
GetMobile June 2020 | Volume 24, Issue 234

[HIGHLIGHTS]

Ill
us

tr
at

io
n,

 is
to

ck
ph

ot
o.

co
m

Anish Athalye, Adam Belay, M. Frans Kaashoek, Robert Morris and Nickolai Zeldovich MIT, Cambridge, MA, USA

Editors: Nic Lane and Xia Zhou

Notary: A DEVICE FOR
SECURE TRANSACTION
APPROVAL

Excerpted from “Notary: A Device for Secure Transaction Approval,” from SOSP ’19: Proceedings of the 27th
ACM Symposium on Operating Systems Principles, https://dl.acm.org/doi/10.1145/3341301.3359661 and
;login; The USENIX Magazine, with permission. © 2019

Notary is a new design for a hardware wallet, a device that is used
to perform sensitive transactional operations like cryptocurrency
transfers. Notary aims to be more secure than past hardware wallets
by eliminating classes of bugs by design and by formally proving

the correctness of the key operation used in its implementation. We built a
physical prototype of Notary and showed that it achieves functionality similar
to existing hardware wallets while avoiding many bugs that affect them.

35June 2020 | Volume 24, Issue 2 GetMobile

[HIGHLIGHTS]

Hardware wallets, small devices with a display,
buttons, and the ability to run custom code,
aim to provide a secure environment for run-
ning isolated approval agents for confirming
operations such as bank transfers or crypto-
currency transactions. In the absence of such
a device, these operations are often performed
using an app running on a smartphone, which
is relatively complex and bug-prone. Hardware
wallets achieve overall application security
without the need to trust the smartphone.
Today’s wallets run multiple applications,
written by third-party developers, that need
to be isolated from each other. Existing wallets
do this using a traditional operating system
design that relies on hardware mechanisms
like CPU privilege levels and memory protec-
tion, but unfortunately existing wallets suffer
from bugs similar to those that plague tradi-
tional operating systems.

Notary avoids such bugs with a simple
design that does not rely on complicated
hardware or OS protection mechanisms,

instead using a physically separate system-on-
a-chip for running third-party code, running
only one agent at a time, and provably clearing
secrets when switching agents.

THE HARDWARE WALLET
PARADIGM
Users routinely rely on apps running on their
smartphones to perform security-critical
operations. These operations include
financial operations, such as bank transfers
and cryptocurrency transactions, and
non-financial operations, such as system
administration tasks like deleting backups
or modifying DNS records. The security of
these operations relies on the security of the
application as well as the underlying software
and hardware. Unfortunately, smartphones
are inadequate for providing strong security
and isolation for applications, because they
have complicated software stacks that have a
history of vulnerabilities. While smartphones
are getting more secure over time, they

are also getting more complex, and bugs
continue to be found [1]. On a smartphone,
a buggy or malicious app might be able
to break into the operating system and
tamper with another application, corrupting
security-critical operations.

Modern smartphones have started
including security-related hardware, such
as the Secure Enclave chip in iPhones or
the Titan M chip in Google’s Pixel phones.
This hardware enhances certain aspects
of security by providing features such as
secure boot. There are other aspects the
enclave cannot help with, such as removing
the operating system or main CPU from
the trusted computing base (TCB) for
third-party applications. This is because the
enclave chip does not support running third-
party code, and it does not have a way to
directly communicate with the user because
it is not directly connected to the display
or touch input. Most functionality is still
provided by the main CPU, an ARM A-series
processor. In Android, the main processor
provides a trusted execution environment
(TEE), built on top of ARM TrustZone,
and the operating system provides a service
called Android Protected Confirmation [2],
which removes the operating system from
the TCB for obtaining confirmation from
the user of a short prompt string (in the form
of a signature on the string). This can support
applications specially designed to work with
Android Protected Confirmation (e.g., a
new banking app), but it cannot provide
strong security for applications relying on
a specific transaction format or signature
scheme, such as existing applications or
cryptocurrencies. Furthermore, the relatively
complex main processor, TrustZone, and
TEE implementation remain in the TCB.
Even though modern phones have secure
enclaves and TEEs, approval agents that need
to run custom code for parsing or signing
transactions (necessary for supporting any
pre-existing application or cryptocurrencies)
must be run outside the secure hardware,
so bugs in the operating system or main
processor are still problematic for application
isolation. Is it possible to achieve security for
sensitive transactional operations even when
a user’s smartphone might be compromised?

