
Modular Verification of Secure and Leakage-Free Systems:
From Application Specification to Circuit-Level Implementation

Anish Athalye1 Henry Corrigan-Gibbs1 M. Frans Kaashoek1 Joseph Tassarotti2 Nickolai Zeldovich1
1 MIT CSAIL 2 New York University

Abstract
Parfait is a framework for proving that an implementation
of a hardware security module (HSM) leaks nothing more
than what is mandated by an application specification. Parfait
proofs cover the software and the hardware of an HSM, which
catches bugs above the cycle-level digital circuit abstraction,
including timing side channels. Parfait’s contribution is a scal-
able approach to proving security and non-leakage by using
intermediate levels of abstraction and relating them with tran-
sitive information-preserving refinement. This enables Parfait
to use different techniques to verify the implementation at dif-
ferent levels of abstraction, reuse existing verified components
such as CompCert, and automate parts of the proof, while still
providing end-to-end guarantees. We use Parfait to verify four
HSMs, including an ECDSA certificate-signing HSM and a
password-hashing HSM, on top of the OpenTitan Ibex and
PicoRV32 processors. Parfait provides strong guarantees for
these HSMs: for instance, it proves that the ECDSA-on-Ibex
HSM implementation—2,300 lines of code and 13,500 lines
of Verilog—leaks nothing more than what is allowed by a
40-line specification of its behavior.

1 Introduction
This paper presents an approach for proving the absence of
correctness bugs, security bugs, and leakage bugs such as
timing side channels, with modular reasoning. The paper ap-
plies this approach to verifying hardware security modules
(HSMs), which are single-function devices intended to per-
form security-critical operations such as ECDSA public-key
signatures.

Any vulnerability in an HSM’s hardware or software can un-
dermine the security of the HSM. These devices have suffered
from bugs throughout the hardware/software stack, such as
logic bugs, memory corruption, hardware bugs, leakage bugs,
and timing side channels [1–8, 18, 24, 27, 41, 49, 69]. These
bugs motivate the need for verifying security and non-leakage

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for third-party
components of this work must be honored. For all other uses, contact the
owner/author.

Copyright is held by the owner/author(s).
SOSP ’24, November 4–6, 2024, Austin, TX
ACM ISBN 979-8-4007-1251-7/24/11.
https://doi.org/10.1145/3694715.3695956

from application specification to circuit-level implementation,
covering the full stack.

A common approach to reasoning about leakage across
levels of abstraction is to use leakage models [11, 38], which
augment a higher level of abstraction with additional informa-
tion about what is leaked by a lower level. For example, the
HACL⋆ cryptography library [59, 77] assumes that hardware
leaks branches and memory addresses, but not, for example,
operands of addition and multiplication instructions. Get-
ting leakage models right and aligning them across levels
of abstraction such as C code, assembly, and circuit, is chal-
lenging [17, 71]. For instance, on the ARM Cortex-M3, the
latency of multiply instructions is operand-dependent [12, 57],
so HACL⋆’s ostensibly constant-time code could leak its se-
crets via timing side channels on this processor. There have
been no verified hardware and software systems with top-to-
bottom proofs of non-leakage using leakage models.

Knox [14] does provide top-to-bottom proofs of non-
leakage, but without using any intermediate levels of abstrac-
tion or leakage models. It directly relates a circuit (includ-
ing its firmware) to an application-level specification using
information-preserving refinement (IPR), which rules out cor-
rectness bugs, security bugs, and timing bugs. The downside
of Knox’s monolithic approach is that it does not scale: for ex-
ample, Knox cannot handle software that performs public-key
cryptography. This is because the gap between the speci-
fication (e.g., abstract mathematical definitions for public-
key crypto) and the circuit (e.g., code with sophisticated
mathematical optimizations running on a pipelined proces-
sor [16, 21, 25, 29]) is too large for an SMT solver to establish
correspondence.

This paper presents Parfait, a framework for verifying se-
curity and non-leakage with modular reasoning. The key
contribution of Parfait is formalizing Knox’s IPR in a way
that allows IPR to be applied transitively. This allows for
bridging the gap between an application-level specification
and a circuit-level implementation in a modular way with inter-
mediate refinements. To verify our case-study HSMs, we use
five levels of abstraction: specification, proof-oriented pro-
gramming language, C, assembly, and circuit. Given proofs
between pairs of successive levels of abstraction, the transitiv-
ity of IPR implies end-to-end security and non-leakage of the
entire hardware and software system.

Transitive IPR has three additional benefits. First, Parfait
can simplify the proof by verifying IPR between levels of
abstraction for a specific implementation rather than proving a

1

https://doi.org/10.1145/3694715.3695956

general-case theorem for arbitrary code, such as proving that a
processor correctly implements an ISA or that assembly-level
and hardware-level leakage models match. Second, Parfait can
use different proof techniques for different levels of abstraction.
Parfait formalizes in Coq [66] the IPR by functional-physical
simulation proof technique from Knox and introduces two
additional proof techniques for verifying software: IPR by
equivalence and IPR by lockstep. Third, Parfait can reuse
existing tools and build on existing proofs for verifying each
level of abstraction. Parfait uses F⋆ [65] and encodes IPR into
pre/postcondition-style specifications for verifying software,
which allows HSM developers to reuse crypto code and proofs
from HACL⋆ [77]. For example, our ECDSA HSM builds on
the ECDSA code from HACL⋆, including its proof. Parfait
uses the verified CompCert compiler [42] for compiling C
to assembly. Finally, Parfait uses Rosette [67] and extends
Knox [14] with an assembly-circuit synchronization technique
to make verification tractable for complex HSMs.

To demonstrate the Parfait approach, we implemented a
prototype of Parfait, which comprises the Starling frame-
work for verifying software and the Knox2 framework for
verifying hardware. We used these frameworks to develop
and verify four example HSMs, including a PKCS#11-
compatible ECDSA certificate-signing HSM and an HMAC-
based password-hashing HSM. Parfait proofs ensure that the
I/O behavior of these HSMs, down to the level of digital gates
and wires, leaks no information beyond what is allowed by
their application-level specifications. This rules out a large
class of correctness bugs (logic bugs, memory corruption, etc.)
as well as leakage bugs (such as error messages that reveal
sensitive information or non-constant-time crypto). Parfait’s
modularity makes it easy for app developers to build new
HSMs and for hardware developers to port HSMs to new hard-
ware platforms. For instance, after verifying our applications
on the Ibex-based SoC, we were able to verify the same ap-
plication on the PicoRV32 processor in only two additional
developer hours.

In summary, the contributions of this paper are (1) the
Parfait approach for modular verification of security and
non-leakage, including a formalization of transitive IPR
and proof strategies for IPR, (2) the Starling framework
for verifying IPR for software, (3) the Knox2 framework
for verifying IPR for hardware, and (4) an evaluation of
Parfait verifying four HSMs. A more detailed description
of Parfait can be found in the first author’s PhD thesis [13].
All source code—IPR theory, verification frameworks, and
verified HSMs—is available at: github.com/anishathalye/

{ipr,starling,knox,parfait-hsm}.
One of the limitations of Parfait is that it focuses on simpler

CPU designs used in a large class of HSMs today, such as
the OpenTitan’s Ibex. New ideas and techniques would be
needed to extend Parfait to handle high-performance out-of-
order processors such as Intel and AMD x86 CPUs that are
used in other HSMs.

2 Overview and HSM developer workflow
HSM design framework. Parfait provides an HSM design
framework that helps avoid timing leakage. HSMs following
this design, shown in figure 1, run an execution loop that (1)
reads a command from the I/O interface, (2) loads state from
persistent memory, (3) handles the command to produce an in-
memory state update and response, (4) updates persistent state
atomically, and (5) sends the response over the I/O interface.

uint8_t state[STATE_SIZE];

uint8_t cmd[COMMAND_SIZE];

uint8_t resp[RESPONSE_SIZE];

void main() {

while (true) {

read_command(&cmd); // from I/O interface (1)

load_state(&state); // from persistent memory (2)

handle(&state, &cmd, &resp); // core computation (3)

store_state(&state); // to persistent memory, atomic (4)

write_response(&resp); // to I/O interface (5)

}

}

Figure 1: The main loop of an HSM in the Parfait design.

Steps (1) and (5) do not compute over the HSM’s internal
state, and steps (2) and (4) read/write secret state opaquely
without computing over secret values, so the developer can
write these functions to run in constant time. Step (4) requires
some care to implement atomicity.

At the core of the HSM is a handle function that imple-
ments step (3), implementing command deserialization, core
functionality, and response serialization. The developer must
write this function such that its execution time (i.e., the number
of hardware cycles) depends only on the cmd (the serialization
of a command and its arguments), not on the internal state
of the HSM.

Writing code that executes in constant time at the hardware
level requires careful programming at the source-code level,
a compiler that preserves constant-time behavior, and hard-
ware that executes the code in constant time. Parfait helps
developers prove that their HSM is indeed leakage-free.

Developer workflow. Figure 2 gives an overview of the
Parfait developer workflow (§2) and verification approach
(§3). Parfait supports two largely independent developers: an
app developer who writes and verifies the application (§4)
and a platform developer who writes and verifies the system
software (for persistence, peripheral I/O, etc.) and hardware
for running the application (§5).

App development. The app developer writes an implemen-
tation of the application functionality in Low⋆ [58] (the
App Impl [Low⋆] in figure 2), a C-like language for low-level
programming embedded in F⋆. This includes both the appli-
cation logic as well as code to decode incoming requests and
encode the responses. Specifically, the app developer imple-
ments the handle function referenced in figure 1, which oper-

2

https://github.com/anishathalye
https://github.com/anishathalye/ipr
https://github.com/anishathalye/starling
https://github.com/anishathalye/knox
https://github.com/anishathalye/parfait-hsm

App Spec
[F★]

app developer

KaRaMeLApp Impl
[Low★]

App Impl
[C]

CompCert App Impl
[Asm]

GCC

System Software
[C/Asm]

Firmware
[Binary]

Hardware
[Verilog]

Yosys

System-on-a-
Chip (SoC)

CPU ROM
RAMI/O

FLASH

platform developer

lockstep equivalence equivalence functional-physical simulation

m
od

el
-F

★

m
od

el
-L

ow
★

m
od

el
-C

 (K
aR

aM
eL

)

m
od

el
-C

 (C
om

pC
er

t)

m
od

el
-A

sm
 (C

om
pC

er
t)

m
od

el
-A

sm
 (R

is
ce

tte
)

m
od

el
-C

irc
ui

t

IPR IPR IPR IPR IPR IPR

IPR

⇑ IPR by
functional-physical simulation

⇑ IPR by
equivalence

⇑ IPR by
equivalence

⇑ IPR by
lockstep

⇑ IPR by transitivity

Software verification with Starling (§4) Hardware verification with Knox2 (§5)

Im
pl

em
en

ta
tio

n
ve

rifi
ed

 b
y

de
ve

lo
pe

r
IP

R
th

eo
ry

ve
rifi

ed
 b

y
Pa

rfa
it

proof proof

Figure 2: The Parfait developer workflow and verification approach. The app developer writes the App Spec [F⋆] , App Impl [Low⋆] , and
a proof of lockstep verified using the Starling framework in F⋆ (§4). Off-the-shelf verified compilers provide the equivalence proofs. The
platform developer writes the System Software , Hardware , and a proof of functional-physical simulation verified using the Knox2 framework
in Rosette (§5). The Parfait framework provides a theory of IPR that is verified once-and-for-all in Coq (§3). An on-paper argument connects
the mechanized proofs written by the HSM developer to the mechanized theory of IPR provided by Parfait by modeling each level of abstraction
as a state machine in the formalism of IPR to prove a top-level theorem of IPR between the App Spec [F⋆] and the System-on-a-Chip (SoC) .

ates on in-memory state, command, and response buffers. Off-
the-shelf verified compilers turn this code into an assembly-
level implementation (the App Impl [Asm] in figure 2).

