implementation remain in the TCB. 
Even though modern phones have secure 
enclaves and TEEs, approval agents that need 
to run custom code for parsing or signing 
transactions (necessary for supporting any 
pre-existing application or cryptocurrencies) 
must be run outside the secure hardware, 
so bugs in the operating system or main 
processor are still problematic for application 
isolation. Is it possible to achieve security for 
sensitive transactional operations even when 
a user’s smartphone might be compromised? 
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Recently, we have seen an increase in 
the adoption of two-factor authentication 
(2FA) devices such as Universal 2nd Factor 
(U2F) tokens, which provide additional 
security for logins. Unfortunately, 2FA 
devices only authenticate the login process 
and not the actions that come afterward, so 
they do not help if the user’s smartphone is 
compromised: malware on the smartphone 
can wait until the user logs in to a target 
service (using their U2F token), and then the 
malware can use the valid session to perform 
malicious actions. 

In contrast, hardware wallets can provide 
security even when the user’s smartphone 
is compromised. In the hardware wallet 
paradigm, an application is refactored 
to separate out security-critical approval 
decisions from the rest of the application. An 
untrusted part of the application runs on the 
user’s smartphone, while a trusted security-
critical agent runs on the hardware wallet 
and is used for approving transactions. The 
wallet has a display where it shows the user 
a transaction, and it has buttons to allow 
the user to confirm or deny the transaction. 
The approval is required to go through the 
hardware wallet, and this is enforced by 
requiring a signature on the transaction with 
a private key that’s stored only in the wallet.

Cryptocurrencies already fit this 
paradigm where the approval decision is 
cleanly separated out, and in fact, hardware 
wallets are already popular with users of 
cryptocurrencies. For example, users run 
Bitcoin wallet software on their smartphone, 
where they can view their balance, view past 
incoming and outgoing transactions, and 
set up transfers, but they cannot actually 
transfer currency. To send Bitcoins, the user 
crafts a transaction on their smartphone 
and sends it to their hardware wallet, which 
parses the transaction and displays on its 
screen a human-readable description like 
“send 1.3 BTC to 1M3K…vUQ7.” Only if 
the user presses a “confirm” button on the 
hardware wallet does the device sign the 
transaction, which enables it to be processed 
by the Bitcoin network.

The paradigm of authenticating transac-
tions on a separate, secure device has gained 
traction among cryptocurrency users, 
perhaps due to the high-stakes nature of 
irreversible transactions. The idea has not 
yet caught on with more traditional client-
server applications like web apps, but there 

has been some progress in that direction. For 
example, the Web Authentication API has 
an extension for transaction authorization, 
which allows for displaying a prompt string 
on an authenticator device and receiving 
confirmation from the user [3].

HARDWARE WALLETS CAN  
HAVE BUGS TOO
With hardware wallets, the smartphone is 
removed from the TCB: security depends 
only on the wallet, which is a big win. These 
devices are much simpler than smartphones, 
and the belief is that while the smartphone 
may be difficult to make secure, the simplicity 
of wallets allows for more secure designs. 

Most hardware wallets today are fixed-
function, in the sense that they don’t run 
third-party code: they have built-in support 
for some fixed set of agents, for example 
a particular set of cryptocurrencies, and 
users depend on the firmware vendor 
to add support for specific applications. 
This has the obvious downside in terms 
of usability: when new applications come 
out, such as a new cryptocurrency, users 
have to hope that the device manufacturer 
implements support. The developer of the 
cryptocurrency has no power to add the 
support themselves. On the other hand, 
high-end wallets on the market, such as the 
Ledger wallet [4], support downloading 
and running multiple third-party agent 
applications on the device. This is great for 
usability, but it adds considerable complexity, 
requiring that the device be capable of 
isolating agents from each other, because 
these third-party agents could be buggy  
or malicious. 

Current devices achieve this by 
multiplexing the shared hardware between 
mutually untrusting agents with a traditional 
operating system using hardware protection 
mechanisms like CPU privilege modes 
and memory protection. This leads to the 
potential for the same kinds of bugs that 
exist in smartphone operating systems. And 
indeed, existing hardware wallets have suffered 
from isolation bugs in memory protection 
configuration, system call implementations, 
and driver code [5, 6]. There is also potential 
for hardware-related bugs: any shared 
hardware state could potentially be used to 
infer information about other applications 
(this is what is happening in attacks like 
Spectre, for example).