GetMobile June 2020 | Volume 24, Issue 236

[HIGHLIGHTS]

Recently, we have seen an increase in
the adoption of two-factor authentication
(2FA) devices such as Universal 2nd Factor
(U2F) tokens, which provide additional
security for logins. Unfortunately, 2FA
devices only authenticate the login process
and not the actions that come afterward, so
they do not help if the user’s smartphone is
compromised: malware on the smartphone
can wait until the user logs in to a target
service (using their U2F token), and then the
malware can use the valid session to perform
malicious actions.

In contrast, hardware wallets can provide
security even when the user’s smartphone
is compromised. In the hardware wallet
paradigm, an application is refactored
to separate out security-critical approval
decisions from the rest of the application. An
untrusted part of the application runs on the
user’s smartphone, while a trusted security-
critical agent runs on the hardware wallet
and is used for approving transactions. The
wallet has a display where it shows the user
a transaction, and it has buttons to allow
the user to confirm or deny the transaction.
The approval is required to go through the
hardware wallet, and this is enforced by
requiring a signature on the transaction with
a private key that’s stored only in the wallet.

Cryptocurrencies already fit this
paradigm where the approval decision is
cleanly separated out, and in fact, hardware
wallets are already popular with users of
cryptocurrencies. For example, users run
Bitcoin wallet software on their smartphone,
where they can view their balance, view past
incoming and outgoing transactions, and
set up transfers, but they cannot actually
transfer currency. To send Bitcoins, the user
crafts a transaction on their smartphone
and sends it to their hardware wallet, which
parses the transaction and displays on its
screen a human-readable description like
“send 1.3 BTC to 1M3K…vUQ7.” Only if
the user presses a “confirm” button on the
hardware wallet does the device sign the
transaction, which enables it to be processed
by the Bitcoin network.

The paradigm of authenticating transac-
tions on a separate, secure device has gained
traction among cryptocurrency users,
perhaps due to the high-stakes nature of
irreversible transactions. The idea has not
yet caught on with more traditional client-
server applications like web apps, but there

has been some progress in that direction. For
example, the Web Authentication API has
an extension for transaction authorization,
which allows for displaying a prompt string
on an authenticator device and receiving
confirmation from the user [3].

HARDWARE WALLETS CAN
HAVE BUGS TOO
With hardware wallets, the smartphone is
removed from the TCB: security depends
only on the wallet, which is a big win. These
devices are much simpler than smartphones,
and the belief is that while the smartphone
may be difficult to make secure, the simplicity
of wallets allows for more secure designs.

Most hardware wallets today are fixed-
function, in the sense that they don’t run
third-party code: they have built-in support
for some fixed set of agents, for example
a particular set of cryptocurrencies, and
users depend on the firmware vendor
to add support for specific applications.
This has the obvious downside in terms
of usability: when new applications come
out, such as a new cryptocurrency, users
have to hope that the device manufacturer
implements support. The developer of the
cryptocurrency has no power to add the
support themselves. On the other hand,
high-end wallets on the market, such as the
Ledger wallet [4], support downloading
and running multiple third-party agent
applications on the device. This is great for
usability, but it adds considerable complexity,
requiring that the device be capable of
isolating agents from each other, because
these third-party agents could be buggy
or malicious.

Current devices achieve this by
multiplexing the shared hardware between
mutually untrusting agents with a traditional
operating system using hardware protection
mechanisms like CPU privilege modes
and memory protection. This leads to the
potential for the same kinds of bugs that
exist in smartphone operating systems. And
indeed, existing hardware wallets have suffered
from isolation bugs in memory protection
configuration, system call implementations,
and driver code [5, 6]. There is also potential
for hardware-related bugs: any shared
hardware state could potentially be used to
infer information about other applications
(this is what is happening in attacks like
Spectre, for example).