Platform development. The platform developer writes a
system-software library, which implements the system’s over-
all execution loop and includes everything in the firmware
image except the implementation of the handle function. The
system software includes startup code written in assembly
to boot the processor and set up the environment for execut-
ing C code, the code shown in figure 1, and the implemen-
tations of read_command, load_state, store_state, and
write_response. The platform developer then links this code
with the application code (the implementation of handle)
from the app developer; the resulting linked binary is the
HSM’s firmware (the Firmware in figure 2). The platform
developer then implements the Hardware in Verilog and em-
beds the HSM’s firmware in the hardware’s ROM. The result
is a complete System-on-a-Chip (SoC) . A user can fabricate
it directly or put it onto an FPGA and run it as a hardware
implementation of the HSM app.

Trusted computing base. Among the code the HSM devel-
oper writes, only the App Spec and driver (model of how
a well-behaved client communicates in IPR, not shown in
figure 2), both described in §3, are in the trusted computing
base (TCB). The entire implementation—the Low⋆ app code,

system software, and hardware—is covered by verification.
§6 describes the TCB of the Parfait framework itself.

Threat model. Parfait considers an adversary that gains di-
rect access to the wire-level digital I/O of the HSM, with the
ability to set logic levels on the input wires and read logic
levels on the output wires at every cycle. This captures many
attacks, such as an adversary that compromises the HSM’s
host machine and is able to send malformed commands or
observe all wire-level outputs at every clock cycle. Such an
adversary may be able to extract secrets from an HSM, even
if that HSM operates correctly when the host machine is well-
behaved.

This threat model focuses on remote compromise of the
host machine, one of the primary attacks that HSMs aim to
defend against. It does not include physical attacks on the
HSM: while the threat model includes (digital) timing side
channels, it does not include arbitrary side channels [76] such
as EM radiation [9], temperature [40], and power [48].

3 Proof approach: transitive IPR
Parfait’s approach to proving IPR between the specification
and the SoC is to introduce several intermediate levels of
abstraction, prove IPR between levels, and use the transitivity
of IPR to obtain a top-level theorem relating specification to
implementation, as illustrated in figure 2.

3

IPR. In Parfait’s formalization of IPR, each level of abstrac-
tion is a state machine satisfying the interface shown in figure 3.
A level of abstraction is defined by the types of commands and
responses, the type of state, the initial state, and a step func-
tion that describes the behavior of each command. In Parfait,
every level of abstraction is modeled as a state machine of this
form.
Record state_machine (command response : Type) := {

state : Type;

init : state;

step : state -> command -> (state * response);

}.

Figure 3: The interface of state machines in IPR, written in Coq.

A Parfait developer writes application specifications (the
App Spec in figure 2) in explicit state-machine style. For ex-
ample, figure 4 shows the step function from the specification
of an ECDSA-signing HSM. A single HSM operation (such
as Sign msg) is an atomic step of this state machine, which
we call “whole-command.”
let step (st:state_t) (cmd:command_t):state_t & response_t =

match cmd with

| Initialize prf_key sig_key ->

{ prf_key = prf_key; prf_counter = uint 0;

sig_key = sig_key },

Initialized

| Sign msg ->

if uint_v st.prf_counter = maxint U64 then

st, Signature None

else

let data = uint_to_bytes_be st.prf_counter in

let k = hmac SHA2_256 st.prf_key data in

let s = st.sig_key in

let sig = ecdsa_signature_agile NoHash _ msg s k in

{ st with prf_counter = incr st.prf_counter },

Signature sig

Figure 4: The step function for the ECDSA HSM, written in F⋆.
The specifications for hmac and ecdsa_signature_agile are used
directly from HACL⋆, a verified crypto library. This HSM specifica-
tion does not support reading out the signing key or pseudorandom
function (PRF) key, and it ensures unique nonces across operations.

In contrast, when modeling the SoC as an IPR state machine,
the state is the entire state of the circuit, and there are three
commands: (1) set_input(...), which sets signals on input
wires to the HSM, (2) get_output(), which reads signals
on output wires from the HSM, and tick(), which waits for
the HSM to run for a single clock cycle, whose step function
is defined by the SoC’s circuit. One logical HSM operation
corresponds to millions of state-machine steps at this level.

Figure 5 illustrates IPR, which is defined as an equivalence
between a real world and an ideal world. The real world con-
tains the implementation state machine. In the real world,
a driver describes how to obtain spec-level behavior from
the implementation, akin to a device driver, a program map-
ping spec-level operations to implementation-level I/O. The

Mi

Ii / Oi

real world

d

Is / Os

Ms

Ii / Oi

ideal world

e

Is / Os

≈

Figure 5: The definition of IPR: an implementation 𝑀𝑖 (with com-
mand/response types 𝐼𝑖 / 𝑂𝑖) is an information-preserving refinement
of a specification 𝑀𝑠 (with command/response types 𝐼𝑠 / 𝑂𝑠) with
respect to a driver 𝑑, written as 𝑀𝑖 ≈𝐼𝑃𝑅[𝑑] 𝑀𝑠, if there exists an
emulator 𝑒 such that the real world is observationally equivalent to
the ideal world.

developer writes the driver, which is part of the TCB. The
real world exposes both a spec-level (e.g., figure 4) and an
implementation-level interface (e.g., wire-level inputs/outputs
of the SoC). A client of the state machine could use the spec-
level interface (through the driver), or bypass the driver and
perform arbitrary implementation-level I/O operations (repre-
senting what an adversary could do).

The ideal world contains the specification, and the IPR
definition states that there must exist an emulator (a dual
of the driver) in the ideal world. The emulator is a proof
artifact that is not part of the TCB. The emulator, which
exposes an implementation-level interface, must mimic the
real implementation’s behavior while given only query access
to the specification.

The IPR definition states that the real world must be ob-
servationally equivalent [13: §4.1.2] to the ideal world. If
the emulator, given access to only the ideal-world spec, can
always produce an output that is equivalent to the real-world
implementation, then it must be that the real-world implemen-
tation and driver cannot introduce any unintended leakage
beyond the specification.

Top-level theorem. Parfait’s top-level theorem states that
the bottom (SoC) level of abstraction securely implements
the top (app spec) level of abstraction, meaning that the SoC
returns the correct results and does not leak any additional
information. Parfait specifies this using IPR:

model-Circuit (SoC) ≈𝐼𝑃𝑅[𝑑] model-F⋆ (App Spec)

Proof approach: transitive IPR. To prove the top-level
theorem—that the SoC is an information-preserving refine-
ment of the app spec—Parfait breaks up the IPR relation into
smaller steps. To do this, Parfait proves that IPR, as encoded
in Parfait’s formalization, is transitive. That is, if we have
three levels of abstraction 𝑀1, 𝑀2, and 𝑀3, with IPR between
each pair, we can establish that IPR holds between 𝑀1 and
𝑀3:

𝑀1 ≈𝐼𝑃𝑅[𝑑12] 𝑀2 𝑀2 ≈𝐼𝑃𝑅[𝑑23] 𝑀3

𝑀1 ≈𝐼𝑃𝑅[𝑑12 ∘ 𝑑23] 𝑀3

4

Parfait formalizes the definitions of IPR, transitivity, and
composition in the Coq proof assistant, described in detail in
the first author’s PhD thesis [13: §4].

Levels of abstraction. Table 1 shows the five levels of ab-
straction used to verify our case-study HSMs. We chose these
levels so that we could reuse existing tools and libraries.

Table 1: The levels of abstraction used to verify our case-study
HSMs. This table shows the state, input/output types, and step func-
tions for the levels when modeled as state machines in the theory of
IPR. The specification defines its own types for the state, input, and
output.

Level State I / O Step

App Spec [F⋆] state_t
command_t /

step()
response_t

App Impl [Low⋆] bytes bytes handle()

App Impl [C] bytes bytes handle()

App Impl [Asm] bytes bytes handle()

System-on-a-Chip registers & wires cycle stepmemories

Parfait’s overall approach involves proving IPR between
each level of abstraction. At the top level is the app-developer-
supplied application spec, such as figure 4. The second level is
the app implementation, which implements the core app logic
and is written in Low⋆, operating on machine integers, buffers,
etc. In the ECDSA-signing HSM, this code is where the app
developer represents bignums as arrays of machine words,
implements performance optimizations such as Montgomery
multiplication, and so on. The third and fourth levels are com-
piled versions of the implementation: a C program and an
abstract assembly program (a precursor to the final .s file).
The final level is the complete SoC, including the firmware
image in its ROM, with hardware execution modeled at the
cycle-precise level. The first four levels are whole-command
state machines, where the execution of an entire logical oper-
ation is a single step. The last level introduces cycle-precise
timing; verification at this level catches timing bugs.

Between each of these levels of abstraction, a driver de-
scribes how inputs/outputs at the higher level of abstraction
(e.g., command_t/response_t) map to I/O at the lower level
of abstraction (e.g., bytes). The drivers between the interme-
diate levels (Low⋆ to C, and C to Asm) are identity drivers.
The driver for the spec level describes how commands are en-
coded as bytes and responses are decoded from bytes, and the
driver for the SoC level describes how byte-level commands
are sent to the device over the wire, and how byte-level re-
sponses are read from the device over the wire. The top-level
driver, between App Spec and SoC, is a composition of all
the drivers between levels of abstraction: it describes how
spec-level operations translate to wire-level I/O.

IPR proof techniques. Figure 2 shows how Parfait uses IPR
proof techniques. In addition to the transitivity of IPR, Parfait

formalizes three proof techniques for IPR:
IPR by lockstep applies when two state machines have

differing input/output types but there is a one-to-one corre-
spondence between the steps of the spec and implementation
state machine. This is the case between the first two levels
of abstraction: the F⋆ App Spec operates at the level of ab-
stract app commands/responses (developer-defined data types
command_t and response_t), and the implementation oper-
ates on buffers of bytes, but a single step of the spec state
machine corresponds to a single step of the implementation
state machine (one invocation of handle). A set of conditions
we call lockstep is sufficient to prove IPR in this case. This
technique does not require the developer to supply an emulator;
instead, the developer supplies encode/decode functions that
convert between spec-level and implementation-level inputs
and outputs.

IPR by equivalence applies when two state machines have
identical input/output types and are observationally equivalent.
This applies when using verified compilers, where the state
machines given by the corresponding models are equivalent:
observational equivalence implies IPR. This technique does
not require the developer to supply an emulator; the state
machines are related by the identity emulator.

IPR by functional-physical simulation is a generalization
of forward simulation [46] to the IPR setting introduced by
Knox [14], which applies when a functional-physical simula-
tion relation holds between high-level operations or sequences
of low-level operations. The existence of such a relation im-
plies IPR. This technique requires the developer to supply an
emulator; Parfait provides a formulaic method for constructing
emulators that follow the Parfait HSM design framework.