NOTARY’S APPROACH
Notary is a hardware wallet that aims to 
avoid by design many of the security issues 
that affect past wallets. Notary doesn’t rely 
on hardware protection mechanisms like 
CPU privilege modes or memory protection, 
and it doesn’t have any system calls or 
even an operating system in the traditional 
sense. Instead, Notary is built around 
the idea of achieving isolation by using a 
dedicated system-on-a-chip (SoC), with its 
own CPU and memory, to run untrusted 
programs. Notary runs one program at a 
time on this chip, and it completely resets 
this chip (and all of its internal state) when 
switching between programs, a primitive 
that’s formalized and proven correct in our 
prototype. Running untrusted code on the 
dedicated SoC is orchestrated by a separate 
chip that never runs third-party code.

Figure 1 illustrates Notary’s design. 
The design is structured around physical 
separation. Notary consists of two security 
domains, each with its own separate SoC, 
which includes a CPU, ROM, RAM, and 
peripherals such as UART. One domain runs 
the kernel, and one domain runs third-
party agent code. The Kernel SoC manages 
persistent storage and switching between 
agents; no third-party code ever runs on 
the Kernel SoC. The Agent SoC, which 
has no mutable non-volatile storage, runs 
agent applications one-at-a-time directly 
on raw hardware (with no OS to protect the 
hardware). The Agent SoC has direct access 
to the user I/O path, the buttons and display, 
as well as access to USB to communicate 
with the outside world.

In this architecture, after the user chooses 
an agent to run, it is launched as follows. 
First, the Kernel SoC resets the Agent SoC 
and clears all of its internal state. Next, the 
Kernel SoC reads an agent’s code, keys, 
and data from persistent storage and sends 
it over the UART; on the other side of the 
UART, the Agent SoC’s bootloader receives 
the code/data, saves it in RAM, and executes 
it. At this point, the agent runs directly 
on top of the hardware on the Agent SoC, 
not requiring further interaction with 
the Kernel SoC. The agent has access to 
everything it needs: its own code and data, 
the user I/O path, and communication to 
the outside world. It can do its job, such as 
displaying a Bitcoin transaction, receiving 
confirmation from the user, and sending 
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a signed transaction out via USB. Finally, 
when the agent is done, it has only one way 
of interacting with the Kernel SoC: a “save 
and exit” operation, where the agent requests 
termination, optionally supplying a new 
persistent state. After this, to run a different 
agent on the device, the process starts over, 
beginning with clearing state in the Agent 
SoC. Notary’s separation architecture has 
analogs for all the operations that hardware 
wallets generally support: factory-resetting 
the device, installing/removing agents, and 
launching agents.

In Notary’s design, the decision to 
connect user I/O and USB directly to the 
Agent SoC is important for security. An 
alternative design might connect these to the 
Kernel SoC, but that would be undesirable, 
because it would introduce the need to have 
communication between the Agent SoC and 
Kernel SoC during regular agent operation, 
adding complexity by requiring a large 
number of system calls beyond the single 
save/exit “system call” that Notary supports.

In Notary’s design, it is safe to give 
untrusted code raw access to the user I/O 
and USB peripherals, because the state 
clearing operation covers peripherals: if a 
malicious or buggy agent puts the display 
or USB controller into a bad state, the 
reset and state clearing operation will fix it. 
Furthermore, having the display connected 
to the Agent SoC running potentially 
untrustworthy code does not introduce 
the possibility of confusing the user, due 
to Notary’s reset-based workflow. The user 
switches applications by restarting the 
entire device, which makes the kernel start 
a special agent, the application launcher, on 
the Agent SoC. The user can unambiguously 
select an agent to run, and after that point, 
the chosen agent has exclusive control over 
user I/O until the device is restarted.

With this architecture, Notary achieves 
isolation between two agents running one 
after another on the same chip. Running 
agent code directly on top of raw hardware, 
using reset as a mechanism to switch 
agents, obviates the need for a traditional 
operating system and hardware protection 
mechanisms, which can be error-prone to 

program. Performing state clearing, wiping 
out all state in the Agent SoC between 
running different agents, ensures that 
one agent’s secrets can’t leak to another. 
Essentially, Notary boils isolation between 
agents down to state clearing.

STATE CLEARING
Clearing all internal state in a SoC turns out 
to be challenging, and simple approaches 
don’t work. 