NOTARY’S APPROACH
Notary is a hardware wallet that aims to
avoid by design many of the security issues
that affect past wallets. Notary doesn’t rely
on hardware protection mechanisms like
CPU privilege modes or memory protection,
and it doesn’t have any system calls or
even an operating system in the traditional
sense. Instead, Notary is built around
the idea of achieving isolation by using a
dedicated system-on-a-chip (SoC), with its
own CPU and memory, to run untrusted
programs. Notary runs one program at a
time on this chip, and it completely resets
this chip (and all of its internal state) when
switching between programs, a primitive
that’s formalized and proven correct in our
prototype. Running untrusted code on the
dedicated SoC is orchestrated by a separate
chip that never runs third-party code.

Figure 1 illustrates Notary’s design.
The design is structured around physical
separation. Notary consists of two security
domains, each with its own separate SoC,
which includes a CPU, ROM, RAM, and
peripherals such as UART. One domain runs
the kernel, and one domain runs third-
party agent code. The Kernel SoC manages
persistent storage and switching between
agents; no third-party code ever runs on
the Kernel SoC. The Agent SoC, which
has no mutable non-volatile storage, runs
agent applications one-at-a-time directly
on raw hardware (with no OS to protect the
hardware). The Agent SoC has direct access
to the user I/O path, the buttons and display,
as well as access to USB to communicate
with the outside world.

In this architecture, after the user chooses
an agent to run, it is launched as follows.
First, the Kernel SoC resets the Agent SoC
and clears all of its internal state. Next, the
Kernel SoC reads an agent’s code, keys,
and data from persistent storage and sends
it over the UART; on the other side of the
UART, the Agent SoC’s bootloader receives
the code/data, saves it in RAM, and executes
it. At this point, the agent runs directly
on top of the hardware on the Agent SoC,
not requiring further interaction with
the Kernel SoC. The agent has access to
everything it needs: its own code and data,
the user I/O path, and communication to
the outside world. It can do its job, such as
displaying a Bitcoin transaction, receiving
confirmation from the user, and sending

37June 2020 | Volume 24, Issue 2 GetMobile

a signed transaction out via USB. Finally,
when the agent is done, it has only one way
of interacting with the Kernel SoC: a “save
and exit” operation, where the agent requests
termination, optionally supplying a new
persistent state. After this, to run a different
agent on the device, the process starts over,
beginning with clearing state in the Agent
SoC. Notary’s separation architecture has
analogs for all the operations that hardware
wallets generally support: factory-resetting
the device, installing/removing agents, and
launching agents.

In Notary’s design, the decision to
connect user I/O and USB directly to the
Agent SoC is important for security. An
alternative design might connect these to the
Kernel SoC, but that would be undesirable,
because it would introduce the need to have
communication between the Agent SoC and
Kernel SoC during regular agent operation,
adding complexity by requiring a large
number of system calls beyond the single
save/exit “system call” that Notary supports.

In Notary’s design, it is safe to give
untrusted code raw access to the user I/O
and USB peripherals, because the state
clearing operation covers peripherals: if a
malicious or buggy agent puts the display
or USB controller into a bad state, the
reset and state clearing operation will fix it.
Furthermore, having the display connected
to the Agent SoC running potentially
untrustworthy code does not introduce
the possibility of confusing the user, due
to Notary’s reset-based workflow. The user
switches applications by restarting the
entire device, which makes the kernel start
a special agent, the application launcher, on
the Agent SoC. The user can unambiguously
select an agent to run, and after that point,
the chosen agent has exclusive control over
user I/O until the device is restarted.

With this architecture, Notary achieves
isolation between two agents running one
after another on the same chip. Running
agent code directly on top of raw hardware,
using reset as a mechanism to switch
agents, obviates the need for a traditional
operating system and hardware protection
mechanisms, which can be error-prone to

program. Performing state clearing, wiping
out all state in the Agent SoC between
running different agents, ensures that
one agent’s secrets can’t leak to another.
Essentially, Notary boils isolation between
agents down to state clearing.