Software and hardware proofs. The developer uses the
Starling framework to prove lockstep between the specification
and the app implementation. Starling encodes the lockstep
property as a precondition/postcondition for the Low⋆ handle

function, which allows the developer to reuse existing verified
software such as HACL⋆. From the Low⋆ implementation,
Parfait uses verified compilers (KaRaMeL [58] and Comp-
Cert [42]) to produce an assembly implementation that is
observationally equivalent to the Low⋆ code, so equivalence
holds between the models of the levels as state machines. §4
describes this software verification approach in detail.

Next, the platform developer proves that executing the fi-
nal SoC, with the binary firmware image embedded as the
ROM contents, securely implements the assembly, using the
Knox2 framework to prove functional-physical simulation. §5
describes this hardware verification approach in detail.

Connecting mechanized proofs. Parfait combines these
mechanized proofs together with an on-paper argument to
provide an end-to-end proof showing that the SoC securely
implements the App Spec. This ensures there is no leakage by
the implementation—be it encoding bugs, compiler bugs, or
timing bugs in the CPU hardware. To combine proofs together

5

in a sound way, Parfait models each level of abstraction as a
state machine in the formalism of IPR and uses the verified
proof strategies, including transitivity, to prove the top-level
IPR between App Spec and SoC.

Parfait gives each level (e.g., Asm code) an interpretation
as a state machine in the formalism of IPR. This is the connec-
tion to the theory mechanized in Coq. For example, figure 8
shows how model-Asm (CompCert) interprets the Asm code
as a state machine. This modeling is on-paper, as is the con-
nection between (1) Starling’s encoding of lockstep in F⋆ and
the Coq definition of lockstep, and (2) Knox2’s encoding of
functional-physical simulation in Rosette and the Coq defini-
tion of functional-physical simulation.

For compiling Low⋆ to C, Parfait uses KaRaMeL; compiler
correctness implies that models of the Low⋆ and C as whole-
command state machines are equivalent state machines, an on-
paper argument that connects to the Coq proof that equivalence
implies IPR. KaRaMeL has a semantics for the C target, and
CompCert has a semantics for its C source; Parfait requires
that the semantics align, another on-paper argument (§4.2).

For compiling C to Asm, Parfait uses CompCert; its
(proven-in-Coq) correctness implies that the models of the C
and Asm as state machines are equivalent, another on-paper
argument. Like the C code, the Asm code has a dual inter-
pretation, one as a CompCert target (the CompCert RISC-V
semantics), and another according to the Riscette semantics,
our implementation of the CompCert RISC-V semantics in
Rosette. Like the dual interpretation of C, these semantics
must align (§5.1).

4 Software verification with Starling
Parfait’s Starling framework supports the application devel-
oper in implementing the HSM software and proving IPR
between the specification and the assembly-level code. A key
challenge in the software verification component of Parfait is
minimizing proof effort and enabling reuse of existing speci-
fications, implementations, and proofs. Leveraging existing
verified software is a challenge because these libraries focus
on verifying functional correctness, not non-leakage and IPR.

4.1 Low⋆-level proof
There is a simple correspondence between the F⋆-level spec
and Low⋆-level implementation, where one step of the imple-
mentation state machine corresponds to a single step of the
spec state machine, and vice versa. For this reason, the driver,
which translates spec-level operations to implementation-
level operations, is simple. It needs only to describe how
commands are encoded (an encode_command function) and
how responses are decoded (a decode_response function).
The driver has the form (1) serialize the spec-level input
(e.g., Sign msg) as a buffer, (2) invoke handle, and (3)
decode the response buffer into a spec-level output (e.g.,
Signature sig). As a result, Starling can use IPR by lock-
step to verify the implementation at this level.

IPR by lockstep. The lockstep proof strategy implicitly con-
structs an emulator based on developer-supplied encode/de-
code functions that are duals of those comprising the driver:
a decode_command function that translates bytes to spec-
level inputs, and an encode_response function that trans-
lates spec-level outputs to bytes. The decode_command func-
tion produces an option-typed output to allow for low-level
inputs that do not correspond to any high-level input. The
encode_response function consumes an option-typed input
to support producing low-level outputs (signaling an error
response) for the situation where there is no valid high-level
input and hence no valid high-level output.

The lockstep proof strategy requires the developer to supply:
(1) the encode/decode functions (which implicitly define an
emulator); (2) a proof of correspondence between encoders
and decoders (that decode is the inverse of encode); (3) a
refinement relation 𝑅 between spec-level state (state_t) and
Low⋆-level state (bytes); and (4) a proof of the lockstep sim-
ulation property shown in figure 6. Together, these imply
IPR.

s1

s2

R

s1’

s2’

R
i1 o1

i2 o2

decode_command

encode_response

(a) Lockstep simulation (Some case): if an implementation state 𝑠1 steps to
𝑠′1 with input 𝑖1 and output 𝑜1, and decode_command 𝑖1 = Some 𝑖2, then
it must be possible for any specification state 𝑠2 related by 𝑅 to 𝑠1 to step
with input 𝑖2 and some output 𝑜2 to an 𝑠′2 that is related by 𝑅 to 𝑠′1 such that
encode_response (Some 𝑜2) = 𝑜1.

s1

s2

R

s1’

R
i1 o1

⊥
decode_command

encode_response

(b) Lockstep simulation (None case): if an implementation state 𝑠1 steps to 𝑠′1
with input 𝑖1 and output 𝑜1, and decode_command 𝑖1 = None, then it must be
the case that encode_response None = 𝑜1, and for any specification state
𝑠2 related by 𝑅 to 𝑠1, 𝑠2 must also be related by 𝑅 to 𝑠′1.

Figure 6: The two cases of lockstep simulation: the low-level input
corresponds to some high-level input (a) or none (b).

Encoding in F⋆. The Starling framework encodes the lock-
step property—in particular, the encode/decode correspon-
dences and the lockstep simulation property—into F⋆, and the
app developer proves the properties.

Starling provides the developer with signatures for the en-
code/decode functions for commands and responses; the post-
conditions of the encode functions ensure that the functions
satisfy the required correspondence.

Starling encodes lockstep simulation into the signature of

6

the Low⋆ handle function, handle_st, as shown in figure 7.
Rather than use a refinement relation between states, Starling
uses an encode_state function that encodes a spec-level
state as bytes. The handle_st signature is parameterized
by a specification and the encode/decode functions for com-
mands/responses. The handle function takes as input the
state, command, and response buffers, as well as the spec-
level state, supplied as a ghost argument state_spec. The pre-
condition states that the state and state_spec must corre-
spond. The postcondition encodes the lockstep simulation con-
dition (figure 6), decoding the low-level input command into the
spec-level cmd_spec and handling both the case of valid low-
level input (cmd_spec = Some v, corresponding to figure 6a)
and the case of invalid low-level input (cmd_spec = None,
corresponding to figure 6b).

let handle_st (spec: spec_t) ... =

state:buffer uint8{length state = state_size}

-> state_spec:erased spec.state_t

-> command:buffer uint8{length command = command_size}

-> response:buffer uint8{length response = response_size} ->

Stack unit

(requires fun h -> ... /\

as_seq h state == encode_state state_spec)

(ensures fun h0 () h1 -> ... /\

let cmd_spec = decode_command (as_seq h0 command) in

match cmd_spec with

| Some v ->

let (state_spec', resp_spec) = spec.step state_spec v in

as_seq h1 state == encode_state state_spec' /\

as_seq h1 response == encode_response (Some resp_spec)

| None ->

as_seq h1 state == as_seq h0 state /\

as_seq h1 response == encode_response None)

Figure 7: Starling’s encoding of lockstep simulation in F⋆ as the
signature of handle.

The combination of encode/decode correspondences and
the postcondition of handle guarantee non-leakage. The in-
tuitive reason is:
• When the command can be decoded as a spec-level com-

mand (i.e., Some v), then the behavior matches the spec:
the final state matches the encoding of the final spec state,
and the value in the response buffer matches the encoding of
the spec-level response. This rules out encodings that leak
information: encode_response is a deterministic function
of only the spec-level response, and the buffer contents are
equal to this, capturing non-leakage.

• When the command cannot be decoded as a spec-level com-
mand (i.e., None), then the state remains unchanged, and the
response is deterministic, as given by encode_response

None. A client that never supplies bad inputs will never
observe this, but a client that does supply bad inputs will
learn no information. This, along with Low⋆’s other prop-
erties, such as verifying memory safety, ensures that even
bad inputs (e.g., trying to trigger a buffer overflow) cannot
corrupt the state or leak information.

4.2 C and assembly-level proofs
Parfait compiles Low⋆ to assembly code using a stack of ver-
ified compilers. KaRaMeL [58] compiles Low⋆ code to C.
KaRaMeL theorems establish that safety and functional cor-
rectness verified at the F⋆ level translate to generated Comp-
Cert Clight code. Parfait then uses the formally verified Comp-
Cert compiler [42] to generate an assembly implementation of
the handle function that follows the RISC-V calling conven-
tion, expecting pointers to the state, command, and response
buffers in the a0, a1, and a2 registers.

Parfait uses CompCert’s RISC-V backend and dumps the
AST of the last verified pass of the compiler, called Asm (after
which the compiler usually runs un-verified expansion, assem-
bly, and linking). The Asm machine model still uses Comp-
Cert’s structured memory model and has pseudo-instructions
for allocating and freeing stack frames.

Figure 8 describes how model-Asm (CompCert) interprets
the Asm as a state machine using the CompCert semantics,
where the invocation of handle is treated as a single atomic
step of the state machine. The step function takes as inputs a
state buffer and command buffer and returns a new state buffer
and response buffer as outputs. The model-Low⋆, model-C
(KaRaMeL), and model-C (CompCert) interpretations are
analogous.

type state_t = bytes[STATE_SIZE]

type command_t = bytes[COMMAND_SIZE]

type response_t = bytes[RESPONSE_SIZE]

def step(state, command) -> (state_t, response_t):

m = compcert_asm_abstract_machine("AppImpl.asm.json")

copy state and command into machine memory

state_ptr = m.alloc(STATE_SIZE)

m.storebytes(state_ptr, state)

command_ptr = m.alloc(COMMAND_SIZE)

m.storebytes(command_ptr, command)

allocate space for response

response_ptr = m.alloc(RESPONSE_SIZE)

set up arguments following RISC-V ABI

m.regs["a0"] = state_ptr

m.regs["a1"] = command_ptr

m.regs["a2"] = response_ptr

run handle function according to CompCert Asm semantics

m.regs["pc"] = m.address_of("handle")

m.run()

retrieve updated state and result buffer

new_state = m.loadbytes(state_ptr)

response = m.loadbytes(response_ptr)

return (new_state, response)

Figure 8: Pseudocode describing how model-Asm (CompCert) in-
terprets the CompCert Asm as a state machine according to the
CompCert RISC-V Asm semantics.

To relate the Low⋆ level to the C level with IPR, and to
relate the C level to the Asm level with IPR, Parfait models

7

each level as a state machine, observes that the state machines
are observationally equivalent due to using verified compilers,
and applies IPR by equivalence to obtain IPR between these
levels.