At first, we thought that asserting the 
reset line of an SoC might be adequate.  
It turns out that ISAs don’t guarantee that 
reset clears internal state; for example, the 
RISC-V ISA says that the program counter  
is set to an implementation-defined reset  
vector, and all other state is undefined [7].  
In practice, many chips implement reset such 
that it only does the minimal work necessary 
to get the chip going again. For example, on 
our SoC, asserting the reset line did set the 
program counter to a well-known value, but 
it left much state inside the SoC untouched, 
including in registers, some CPU-internal 
caches, RAM, and peripherals. 

Another approach we considered is 
power cycling the SoC to clear its internal 
state. However, research has shown that state 
inside these chips can persist for minutes 
without power [8]. Notary applies state 
clearing before every application switch, 
so a delay of several minutes to clear state 
would translate to a delay of several minutes 
when launching any application, making 
the device unusable. Furthermore, powering 
off the SoC for a few minutes provides no 
guarantees that state is actually cleared.

FIGURE 1.  Notary’s design physically separates trust domains with an SoC  
per domain and a simple interconnect between trust domains (reset wire  
and UART). Untrusted programs are run one-at-a-time on the Agent SoC,  
which has its state cleared between running agents.

FIGURE 3.  Initialization code for Notary’s SoC. 
The code is proven to clear all architectural and 
micro-architectural state in our SoC.

FIGURE 2.  A schematic of Notary’s Agent SoC. Carefully written  
code in boot ROM clears all internal state in the SoC after reset.
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Provably correct software-based  
state clearing
Notary’s approach is to use software to clear 
an SoC’s state. The idea is that asserting the 
reset line resets the program counter, so it 
can return control to software in boot ROM 
that can complete the job of clearing all 
state in the chip, as shown in Figure 2. The 
idea of having initialization code run on 
startup is not new, but Notary’s boot code 
is doing something unusual: it’s aiming to 
clear every bit of state internal to the SoC, 
which includes details that don’t even exist 
at the ISA level, such as microarchitectural 
state. Writing this boot code is a challenge; 
it’s not immediately obvious that writing 
such code will even be possible. We normally 
think about code at the abstract machine 
level, consulting the ISA specification to 
understand its behavior, but in Notary’s case, 
we need this code to affect internal state in 
just the right way.

To help develop this boot code and 
convince ourselves that it’s correct, we built 
a tool that analyzes an SoC’s implementation 
at the gate level to determine whether the 
boot code successfully clears all internal 
state in all situations. The tool takes the 
Verilog code for the SoC, converts it to a 
format compatible with SMT solvers, and 
then checks if boot code running on the 
chip satisfies our correctness property by 
simulating the circuit symbolically.

Figure 3 shows Notary’s boot code for 
its simple RISC-V-based SoC, built on the 
PicoRV32 [9]. The code is formally verified to 
clear all SoC-internal state correctly using our 
tool. We are currently working on applying 
this technique to more complex SoCs.

PROTOTYPE
We built a hardware/software prototype of 
Notary, along with two agents that run on 
the device: a Bitcoin agent and a general-
purpose web-app approval agent similar to 
Web Authentication. Figure 4 shows our 
prototype running the Bitcoin agent in the 
process of approving a transaction. In our 
prototype, the heavyweight reset-based 
approach for launching agents takes about 
135ms, fast enough for interactive use. Of 
this, 7ms is spent running the formally 
verified state clearing code, with most of that 
time spent clearing RAM, and the rest of the 
time is spent copying the agent code/data to 
the Agent SoC over the relatively slow UART.

CONCLUSION
Notary is a case study in designing for secu-
rity. Notary simplifies software (e.g., using 
reset-based agent switching) and simplifies 
hardware (e.g., using physical separation) in 
order to achieve strong isolation and defense 
in depth. This separation and reset-based 
switching eliminates by design classes of bugs 
that affect traditional user/kernel co-resident 
designs, including OS bugs, microarchitectural 
side-channels, and certain hardware bugs.  
Notary can improve the security of applica-
tions where the crucial transaction decision 
can be succinctly summarized and delegated 
to a strongly isolated agent running on Notary. 

Users have embraced hardware wallets 
for use with cryptocurrencies, a high-
stakes operation where the overhead of 
using a hardware wallet is justified. In the 
future, we hope to see more secure and 
seamless support for transaction approval 
on smartphones, which already have much 
of the hardware needed to provide such 
functionality. n                
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FIGURE 4. Notary prototype running   
a Bitcoin wallet agent.