STATE CLEARING
Clearing all internal state in a SoC turns out
to be challenging, and simple approaches
don’t work.

At first, we thought that asserting the
reset line of an SoC might be adequate.
It turns out that ISAs don’t guarantee that
reset clears internal state; for example, the
RISC-V ISA says that the program counter
is set to an implementation-defined reset
vector, and all other state is undefined [7].
In practice, many chips implement reset such
that it only does the minimal work necessary
to get the chip going again. For example, on
our SoC, asserting the reset line did set the
program counter to a well-known value, but
it left much state inside the SoC untouched,
including in registers, some CPU-internal
caches, RAM, and peripherals.

Another approach we considered is
power cycling the SoC to clear its internal
state. However, research has shown that state
inside these chips can persist for minutes
without power [8]. Notary applies state
clearing before every application switch,
so a delay of several minutes to clear state
would translate to a delay of several minutes
when launching any application, making
the device unusable. Furthermore, powering
off the SoC for a few minutes provides no
guarantees that state is actually cleared.

FIGURE 1. Notary’s design physically separates trust domains with an SoC
per domain and a simple interconnect between trust domains (reset wire
and UART). Untrusted programs are run one-at-a-time on the Agent SoC,
which has its state cleared between running agents.

FIGURE 3. Initialization code for Notary’s SoC.
The code is proven to clear all architectural and
micro-architectural state in our SoC.

FIGURE 2. A schematic of Notary’s Agent SoC. Carefully written
code in boot ROM clears all internal state in the SoC after reset.

[HIGHLIGHTS]

User I/O

Runs third-party code
No OS, full access to hardware

Manages storage,
agent switching

USB Storage

Reset button

GetMobile June 2020 | Volume 24, Issue 238

[HIGHLIGHTS]

Provably correct software-based
state clearing
Notary’s approach is to use software to clear
an SoC’s state. The idea is that asserting the
reset line resets the program counter, so it
can return control to software in boot ROM
that can complete the job of clearing all
state in the chip, as shown in Figure 2. The
idea of having initialization code run on
startup is not new, but Notary’s boot code
is doing something unusual: it’s aiming to
clear every bit of state internal to the SoC,
which includes details that don’t even exist
at the ISA level, such as microarchitectural
state. Writing this boot code is a challenge;
it’s not immediately obvious that writing
such code will even be possible. We normally
think about code at the abstract machine
level, consulting the ISA specification to
understand its behavior, but in Notary’s case,
we need this code to affect internal state in
just the right way.

To help develop this boot code and
convince ourselves that it’s correct, we built
a tool that analyzes an SoC’s implementation
at the gate level to determine whether the
boot code successfully clears all internal
state in all situations. The tool takes the
Verilog code for the SoC, converts it to a
format compatible with SMT solvers, and
then checks if boot code running on the
chip satisfies our correctness property by
simulating the circuit symbolically.

Figure 3 shows Notary’s boot code for
its simple RISC-V-based SoC, built on the
PicoRV32 [9]. The code is formally verified to
clear all SoC-internal state correctly using our
tool. We are currently working on applying
this technique to more complex SoCs.

PROTOTYPE
We built a hardware/software prototype of
Notary, along with two agents that run on
the device: a Bitcoin agent and a general-
purpose web-app approval agent similar to
Web Authentication. Figure 4 shows our
prototype running the Bitcoin agent in the
process of approving a transaction. In our
prototype, the heavyweight reset-based
approach for launching agents takes about
135ms, fast enough for interactive use. Of
this, 7ms is spent running the formally
verified state clearing code, with most of that
time spent clearing RAM, and the rest of the
time is spent copying the agent code/data to
the Agent SoC over the relatively slow UART.

CONCLUSION
Notary is a case study in designing for secu-
rity. Notary simplifies software (e.g., using
reset-based agent switching) and simplifies
hardware (e.g., using physical separation) in
order to achieve strong isolation and defense
in depth. This separation and reset-based
switching eliminates by design classes of bugs
that affect traditional user/kernel co-resident
designs, including OS bugs, microarchitectural
side-channels, and certain hardware bugs.
Notary can improve the security of applica-
tions where the crucial transaction decision
can be succinctly summarized and delegated
to a strongly isolated agent running on Notary.