This approach has two limitations. Although KaRaMeL
semantics are intended to coincide with CompCert C [58],
there is no mechanized connection between the two. Parfait
assumes that the state machines from model-C (KaRaMeL), in-
terpreting the C code according to the KaRaMeL C semantics,
and model-C (CompCert), interpreting the C code according
to the CompCert C semantics, are observationally equivalent.
Parfait does not need to assume that the semantics perfectly
coincide (e.g., stepwise correspondence between the small-
step operational semantics of KaRaMeL C and CompCert C),
only that the state machines coincide, which boils down to as-
suming that the final values computed by the handle function
match between the two semantics. Additionally, unlike the
CompCert compiler, KaRaMeL is only partially verified, and
on-paper, rather than with a mechanically checked proof of
correctness.

5 Hardware verification with Knox2
Parfait’s Knox2 framework supports the platform developer
in implementing the HSM hardware and proving IPR be-
tween the assembly-level code and its circuit-level implemen-
tation. Knox2 builds on top of the Knox framework [14]
and makes two contributions to make Knox compatible with
transitive IPR and to scale up to more sophisticated HSMs:
Riscette, a RISC-V assembly semantics in Rosette (§5.1), and
the assembly-circuit synchronization technique (§5.4).

5.1 Assembly semantics in Rosette
Parfait generates the assembly-level implementation
App Impl [Asm] using the CompCert compiler, which is
written in Coq. CompCert includes a (non-executable) Coq
semantics of RISC-V assembly. Knox is written using Rosette,
a symbolic evaluation library for the Racket programming
language, so it cannot directly use the CompCert semantics.
For this reason, on top of Rosette, Knox2 provides its own
executable semantics for CompCert RISC-V assembly, which
we call Riscette. This executable semantics closely follows
the original CompCert semantics. Furthermore, the Riscette
semantics can be single-stepped instruction-by-instruction,
for proof purposes.

With this semantics in place, Knox2 can initialize an ab-
stract machine from assembly code emitted by the CompCert
compiler, set up the machine memory and registers to supply
a state and input to the handle function, and symbolically
execute it to produce a final state and an output, similar to
how figure 8 describes the assembly level’s interpretation as
a state machine following CompCert semantics.

The assembly level is a whole-command state machine, so
the execution of a single logical HSM operation occurs in a
single step, but at the circuit level, it takes many state-machine

steps (tens of millions, for the ECDSA HSM) to execute a
single logical operation. Proving IPR between these levels of
abstraction ensures that the circuit’s wire-level behavior does
not leak any information.

5.2 Driver
To relate the assembly and circuit levels of abstraction in IPR,
the platform developer defines an driver that translates from
the inputs/outputs at the assembly level (buffers) to interac-
tion with the state machine at the hardware level (signals on
wires). The driver describes the I/O protocol that the client
implements: how to send a buffer over the wire (which the
HSM reads in read_command), and how to read the response
(which the HSM sends in write_response). This is like a de-
vice driver, in the form of a program built on the circuit-level
primitives: set_input, get_output, and tick [13: §6.3].

5.3 Proof strategy
To prove IPR between the app assembly (which serves as the
specification for hardware verification) and the circuit level
of abstraction, Knox2 reuses the same proof strategy imple-
mented in Knox: IPR by functional-physical simulation. This
strategy requires the developer to supply: (1) a refinement
relation between assembly-level state and circuit-level state;
(2) an emulator; and (3) a proof of functional-physical sim-
ulation. Together, these imply IPR. These components are
largely independent of the HSM app logic.

The refinement relation relates the state at the app assembly
level, which is a buffer, with the state at the circuit level, which
includes the registers and memories of the circuit, includ-
ing persistent memory. These states are closely related, but
the mapping is not one-to-one, because the system software
implements atomicity and crash safety (in load_state and
store_state). Our case-study HSMs use a simple journaling
strategy, a single flag word (which is atomically writable) to
toggle between two copies of state stored in persistent mem-
ory, so the refinement relation relates the assembly-level state
to the active region of memory (based on this flag), as shown
in figure 9.

Inv(impl) /\

spec = if impl.storage[0] == 0

then impl.storage[1 : STATE_SIZE+1]

else impl.storage[STATE_SIZE+1 : 2*STATE_SIZE+1]

Figure 9: An example of a refinement relation between assembly-
level implementation (the spec for the circuit level) and circuit impl.
impl.storage refers to the persistent memory of the implementation.
Inv is an invariant on circuit state that holds in between spec-level
operations, not shown here.

Parfait provides a template for constructing an emulator
for the circuit level of abstraction. The emulator runs a fresh
instance of the circuit, with dummy data. The emulator does
not have access to the data in the real circuit, in particular
the read-write persistent memory, but the structure of the

8

circuit and the code in the ROM is common knowledge. The
emulator watches the internal state of its instance of the circuit:
when the circuit reaches the commit point of an operation, the
emulator reads input data out of its circuit’s state and translates
it into a spec-level input, makes a query to the specification,
and injects the result back into its circuit’s state, so that the
(future) output behavior of its circuit instance matches that
of the real circuit. For HSMs that follow the Parfait design
framework, the commit point is the (cycle-level) commit point
of the store_state function in the system software (figure 1).
To use this template, the platform developer supplies (1a) a
function that identifies when the circuit is about to begin
execution of handle, (1b) a function that computes the spec-
level command (bytes) from the circuit state, (2a) a function
that identifies when the circuit is at the commit point of the
store_state function, and (2b) a function that injects the
spec-level response (bytes) into the circuit state.

The Knox2 proof for IPR between the app assembly and
SoC depends on the system software and hardware, but not on
the app software itself, aside from being parameterized by a
few values, like the length of the state encoding, STATE_SIZE.
The reason Knox2 is able to bridge this large gap, to hardware,
is that (1) the app assembly, which is the specification for
this IPR proof, is already in terms of “shuffling bits around,”
which the hardware does the same way as the assembly; and
(2) Knox2 uses automation powered by symbolic execution
and SMT solvers to automate proving that the app assembly
and hardware execution correspond, as we explain next.

5.4 Assembly-circuit synchronization
A key challenge for Knox2’s functional-physical simulation
proof is that, in practice, SMT solvers are unable to prove
the equivalence of assembly-level and circuit-level executions
after many cycles of execution. In particular, for sophisti-
cated applications like Parfait’s ECDSA HSM, the app as-
sembly code can take tens of millions of cycles to execute
in the SoC, corresponding to a single step of the assembly-
level state machine (§5.1). The functional-physical simulation
proof involves showing that the app assembly transforms the
state/command buffers in a way that corresponds with how the
SoC hardware updates its buffers. While Knox2 can symboli-
cally execute both the assembly and the circuit, and express
this correspondence, SMT solvers are unable to directly prove
equivalence of how these buffers are transformed, because
the symbolic expressions describing the two are extremely
complicated, and not identical.

Instead of waiting to prove equivalence of final states/out-
puts at the end of executing an entire HSM operation, Knox2
uses a strategy of incrementally executing the assembly and
periodically synchronizing the assembly and circuit. Although
the app assembly level is modeled as a whole-command state
machine that executes a command in a single step, Riscette
computes that step by symbolically executing instruction-by-
instruction. Knox2 makes use of this per-instruction stepping

to simplify equivalence checking. When the hardware is in
the middle of executing the handle function, there is a close
correspondence between the hardware’s cycle-by-cycle ex-
ecution and single-stepping through CompCert Asm-level
instructions.

To do this synchronization, Knox2 uses a mapping between
CompCert Asm abstract machine state and hardware-level
state (registers and memories) provided by the platform devel-
oper. During the proof, Knox2 applies this mapping to line up
the states and attempts to prove equivalence component-wise.
If the equivalence check succeeds, it replaces both symbolic
expressions with the same symbolic variable. This way, the
solver does not get a large hard-to-prove query at the end
of execution. Instead, it proves many simpler equivalences
throughout the execution. Knox2 has built-in heuristics for
when to synchronize, and for what should be synchronized in
which situations.

Knox2 uses a best-effort strategy for synchronization. Oc-
casionally the developer-provided mapping or heuristics for
alignment are incorrect and an equivalence check fails. When
this happens, Knox2 does not unify the symbolic expressions.
Instead, it continues symbolically executing and tries to check
for equivalence later. The result is that the solver will end up
with a slightly harder query at the next synchronization point.

Synchronization for the Ibex SoC. The remainder of this
section describes in more detail the mapping and synchroniza-
tion heuristics, using the platform mapping for the Ibex-based
SoC used in one of our case studies (§7) as an example.

pc | pointer 1 1

registers

 x1 | 0x3749fa3f
 x2 | pointer 73 0
 ...
x31 | undef

memory

 1 | func ‘handle’
 2 | func ‘sha256’
 ...
73 | [0x24, 0x59, 0x09, 0xfa]
74 | [pointer 4 8, 0x05, 0x06]

code

handle | [Pallocframe 16
 Psw x1, x2, 4
 ...]
sha256 | [...]
 ...

pc_ex | 0x00000a30

regfile

 0 | 0x00000000
 1 | 0x3749fa3f
 2 | 0x20000008
 ...
31 | 0xffff000e

CPU

. . .

RAM @ 0x20000000
 0 | 0x00000000
 4 | 0xf3d9ab03
 8 | 0xfa095924
 ...

ROM @ 0x00000000

 0 | 0x0f80006f j f8
 ...
a28 | 0xff010113 add sp,sp,-16
a2c | 0x01e12023 sw t5,0(sp)
a30 | 0x00112223 sw ra,4(sp)
 ...

. . .

CompCert Asm abstract
machine state

SoC circuit state

instruction

pointer
register

Figure 10: Correspondence between Asm machine state and circuit
state. The figure illustrates an example instruction mapping, register
mapping, and pointer mapping.

State correspondence. The platform developer supplies the
correspondence between the CompCert Asm abstract machine
state (fixed by the framework) and the hardware (implemented

9

by the platform developer). As illustrated by examples in
figure 10, the platform developer supplies:
• Register mapping: for each architectural register in ab-

stract state, what is the Verilog register to which it corre-
sponds? For example, in the Ibex processor used in the
case study HSM, x1 corresponds to cpu.gen_regfile_

ff.register_file_i.g_rf_flops[1].rf_reg_q.
• Pointer mapping: for any concrete pointer value (e.g.,
0x20000008), what is the Verilog memory and index to
which it corresponds? For example, in the Ibex SoC, the
mapping describes that pointers correspond to the Verilog
memory ram and that the index (e.g., 2 machine words)
is obtained by subtracting the base address of the RAM
(0x20000000) from the pointer value.

• Encoding of next RISC-V instruction, including whether
or not it is valid (it may be invalid if the execute stage of the
processor pipeline is stalled). This is what Knox2 uses to
synchronize execution between Asm and hardware (rather
than mapping program counter addresses). In our case study
SoC, the instruction about to be executed by the ID/EX
stage of the pipeline is found in cpu.u_ibex_core.if_

stage_i.instr_rdata_id_o, and the signal that indicates
whether this instruction is valid is found in cpu.u_ibex_

core.if_stage_i.instr_valid_id_q.
These mappings are specified in about 10 lines of proof code.

Data type correspondence. The Asm model has its own data
type of values that are stored in registers/memory: bitvectors
(32-bit words in registers, 8-bit bytes in memory), pointers
(there is a native pointer type in CompCert Asm, they are not
just represented as ints), and undef. In the SoC, everything is
a bitvector. Knox2 synchronizes assembly state registers with
circuit state registers as follows:
• Bitvectors: this represents data, and the Asm and hardware

are generally lined up, so these values should be equal;
Knox2 invokes an SMT solver to prove that the assembly
register and circuit register have the same value, and replaces
both with the same symbolic variable.

• Pointers: when an assembly register has a pointer value,
Knox2 guesses that the value in the hardware register is also
a pointer, and points to flat memory. In this case, Knox2
synchronizes the contents of the memories, and leaves the
pointers in the registers untouched (a CompCert pointer
in the assembly, and a 32-bit bitvector in the circuit). Syn-
chronizing the memory contents is similar to synchronizing
registers. Knox2 knows the bounds of the allocation thanks
to CompCert’s structured memory model. Knox2 uses the
SMT solver to prove the chunk of memory equal between
assembly and circuit, doing this byte-by-byte, and synchro-
nizing values that are equal.

• Undef: when an assembly register is undefined, Knox2
leaves the circuit register as-is.
All of the examples in figure 10 are shown with concrete

values, but when Knox2 is used for verification, many of the

registers and memory contain symbolic expressions.

When to synchronize. Because synchronization involves
multiple SMT queries, it is too expensive to do at every cycle;
moreover, some CompCert Asm instructions take multiple
cycles to execute in SoC hardware. Instead, Knox2 uses a num-
ber of heuristics to decide when to synchronize, as shown in
figure 11. Knox2 watches the instruction being executed in the
assembly-level machine, and the instruction being executed
in the circuit-level machine (thanks to the developer-written
mapping that provides the next-executing instruction). Knox2
steps each machine up until the next synchronization point,
and then does the synchronization. In some cases, there is
a direct correspondence between Asm instructions and hard-
ware instructions, in other cases, it is a more complex map-
ping. Figure 11 shows CompCert Asm instructions and their
corresponding RISC-V assembly instructions or instruction
sequences. Knox2 synchronizes either register values only
(only the bitvectors, not the memory contents pointed to by
registers containing pointer values), buffer values only, or
both, depending on the kind of synchronization point.

mv t5, sp
sub sp, sp, #sz
sw t5, #pos(sp)

...

different code
based on sz
nop
...
nop

beq rs1, rs2, l

mul rl, a, b
mulh rh, a, b
add rd, rs1, rs2

Pbuiltin EF_memcpy sz src dst

Pallocframe sz pos

Pfreeframe sz pos

Pbeqw rs1 rs2 l

...

Pbuiltin BI_mull a b rh rl

Paddw rd rs1 rs2

...

CompCert Asm RISC-V assembly

entry/exit
- sync registers
- sync buffers

builtin memcpy
- sync buffers

branch
- sync registers
- sync buffers

arithmetic
- sync registers

...

...

Figure 11: Knox2 synchronization points and corresponding actions.

6 Implementation
The Parfait framework consists of IPR theory formalized in
3000 lines of Coq [66], the Starling framework written in 100
lines of F⋆ [65], and the Knox2 framework written in 3000
lines of code on top of Knox [14], Rosette [67] and Racket [32].
The Knox2 framework includes Riscette, a single-steppable
symbolically executable semantics of CompCert RISC-V Asm
in Rosette.

The Parfait approach relies on a number of other tools.
Parfait uses the KaRaMeL compiler [58] to extract Low⋆ to C
and the CompCert compiler [42] to compile C code to RISC-V
Asm. Parfait forks the CompCert compiler and adds 450 lines
of code to annotate compiler-expanded memcpy builtins with
nop instructions to aid in synchronization and to dump the
RISC-V Asm AST to a .json file before emitting the final
.s file. Compiling the system software and linking into a

10

firmware binary uses GCC [64]. Synthesizing the Verilog
code and extracting a step model for the circuit uses Yosys [73].
Both F⋆ and Rosette use the Z3 SMT solver [28]. The case
studies use the HACL⋆ [77] verified crypto library.

Trusted computing base. The trusted computing base (TCB)
of the Parfait framework consists of: (1) the Coq definition of
IPR; (2) the Starling framework’s F⋆ encoding of the lockstep
property (needs to match the Coq definition); and (3a) the
Knox2 framework’s Riscette semantics (needs to match Comp-
Cert), (3b) the Knox2 framework’s conversion of a circuit
(Verilog/software) into Rosette, and (3c) the Knox2 checker
that verifies that the functional-physical simulation property
is satisfied (needs to encode/check the Coq definition).

Parfait also inherits the TCB of the verification tools it uses:
the TCB of Coq (including the Coq proof checker kernel), the
TCB of F⋆ (including the Z3 SMT solver), and the TCB of
Rosette (including Z3). Parfait inherits the TCB of KaRaMeL
and CompCert because the overall IPR proof relies on the
correctness of these compilers. GCC is not part of the TCB.

7 Verifying HSMs using Parfait
This section qualitatively demonstrates that Parfait enables
verification of HSM implementations, ensuring they are free
from leakage bugs. We first describe the four HSMs that
we developed on top of Parfait as case studies, and then we
discuss how Parfait catches security bugs that an HSM imple-
mentation may have.

7.1 Case studies
We implemented HSMs for two applications: ECDSA certifi-
cate signing and password hashing. The software builds on
top of specifications, implementations, and proofs for cryp-
tographic algorithms from the HACL⋆ [77] library. We run
these applications on two hardware platforms: one based on
the Ibex processor [45] from the OpenTitan project [44] and
one based on the PicoRV32 processor [74].

Application 1: ECDSA certificate signing. An ECDSA
certificate-signing app, described in figure 4, is the running
example through this paper. The complete F⋆ specification
is about 40 lines of code. The specification uses the HACL⋆

verified cryptography library, re-using its specifications of
the HMAC-SHA256 and ECDSA-P256 algorithms. At ini-
tialization time, the user calls Initialize to configure the
HSM with an ECDSA signing key and the key for the HMAC
pseudorandom function (PRF) used for generating signing
nonces. The HSM also exposes a Sign command that takes
a message as input and returns a signature on it. There is no
method to retrieve the signing key or the PRF key from the
HSM.

The Low⋆ implementation of the handle function along
with the IPR proof consists of 500 lines of code, not including
library code/proof used from HACL⋆. The complete imple-
mentation extracts to 2,000 lines of C code.

For Knox2 verification to go through, the app implementa-
tion must not leak information through timing. HACL⋆ code
is already intended to be constant time, and verification con-
firmed that library functions indeed execute in constant time
on our hardware, so we did not need to modify any library
code. In the implementation, we needed to take care to ensure
that other operations do not leak information through timing.
For example, the ecdsa_p256 spec/implementation return an
error if the nonce or signing key is not less than the prime field
order, and also return an error if 𝑟 = 0 or 𝑠 = 0 in the signa-
ture algorithm. The HSM spec does not distinguish between
any of these errors (the caller just receives Signature None),
and so IPR requires that the implementation also not reveal
any information beyond this. Our implementation computes
a signature unconditionally, and then applies a mask to the
buffer (0xff or 0x00) based on whether all the checks passed
or not; this way, the entire computation is constant-time.

Application 2: Password hashing. As a second case
study, we implemented a password-hashing HSM, which de-
fends against offline brute-force attacks on stolen password
databases [22]. Figure 12 shows the core of the specifica-
tion. The complete F⋆ specification is about 30 lines of
code. The HSM implementation is a thin wrapper around
the HMAC/Blake2S implementation from HACL⋆.

let step (st:state_t) (cmd:command_t): state_t & response_t =

match cmd with

| Initialize secret ->

{ secret = secret }, Initialized

| Hash message ->

let digest = hmac Blake2S st.secret message in

st, Hashed digest

Figure 12: The step function from the specification for a password-
hashing HSM. The definition of hmac is used directly from HACL⋆.

Hardware platform 1: Ibex-based SoC. Our main hardware
platform is based on the Ibex processor from the OpenTitan
hardware root of trust. The Ibex is a two-stage pipelined
RISC-V processor written in 13,000 lines of SystemVerilog.
This open-source CPU is not purpose-built for verification.
Our platform includes a peripheral for a wire-level I/O in-
terface for the HSM: 4-wire UART with flow control. In
addition, the SoC contains a RAM, a ROM, and ferroelectric
RAM (FRAM) as persistent memory. Aside from the CPU,
the rest of the components are written in 500 lines of Verilog.

We wrote system software for this platform—main loop, I/O
code, and persistence code—in 300 lines of C and assembly.

Our implementation makes two changes to the CPU: we
remove async resets because Knox does not support them,
and we replace the Ibex’s multiplier with a simple full-width
Verilog multiplication of operands, leaving it to the synthesis
tool to infer an optimal implementation [13: §8.1].

11

Hardware platform 2: PicoRV32-based SoC. We also ver-
ify and run the case-study applications on a second CPU, the
PicoRV32, which is a size-optimized RISC-V CPU. As with
the Ibex, we removed async reset from the implementation.
This platform uses the same system software as the Ibex-based
SoC. We use the PicoRV32 SoC to quantify the development
effort required to port to a new platform, in §8.1.

7.2 Attack discussion
Parfait proves IPR between the application specification and
the SoC running the app and system software, so the verifi-
cation process catches all possible bugs that are captured by
IPR: hardware bugs, software bugs, and timing side channels.
Here, we give examples of possible bugs and explain what
part of the verification process prevents those bugs:
• Software logic bug (e.g., integer overflow of the PRF

counter): Starling will catch this when verifying the post-
condition for the Low⋆ implementation, which ensures that
the final state of the implementation matches final state of
the specification.

• Buffer overflow or use-after-free: Low⋆ verification prevents
these memory safety bugs. In particular, type checking in
the Stack effect will catch these memory safety bugs.

• Software-level leakage (e.g., returning different error codes
for PRF counter overflow versus invalid curve point):
Starling will catch this when verifying the postcondition
for the Low⋆ implementation, which ensures that the out-
put of the implementation corresponds to a deterministic
function of the output of the specification.

• Timing leakage from branching on a secret: although this is
a “software bug,” Parfait does not introduce any notion of
timing until the SoC level—higher levels of abstraction exe-
cute HSM operations in a single state-machine step. Knox2
will catch this because the emulator’s behavior will not
match the circuit’s behavior: the emulator does not have
access to the secret data, so it computes over dummy data
instead; the real circuit will take a different amount of time,
not matching the emulator.

• Compiler-introduced timing leakage: if a compiler opti-
mization introduces a timing bug, such as returning early
from memcmp, Knox2 will catch this bug at the SoC level,
just as in the above example.

• Hardware-level timing leakage from a variable-latency
arithmetic instruction executed on secret data: Knox2 will
catch this bug, just as in the above example.

• Stack overflow: Parfait uses an abstract memory model
up to and including the app assembly level (including in
the Riscette semantics), with an unbounded-size stack and
frames addressed by mathematical integers. The SoC level
introduces a bounded stack. Knox2 will catch stack over-
flow bugs when it relates the SoC with a bounded stack to
the app assembly with an unbounded stack.

• I/O code bug in system software (e.g., incorrectly encoding
the output or setting the wrong UART baud rate): Knox2

will catch this bug when verifying functional-physical sim-
ulation.

• Pipeline hazard in CPU implementation: Knox2 will catch
this, because if this occurs while executing app code, there
will be a mismatch between the app assembly execution
(which uses the Riscette instruction-by-instruction execu-
tion semantics) and the hardware execution.