Users have embraced hardware wallets
for use with cryptocurrencies, a high-
stakes operation where the overhead of
using a hardware wallet is justified. In the
future, we hope to see more secure and
seamless support for transaction approval
on smartphones, which already have much
of the hardware needed to provide such
functionality. n

Anish Athalye is a PhD student in the PDOS
group at MIT, working on systems, security,
and formal verification.

Adam Belay is an assistant professor of
computer science at MIT's EECS department,
and a member of the Computer Science
and Artificial Intelligence Lab. He received
a PhD from Stanford for his work on high
performance networking. Recent projects
include Shenango, an operating system that
improves datacenter efficiency, and Shinjuku,
a system that uses fine-grained preemption
to reduce tail latency. His current research
focuses on the intersection of hardware and
software, with an emphasis on improving
security and performance.

M. Frans Kaashoek is the Charles Piper
Professor in MIT's EECS department and a
member of CSAIL, where he coleads the
parallel and distributed operating systems
group https://pdos.csail.mit.edu. He is a

member of the National Academy of
Engineering and the American Academy of
Arts and Sciences, the recipient of the ACM
SIGOPS Mark Weiser award and the 2010
ACM Prize in Computing, and a cofounder
of Sightpath, Inc. and Mazu Networks, Inc.
His current research focuses on verification
of system software.

Robert Morris is a professor in MIT's EECS
department and a member of the Computer
Science and Artificial Intelligence Laboratory.
He received a PhD from Harvard University
for work on modeling and controlling
networks with large numbers of competing
connections. His interests include operating
systems and distributed systems.

Nickolai Zeldovich is a professor of EECS at
MIT and a member of the Computer Science
and Artificial Intelligence Lab. He received his
PhD from Stanford University in 2008. Recent
projects include the CryptDB encrypted data-
base, the STACK tool for finding undefined
behavior bugs in C programs, the FSCQ
formally verified file system, the Algorand
cryptocurrency, and the Vuvuzela private
messaging system. His current research lies
in building practical verified systems.

REFERENCES
[1] B. Azad. A survey of recent iOS kernel exploits.

June 2020. https://googleprojectzero.blogspot.
com/2020/06/a-survey-of-recent-ios-kernel-
exploits.html

[2] Android protected confirmation. https://source.
android.com/security/protected-confirmation.

[3] Web authentication: An API for accessing public
key credentials. March 2019. https://www.w3.org/
TR/webauthn/

[4] Ledger hardware wallets. https://www.ledger.com/
[5] Riscure Team. Hacking the ultra-secure hardware

cryptowallet. Aug. 2018.
[6] C. Guillemet. Firmware 1.4: Deep dive into three

vulnerabilities which have been fixed. March 2018.
https://www.ledger.com/2018/03/20/firmware-1-
4-deep-dive-security-fixes/

[7] A. Waterman and K. Asanovic. The RISC-V
instruction set manual, volume II: Privileged
architecture. June 2019. https://riscv.org/
specifications/privileged-isa/

[8] A. Rahmati, M. Salajegheh, D. E. Holcomb,
J. Sorber, W. P. Burleson, and K. Fu. TARDIS:
Time and remanence decay in SRAM to implement
secure protocols on embedded devices without
clocks. Aug. 2012. In Proceedings of the 21st USENIX
Security Symposium, 221-236, Bellevue, WA.

[9] C. Wolf. PicoRV32 - a size-optimized RISC-V CPU.
2019. https://github.com/cliffordwolf/picorv32

[10] A. Athalye, A. Belay, M. F. Kaashoek, R. Morris,
and N. Zeldovich. Notary: A device for secure
transaction approval. Oct. 2019. In Proceedings of
the 27th ACM Symposium on Operating Systems
Principles (SOSP), 97-113, Huntsville, ON,
Canada. (The full Notary paper is available at
https://pdos.csail.mit.edu/papers/notary:sosp19.pdf).

FIGURE 4. Notary prototype running
a Bitcoin wallet agent.