8 Evaluation
This section answers two key questions: what is the developer
effort to verify HSMs with Parfait (§8.1), and what is the
performance of HSMs verified with Parfait (§8.2).

8.1 Developer effort
Table 2 summarizes the lines of code required to specify and
implement each of the four HSMs from §7 (two apps on two
platforms). As the table shows, verification in Parfait relates
a hardware/software stack that takes over ten thousand lines
of code to implement to a state-machine-style application
specification that comprises only tens of lines of code.

Table 2: Lines of code for case studies. The specification covers
the hardware and software stack. Spec LoC counts the lines the
HSM developer writes (and does not include HACL⋆, Low⋆, or F⋆

library/language code). Driver LoC counts the total lines of driver
code across the software and hardware levels.

Implementation
HSM Spec Driver Platform Software Hardware

(LoC) (LoC) (LoC) (LoC)

ECDSA 40 100 Ibex 2,300 13,500
signer PicoRV32 2,300 3,000

Password 30 100 Ibex 1,000 13,500
hasher PicoRV32 1,000 3,000

Table 3 shows, for each case-study app, the number of
lines of proof required to prove the lockstep property between
the app’s F⋆ specification and its Low⋆ implementation. We
co-developed the ECDSA-signer app with Starling, so we
cannot report the verification effort for the ECDSA-signer
app on its own. Once the Starling framework was in place,
we implemented the password hasher app as a second case
study. Implementing and verifying this new app took two
hours. Machine verification of these proofs runs in less than
a minute.

Table 3: Software verification effort. Verifying a second application
with Parfait required only two additional developer-hours of effort.

App Proof Dev time

ECDSA signer 500 LoC -
Password hasher 200 LoC Δ 2 hours

Table 4 shows the number of lines of proof required to
verify the two platforms with Knox2. We co-developed the

12

Ibex platform with the approach and framework; as a second
case study, we modified the platform and swapped the Ibex
CPU with the PicoRV32 CPU. Porting to this new platform
took two hours and involved writing 10 lines of new proof to
map PicoRV32 CPU state to CompCert Asm abstract machine
state, while the rest of the proof remained unchanged, because
the system software and rest of the hardware platform (such
as peripherals) remained unchanged.

Table 4: Hardware verification effort and verification time, showing
both total wall-clock time (single threaded) and symbolic circuit
simulation speed. Porting the platform to use a different CPU took
just two hours of developer time and 10 lines of changed proof code.

Verification
Proof size ECDSA Password

(LoC) signer hasher

Platform Em
ul

at
or

H
in

ts

M
ap

pi
ng

D
ev

.t
im

e

Ti
m

e

C
yc

le
s/

s

Ti
m

e

C
yc

le
s/

s

Ibex 50 250 10 - 80 hrs 304 0.10 hrs 289
PicoRV32 10 Δ=2 hrs 100 hrs 671 0.14 hrs 588

The “Verification” columns of table 4 show Knox2’s verifi-
cation performance for each combination of app and platform,
benchmarked on a machine with an Intel Xeon Gold 5420+
processor. It is possible to swap in new apps and hardware
platforms with no changes required to proof code on the other
side. After such a change, the only requirement is to run
Knox2 on the new software/hardware combination.

Knox2 verification can take up to 100 core-hours of com-
putation to verify our most complicated application. Veri-
fying the ECDSA HSM requires symbolically executing the
hardware for tens of millions of cycles and issuing hundreds
of millions of SMT queries, leading to the long verification
time. In contrast, verifying the password hasher takes only a
few minutes because the code is much simpler and only runs
for hundreds of thousands of cycles. Verification through-
put (cycles per second) is higher for the PicoRV32, because
simulating each SoC execution cycle is faster on the simpler
hardware. Total verification wall-clock time is higher for the
PicoRV32 because apps require more cycles to run on the
non-pipelined processor, requiring Knox2 to simulate more
SoC execution cycles.

Development cycle. If the Low⋆ implementation has a timing
bug when executed by the circuit, Knox2 verification will fail
with a mismatch between the real circuit’s execution and the
emulator’s execution. Usually, this will be caused by secret
data (on which timing should not depend) entering the con-
trol state of the circuit; Knox2 can print out user-requested
debugging information such as the program counter when this
occurs. From this, the user can look at the assembly listing
and then determine the C code corresponding to the program
counter value. This will generally reveal non-constant-time

code, such as if (secret) { ... } or x / secret. Trac-
ing the issue from the KaRaMeL-generated C code to the
developer-written Low⋆ source code is straightforward be-
cause a design goal of Low⋆ is to translate straightforwardly
to C.

Because hardware verification takes hours, one trick we
use to identify failures faster is reducing loop bounds. For
example, if the implementation contains code that does
for (int i = 0; i < 80; i++), we can manually change
the loop bound from 80 to 2 in the C code and try verifying
that the hardware securely executes this code. Even though
this is no longer computing the “correct” functionality, timing
leakage is usually not affected by reducing loop bounds in this
way, so we can catch issues faster. We revert to the original
code for the final verification.

8.2 Performance
Parfait’s use of the CompCert compiler introduces run-time
overhead, because CompCert emits less performant code than
GCC does. Table 5 measures this performance penalty, show-
ing that two commercial HSMs have ECDSA-signing through-
put that is within 12× the throughput of HSMs built with
Parfait. This is not an apples-to-apples comparison—the dif-
ferent HSMs use different CPUs, have different ISAs, run at
different clock speeds, and run different software.

Table 5: Run-time performance comparison of HSMs, in ECDSA
signatures per second. The Ibex processor is clocked at 100 MHz,
which is the OpenTitan reference clock.

HSM Compiler Sig/s Speedup

Parfait ECDSA/Ibex CompCert -O1 1.1 -
GCC -O2 8.1 7×

Nitrokey HSM 2 [55] 12.5 11×
YubiHSM 2 [75] 13.7 12×

The primary run-time performance penalty of Parfait comes
from CompCert; as the research community makes advances
in verified compilers, a better CompCert would be a drop-in
replacement in Parfait.

9 Related work
Hardware/software verification. Because bugs anywhere in
an HSM can compromise security, Parfait’s proofs span both
software and hardware. Several prior works have developed
verified systems with proofs that cover software and hardware
in an integrated way [10, 19, 30, 31, 47]. In contrast to Parfait,
proofs for these systems only establish a form of functional
correctness and do not rule out information leaks.

Athalye et al. [14] introduced IPR and the Knox framework
for proving IPR. Knox carries out proofs in a monolithic way
by symbolically executing hardware at the register-transfer
level (RTL) and checking refinement from an app specification.
Parfait uses transitivity of IPR to compose proofs for different
levels of abstraction of an HSM. This modularity enables

13

scaling to HSMs that are more complex than the examples
verified using Knox.

Verifying non-leakage. Several tools exist for checking
constant-time behavior of software [11, 15, 20, 72]. These
tools do not account for leakage at the hardware level, so their
soundness depends on whether their assumed leakage model
of the hardware is accurate. In contrast, Parfait proofs model
the hardware at the RTL level in a cycle-accurate way, which
allows verification to rule out a large class of hardware-related
bugs as well.

Other works have sought to verify the correctness of leakage
models. CompCert-CT [17] extends the verified CompCert C
compiler [42] to show that leakage specified at the level of C
programs is preserved by compilation to assembly. Because
some transformations performed by CompCert can potentially
introduce timing leaks in certain programs, CompCert-CT
uses modified versions of these passes. Parfait instead uses
standard CompCert, which ensures IPR for whole-command
state machines. Afterward, in order to establish IPR at the
circuit level, Knox2 checks that the program running on an
HSM cannot have timing leaks, including any that could have
been introduced by CompCert.

On the hardware side, LeaVe [71] verifies at the RTL level
that an ISA-level leakage model is accurate for a processor.
LeaVe has been used to verify leakage models for simple
RISC-V processors, including variants of the Ibex processor
used in Parfait case studies. To simplify verification, LeaVe
carries out analysis under an assumption that a processor is
functionally correct. In contrast, Parfait does not assume
functional correctness of the HSM’s processor.

For more complex hardware, formulating leakage mod-
els that can account for microarchitectural state and specu-
lative execution is challenging and the focus of much recent
work [23, 38, 50]. The Ibex and PicoRV32 processors used in
the example HSMs verified with Knox do not have these kinds
of features. The overall Knox2 approach is agnostic to such
features, but more complex processors would make it more
challenging to describe state correspondence and perform
synchronization during symbolic execution.

Noninterference. IPR shows that an HSM’s implementation
leaks no more information than its specification state machine.
However, the specification may have bugs that allow for in-
formation leakage. Prior work has developed techniques that
could be used to rule out such bugs. For example, noninter-
ference [35] is a property ensuring that secret data cannot
influence public outputs. A range of formal methods have
been developed for proving noninterference and analyzing
information flow [39, 51, 54, 60, 70]. These approaches are
complementary to Parfait and the guarantees provided by IPR.

Translation validation. Parfait does not verify the correct-
ness of SoC hardware in general, or prove that a compiler
always preserves non-leakage. Instead, Parfait checks that

an SoC, a particular circuit containing a particular firmware
binary, is related by IPR to a specification. This is a form of
translation validation [53, 56, 61, 68], which is traditionally
used for checking that a particular output of a compiler refines
it source. Most prior uses of translation validation have fo-
cused on showing refinements for functional correctness and
have stopped validation at the assembly level. Parfait addition-
ally validates non-leakage as captured by IPR and validates
execution down to the level of hardware.

Process isolation. Parfait targets HSMs running a single ap-
plication. Other work addresses the problem of leakage be-
tween processes in systems with multitasking.

Prior verified hypervisors have proved noninterference and
other information flow properties between processes [26, 33,
36, 37, 43, 51, 52, 54, 62]. However, these proofs do not cover
leakage through lower-level microarchitectural state or timing.

Ge et al. [34] have extended the verified seL4 kernel with
mechanisms to prevent microarchitectural leakage between
security domains, by among other things, using instructions
to reset such state on domain switches. Sison et al. [63] have
formalized the security guarantees provided by this approach
under an abstract model of OS and hardware behavior.

10 Conclusion
Parfait uses transitive information-preserving refinement
(IPR) to verify that the combined hardware and software imple-
mentation of an HSM correctly implements its specification
and leaks nothing more than what is required by the spec.
Case studies demonstrate that transitive IPR enables Parfait
to scale to sophisticated HSMs, such as those implement-
ing public-key cryptography; that Parfait specifications are
succinct compared to the implementation (40 lines of specifi-
cation for the ECDSA-signing HSM, compared to 2,300 lines
of code and 13,500 lines of Verilog for the implementation);
and that Parfait requires modest effort to port a new app or
hardware platform (2 hours of developer time each for the
password-hasher app and the PicoRV32 platform).

Acknowledgments
We would like to thank Nikhil Swamy, Jonathan Protzenko,
and the F⋆ community for their guidance on working with
F⋆. This paper has been improved thanks to feedback from
Alexandra Henzinger, Baltasar Dinis, Derek Leung, Hannah
Gross, Joshua Gancher, Noah Moroze, Sanjit Bhat, Stella
Lau, Upamanyu Sharma, the anonymous reviewers, and our
shepherd, Manos Kapritsos. This research was supported by
NSF award CNS-2225441.

14

References
[1] CVE-2004-0320. https://nvd.nist.gov/vuln/

detail/CVE-2004-0320, September 2004.

[2] YSA-2015-1. https://developers.yubico.com/

ykneo-openpgp/SecurityAdvisory%202015-04-

14.html, April 2015.

[3] CVE-2018-6875. https://nvd.nist.gov/vuln/

detail/CVE-2018-6875, February 2018.

[4] YSA-2018-01. https://www.yubico.com/support/

security-advisories/ysa-2018-01/, January 2018.

[5] CVE-2019-18671. https://nvd.nist.gov/vuln/

detail/CVE-2019-18671, November 2019.

[6] CVE-2019-18672. https://nvd.nist.gov/vuln/

detail/CVE-2019-18672, November 2019.

[7] YSA-2020-04. https://www.yubico.com/support/

security-advisories/ysa-2020-04/, July 2020.

[8] CVE-2021-31616. https://nvd.nist.gov/vuln/

detail/CVE-2021-31616, April 2021.

[9] Dakshi Agrawal, Bruce Archambeault, Josyula R. Rao,
and Pankaj Rohatgi. The EM side-channel(s). In Pro-
ceedings of the 2002 IACR Workshop on Cryptographic
Hardware and Embedded Systems (CHES), Redwood
City, CA, August 2002.

[10] Eyad Alkassar, Wolfgang J. Paul, Artem Starostin, and
Alexandra Tsyban. Pervasive verification of an OS mi-
crokernel: Inline assembly, memory consumption, con-
current devices. In Proceedings of the 3rd Working
Conference on Verified Software: Theories, Tools, and
Experiments (VSTTE), pages 71–85, Edinburgh, United
Kingdom, August 2010.

[11] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe,
François Dupressoir, and Michael Emmi. Verifying
constant-time implementations. In Proceedings of the
25th USENIX Security Symposium, pages 53–70, Austin,
TX, August 2016.

[12] ARM Limited. ARM Cortex-M3 processor techni-
cal reference manual. https://developer.arm.com/
documentation/100165/latest/, November 2016.
Revision r2p1.

[13] Anish Athalye. Formally Verifying Secure and Leakage-
Free Systems: From Application Specification to Circuit-
Level Implementation. PhD thesis, Massachusetts Insti-
tute of Technology, August 2024.

[14] Anish Athalye, M. Frans Kaashoek, and Nickolai Zel-
dovich. Verifying hardware security modules with
information-preserving refinement. In Proceedings of
the 16th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI), pages 503–519, Carls-
bad, CA, July 2022.

[15] Konstantinos Athanasiou, Byron Cook, Michael Emmi,
Colm MacCárthaigh, Daniel Schwartz-Narbonne, and
Serdar Tasiran. SideTrail: Verifying time-balancing
of cryptosystems. In Proceedings of the 10th Working
Conference on Verified Software: Theories, Tools, and
Experiments (VSTTE), pages 215–228, Oxford, United
Kingdom, July 2018.

[16] Manuel Barbosa, Gilles Barthe, Karthik Bhargavan,
Bruno Blanchet, Cas Cremers, Kevin Liao, and Bryan
Parno. SoK: Computer-aided cryptography. In Pro-
ceedings of the 42nd IEEE Symposium on Security and
Privacy, pages 777–795, Virtual conference, May 2021.

[17] Gilles Barthe, Sandrine Blazy, Benjamin Grégoire, Rémi
Hutin, Vincent Laporte, David Pichardie, and Alix Trieu.
Formal verification of a constant-time preserving C com-
piler. In Proceedings of the 47th ACM Symposium on
Principles of Programming Languages (POPL), New
Orleans, LA, January 2020.

[18] Jean-Baptiste Bédrune and Gabriel Campana. Every-
body be cool, this is a robbery! https://donjon.

ledger.com/BlackHat2019-presentation/, August
2019.

[19] William R. Bevier, Warran A. Hunt Jr., J. Strother Moore,
and William D. Young. An approach to systems verifi-
cation. Journal of Automated Reasoning, 5(4):411–428,
December 1989.

[20] Sandrine Blazy, David Pichardie, and Alix Trieu. Verify-
ing constant-time implementations by abstract interpre-
tation. Journal of Computer Security, 27(1):137–163,
2019.

[21] Brett Boston, Samuel Breese, Josiah Dodds, Mike
Dodds, Brian Huffman, Adam Petcher, and Andrei Ste-
fanescu. Verified cryptographic code for everybody.
In Proceedings of the 33rd International Conference on
Computer Aided Verification (CAV), pages 645–668, Los
Angeles, CA, July 2021.

[22] Helena Brekalo, Raoul Strackx, and Frank Piessens. Mit-
igating password database breaches with Intel SGX. In
Proceedings of the 1st Workshop on System Software
for Trusted Execution (SysTEX), Trento, Italy, December
2016.

15

https://nvd.nist.gov/vuln/detail/CVE-2004-0320
https://nvd.nist.gov/vuln/detail/CVE-2004-0320
https://developers.yubico.com/ykneo-openpgp/SecurityAdvisory%202015-04-14.html
https://developers.yubico.com/ykneo-openpgp/SecurityAdvisory%202015-04-14.html
https://developers.yubico.com/ykneo-openpgp/SecurityAdvisory%202015-04-14.html
https://nvd.nist.gov/vuln/detail/CVE-2018-6875
https://nvd.nist.gov/vuln/detail/CVE-2018-6875
https://www.yubico.com/support/security-advisories/ysa-2018-01/
https://www.yubico.com/support/security-advisories/ysa-2018-01/
https://nvd.nist.gov/vuln/detail/CVE-2019-18671
https://nvd.nist.gov/vuln/detail/CVE-2019-18671
https://nvd.nist.gov/vuln/detail/CVE-2019-18672
https://nvd.nist.gov/vuln/detail/CVE-2019-18672
https://www.yubico.com/support/security-advisories/ysa-2020-04/
https://www.yubico.com/support/security-advisories/ysa-2020-04/
https://nvd.nist.gov/vuln/detail/CVE-2021-31616
https://nvd.nist.gov/vuln/detail/CVE-2021-31616
https://developer.arm.com/documentation/100165/latest/
https://developer.arm.com/documentation/100165/latest/
https://donjon.ledger.com/BlackHat2019-presentation/
https://donjon.ledger.com/BlackHat2019-presentation/

[23] Sunjay Cauligi, Craig Disselkoen, Klaus v. Gleissenthall,
Dean Tullsen, Deian Stefan, Tamara Rezk, and Gilles
Barthe. Constant-time foundations for the new Spec-
tre era. In Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation (PLDI), pages 913–926, London, United
Kingdom, June 2020.

[24] Dominic Chell. Apple iOS hardware assisted screen-
lock bruteforce. https://www.mdsec.co.uk/2015/

03/apple-ios-hardware-assisted-screenlock-

bruteforce/, March 2015.

[25] Yu-Fang Chen, Chang-Hong Hsu, Hsin-Hung Lin, Peter
Schwabe, Ming-Hsien Tsai, Bow-Yaw Wang, Bo-Yin
Yang, and Shang-Yi Yang. Verifying Curve25519 soft-
ware. In Proceedings of the 21st ACM Conference on
Computer and Communications Security (CCS), pages
299–309, Scottsdale, AZ, November 2014.

[26] David Costanzo, Zhong Shao, and Ronghui Gu. End-to-
end verification of information-flow security for C and
assembly programs. In Proceedings of the 37th ACM
SIGPLAN Conference on Programming Language De-
sign and Implementation (PLDI), pages 648–664, Santa
Barbara, CA, June 2016.

[27] Filippo Cremonese. Security analysis of the Solo
firmware. https://blog.doyensec.com/2020/02/

19/solokeys-audit.html, February 2020.

[28] Leonardo de Moura and Nikolaj Bjørner. Z3: An ef-
ficient SMT solver. In Proceedings of the 14th Inter-
national Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), pages
337–340, Budapest, Hungary, March–April 2008.

[29] Andres Erbsen, Jade Philipoom, Jason Gross, Robert
Sloan, and Adam Chlipala. Simple high-level code for
cryptographic arithmetic – with proofs, without compro-
mises. In Proceedings of the 40th IEEE Symposium on
Security and Privacy, pages 73–90, San Francisco, CA,
May 2019.

[30] Andres Erbsen, Samuel Gruetter, Joonwon Choi, Clark
Wood, and Adam Chlipala. Integration verification
across software and hardware for a simple embedded
system. In Proceedings of the 42nd ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation (PLDI), Virtual conference, June 2021.

[31] Andres Erbsen, Jade Philipoom, Dustin Jamner, Ashley
Lin, Samuel Gruetter, Clément Pit-Claudel, and Adam
Chlipala. Foundational integration verification of a cryp-
tographic server. In Proceedings of the 45th ACM SIG-
PLAN Conference on Programming Language Design
and Implementation (PLDI), Copenhagen, Denmark,
June 2024.

[32] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt,
Shriram Krishnamurthi, Eli Barzilay, Jay McCarthy, and
Sam Tobin-Hochstadt. A programmable programming
language. Communications of the ACM, 61(3):62–71,
March 2018.

[33] Andrew Ferraiuolo, Andrew Baumann, Chris Haw-
blitzel, and Bryan Parno. Komodo: Using verification to
disentangle secure-enclave hardware from software. In
Proceedings of the 26th ACM Symposium on Operating
Systems Principles (SOSP), pages 287–305, Shanghai,
China, October 2017.

[34] Qian Ge, Yuval Yarom, Tom Chothia, and Gernot Heiser.
Time protection: The missing OS abstraction. In Pro-
ceedings of the 14th ACM EuroSys Conference, Dresden,
Germany, March 2019.

[35] J. A. Goguen and J. Meseguer. Security policies and
security models. In Proceedings of the 3rd IEEE Sym-
posium on Security and Privacy, pages 11–20, Oakland,
CA, April 1982.

[36] Ronghui Gu, Jeremie Koenig, Tahina Ramananandro,
Zhong Shao, Xiongnan Wu, Shu-Chun Weng, Haozhong
Zhang, and Yu Guo. Deep specifications and certified ab-
straction layers. In Proceedings of the 42nd ACM Sympo-
sium on Principles of Programming Languages (POPL),
pages 595–608, Mumbai, India, January 2015.

[37] Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan (New-
man) Wu, Jieung Kim, Vilhelm Sjöberg, and David
Costanzo. CertiKOS: An extensible architecture for
building certified concurrent OS kernels. In Proceedings
of the 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), pages 653–669, Sa-
vannah, GA, November 2016.

[38] Marco Guarnieri, Boris Köpf, Jan Reineke, and Pepe
Vila. Hardware-software contracts for secure specula-
tion. In Proceedings of the 42nd IEEE Symposium on
Security and Privacy, pages 1868–1883, Virtual confer-
ence, May 2021.

[39] Chris Hawblitzel, Jon Howell, Jacob R. Lorch, Arjun
Narayan, Bryan Parno, Danfeng Zhang, and Brian Zill.
Ironclad Apps: End-to-end security via automated full-
system verification. In Proceedings of the 11th USENIX
Symposium on Operating Systems Design and Implemen-
tation (OSDI), pages 165–181, Broomfield, CO, October
2014.

[40] Michael Hutter and Jörn-Marc Schmidt. The tempera-
ture side channel and heating fault attacks. In Proceed-
ings of the 12th Smart Card Research and Advanced Ap-
plication Conference (CARDIS), pages 219–235, Berlin,
Germany, November 2013.

16

https://www.mdsec.co.uk/2015/03/apple-ios-hardware-assisted-screenlock-bruteforce/
https://www.mdsec.co.uk/2015/03/apple-ios-hardware-assisted-screenlock-bruteforce/
https://www.mdsec.co.uk/2015/03/apple-ios-hardware-assisted-screenlock-bruteforce/
https://blog.doyensec.com/2020/02/19/solokeys-audit.html
https://blog.doyensec.com/2020/02/19/solokeys-audit.html

[41] Jan Jancar, Vladimir Sedlacek, Petr Svenda, and Marek
Sys. Minerva: The curse of ECDSA nonces (system-
atic analysis of lattice attacks on noisy leakage of bit-
length of ECDSA nonces). IACR Transactions on Cryp-
tographic Hardware and Embedded Systems, 2020(4):
281–308, 2020.

[42] Xavier Leroy. Formal verification of a realistic compiler.
Communications of the ACM, 52(7):107–115, July 2009.

[43] Xupeng Li, Xuheng Li, Christoffer Dall, Ronghui Gu, Ja-
son Nieh, Yousuf Sait, and Gareth Stockwell. Design and
verification of the Arm confidential compute architec-
ture. In Proceedings of the 16th USENIX Symposium on
Operating Systems Design and Implementation (OSDI),
pages 465–484, Carlsbad, CA, July 2022.

[44] lowRISC. OpenTitan: Open source silicon root of trust.
https://opentitan.org.

[45] lowRISC. Ibex RISC-V Core. https://github.com/
lowRISC/ibex, 2015.

[46] Nancy Lynch and Frits Vaandrager. Forward and back-
ward simulations – Part I: Untimed systems. Information
and Computation, 121(2):214–233, September 1995.

[47] Andreas Lööw, Ramana Kumar, Yong Kiam Tan, Mag-
nus O. Myreen, Michael Norrish, Oskar Abrahamsson,
and Anthony Fox. Verified compilation on a verified
processor. In Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation (PLDI), pages 1041–1053, Phoenix, AZ,
June 2019.

[48] Rita Mayer-Sommer. Smartly analyzing the simplicity
and the power of simple power analysis on smartcards.
In Proceedings of the 2000 IACR Workshop on Cryp-
tographic Hardware and Embedded Systems (CHES),
pages 78–92, Worcester, MA, August 2000.

[49] Daniel Moghimi, Berk Sunar, Thomas Eisenbarth, and
Nadia Heninger. TPM-FAIL: TPM meets timing and
lattice attacks. In Proceedings of the 29th USENIX Secu-
rity Symposium, pages 2057–2073, Virtual conference,
August 2020.

[50] Nicholas Mosier, Hanna Lachnitt, Hamed Nemati, and
Caroline Trippel. Axiomatic hardware-software con-
tracts for security. In Proceedings of the 49th An-
nual International Symposium on Computer Architec-
ture (ISCA), pages 72–86, New York, NY, June 2022.

[51] Toby Murray, Daniel Matichuk, Matthew Brassil, Pe-
ter Gammie, and Gerwin Klein. Noninterference for
operating system kernels. In Proceedings of the 2nd
International Conference on Certified Programs and
Proofs, pages 126–142, Kyoto, Japan, December 2012.

[52] Toby Murray, Daniel Matichuk, Matthew Brassil, Peter
Gammie, Timothy Bourke, Sean Seefried, Corey Lewis,
Xin Gao, and Gerwin Klein. seL4: from general pur-
pose to a proof of information flow enforcement. In
Proceedings of the 34th IEEE Symposium on Security
and Privacy, pages 415–429, San Francisco, CA, May
2013.

[53] George C. Necula. Translation validation for an optimiz-
ing compiler. In Proceedings of the 21st ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation (PLDI), pages 83–94, Vancouver, Canada,
June 2000.

[54] Luke Nelson, James Bornholt, Arvind Krishnamurthy,
Emina Torlak, and Xi Wang. Noninterference specifi-
cations for secure systems. ACM SIGOPS Operating
Systems Review, 54(1):31–39, August 2020.

[55] Nitrokey. Nitrokey HSM 2. https://shop.nitrokey.
com/shop/nkhs2-nitrokey-hsm-2-7.

[56] Amir Pnueli, Michael Siegel, and Eli Singerman. Trans-
lation validation. In Proceedings of the 4th International
Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS), pages 151–166,
Lisbon, Portugal, March–April 1998.

[57] Thomas Pornin. BearSSL constant-time mul. https:

//bearssl.org/ctmul.html.

[58] Jonathan Protzenko, Jean-Karim Zinzindohoué, Aseem
Rastogi, Tahina Ramananandro, Peng Wang, Santiago
Zanella-Béguelin, Antoine Delignat-Lavaud, Catalin
Hritcu, Karthikeyan Bhargavan, Cédric Fournet, and
Nikhil Swamy. Verified low-level programming em-
bedded in F*. In Proceedings of the 22nd ACM SIG-
PLAN International Conference on Functional Program-
ming (ICFP), Oxford, United Kingdom, September
2017.

[59] Jonathan Protzenko, Bryan Parno, Aymeric Fromherz,
Chris Hawblitzel, Marina Polubelova, Karthikeyan Bhar-
gavan, Benjamin Beurdouche, Joonwon Choi, Antoine
Delignat-Lavaud, Cédric Fournet, Natalia Kulatova,
Tahina Ramananandro, Aseem Rastogi, Nikhil Swamy,
Christoph Wintersteiger, and Santiago Zanella-Beguelin.
EverCrypt: A fast, verified, cross-platform crypto-
graphic provider. In Proceedings of the 41st IEEE Sym-
posium on Security and Privacy, pages 983–1002, San
Francisco, CA, May 2020.

[60] Andrei Sabelfeld and Andrew Myers. Language-based
information-flow security. IEEE Journal on Selected
Areas in Communications, 21(1):5–19, 2003.

17

https://opentitan.org
https://github.com/lowRISC/ibex
https://github.com/lowRISC/ibex
https://shop.nitrokey.com/shop/nkhs2-nitrokey-hsm-2-7
https://shop.nitrokey.com/shop/nkhs2-nitrokey-hsm-2-7
https://bearssl.org/ctmul.html
https://bearssl.org/ctmul.html

[61] Thomas Sewell, Magnus Myreen, and Gerwin Klein.
Translation validation for a verified OS kernel. In
Proceedings of the 34th ACM SIGPLAN Conference
on Programming Language Design and Implementa-
tion (PLDI), pages 471–482, Seattle, WA, June 2013.

[62] Helgi Sigurbjarnarson, Luke Nelson, Bruno Castro-
Karney, James Bornholt, Emina Torlak, and Xi Wang.
Nickel: A framework for design and verification of in-
formation flow control systems. In Proceedings of the
13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI), pages 287–306, Carlsbad,
CA, October 2018.

[63] Robert Sison, Scott Buckley, Toby Murray, Gerwin
Klein, and Gernot Heiser. Formalising the prevention of
microarchitectural timing channels by operating systems.
In Proceedings of the 25th International Symposium on
Formal Methods (FM), pages 103–121, Lübeck, Ger-
many, March 2023.

[64] Richard M. Stallman. Using the GNU compiler collec-
tion. https://gcc.gnu.org/onlinedocs/gcc/.

[65] Nikhil Swamy, Catalin Hritcu, Chantal Keller, Aseem
Rastogi, Antoine Delignat-Lavaud, Simon Forest,
Karthikeyan Bhargavan, Cédric Fournet, Pierre-Yves
Strub, Markulf Kohlweiss, Jean-Karim Zinzindohoué,
and Santiago Zanella-Béguelin. Dependent types and
multi-monadic effects in F*. In Proceedings of the 43rd
ACM Symposium on Principles of Programming Lan-
guages (POPL), pages 256–270, St. Petersburg, FL, Jan-
uary 2016.

[66] The Coq Development Team. The Coq Proof Assistant,
version 8.17.1, June 2023. URL https://doi.org/10.

5281/zenodo.8161141.

[67] Emina Torlak and Rastislav Bodik. A lightweight sym-
bolic virtual machine for solver-aided host languages.
In Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementa-
tion (PLDI), pages 530–541, Edinburgh, United King-
dom, June 2014.

[68] Jean-Baptiste Tristan. Formal verification of translation
validators. PhD thesis, Paris Diderot University, France,
2009.

[69] Florian Uekermann. Buggy OTP slot range check.
https://github.com/Nitrokey/nitrokey-pro-

firmware/issues/4, June 2016.

[70] Dennis M. Volpano, Cynthia E. Irvine, and Geoffrey
Smith. A sound type system for secure flow analysis.
Journal of Computer Security, 4(2/3):167–188, 1996.

[71] Zilong Wang, Gideon Mohr, Klaus von Gleissenthall,
Jan Reineke, and Marco Guarnieri. Specification and
verification of side-channel security for open-source pro-
cessors via leakage contracts. In Proceedings of the 30th
ACM Conference on Computer and Communications Se-
curity (CCS), pages 2128–2142, Copenhagen, Denmark,
November 2023.

[72] Conrad Watt, John Renner, Natalie Popescu, Sunjay
Cauligi, and Deian Stefan. CT-wasm: type-driven secure
cryptography for the web ecosystem. In Proceedings
of the 46th ACM Symposium on Principles of Program-
ming Languages (POPL), pages 77:1–77:29, Cascais,
Portugal, January 2019.

[73] Claire Xenia Wolf. Yosys Open SYnthesis Suite. https:
//github.com/YosysHQ/yosys, 2012.

[74] Claire Xenia Wolf. PicoRV32 – a size-optimized RISC-
V CPU. https://github.com/YosysHQ/picorv32,
2015.

[75] Yubico. YubiHSM 2. https://www.yubico.com/

product/yubihsm-2/.

[76] Yongbin Zhou and Dengguo Feng. Side-channel attacks:
Ten years after its publication and the impacts on cryp-
tographic module security testing. Cryptology ePrint
Archive, Paper 2005/388, October 2005.

[77] Jean-Karim Zinzindohoué, Karthikeyan Bhargavan,
Jonathan Protzenko, and Benjamin Beurdouche.
HACL*: A verified modern cryptographic library. In
Proceedings of the 24th ACM Conference on Computer
and Communications Security (CCS), Dallas, TX,
October–November 2017.

18

https://gcc.gnu.org/onlinedocs/gcc/
https://doi.org/10.5281/zenodo.8161141
https://doi.org/10.5281/zenodo.8161141
https://github.com/Nitrokey/nitrokey-pro-firmware/issues/4
https://github.com/Nitrokey/nitrokey-pro-firmware/issues/4
https://github.com/YosysHQ/yosys
https://github.com/YosysHQ/yosys
https://github.com/YosysHQ/picorv32
https://www.yubico.com/product/yubihsm-2/
https://www.yubico.com/product/yubihsm-2/

	Introduction
	Overview and HSM developer workflow
	Proof approach: transitive IPR
	Software verification with Starling
	Low⋆-level proof
	C and assembly-level proofs

	Hardware verification with Knox2
	Assembly semantics in Rosette
	Driver
	Proof strategy
	Assembly-circuit synchronization

	Implementation
	Verifying HSMs using Parfait
	Case studies
	Attack discussion

	Evaluation
	Developer effort
	Performance

	Related work
	Conclusion

