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Nail
A Practical Tool for Parsing and Generating Data Formats

J U L I A N  B A N G E R T  A N D  N I C K O L A I  Z E L D O V I C H

I am ZIP, file of files. Parse me, ye mighty and drop a shell.

 —Edward Shelley on the Android Master Key

Binary file formats and network protocols are hard to parse safely: 
The libpng image decompression library had 24 remotely exploitable 
vulnerabilities from 2007 to 2013. According to CVEdetails, Adobe’s 

PDF and Flash viewers have been notoriously plagued by input processing 
vulnerabilities, and even the zlib compression library had input processing 
vulnerabilities in the past. Most of these attacks involve memory  corruption—
therefore, it is easy to assume that solving memory corruption will end all 
our woes when handling untrusted inputs.

However, as memory-safe languages and exploit mitigation tricks are becoming more 
prevalent, attackers are moving to a new class of attack—parser differentials. Many appli-
cations use handwritten input processing code, which is often mixed with the rest of the 
application—e.g., by passing a pointer to the raw input through the application. This (anti-)
pattern makes it impossible to figure out whether two implementations of the same format or 
protocol are identical, and input handling code can’t be easily reused between applications. 
As a result, different applications often disagree in the corner cases of a protocol, which can 
have fatal security consequences. For example, Android has two parsers for ZIP archives 
involved in securely installing applications. First, a Java program checks the signatures of 
files contained within an app archive and then another tool extracts them to the file system. 
Because the two ZIP parsers disagree in multiple places, attackers can modify a valid file  
so that the verifier will see the original contents, but attacker-controlled files will be 
extracted to the file system, bypassing Android’s code signing. Similar issues showed up on 
iOS [3] and SSL [4].

Instead of attempting to parse inputs by hand and failing, a promising approach is to specify 
a precise grammar for the input data format and automatically generate parsing code from 
that with tools like yacc. As long as the parser generator is bug-free, the application will be 
safe from many input processing vulnerabilities. Grammars can also be reused between 
applications, further reducing effort and eliminating inconsistencies.

This approach is typical in compiler design and in other applications handling text-based 
inputs, but not common for binary inputs. The Hammer framework [5] and data description 
languages such as PADS [2] have been developing generated parsers for binary protocols.

However, if you wanted to use existing tools to parse PDF or ZIP, you would soon find that 
they cannot handle the complicated—and therefore most error-prone—aspects of such 
formats, so you’d still have to handwrite the riskiest bits of code. For example, existing parser 
generators cannot conveniently represent size or offset fields, and more complex features, 
such as data compression or checksums, cannot be expressed at all.
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Furthermore, some parser generators are cumbersome to use 
when parsing binary data for several reasons. First, many 
parser generators don’t produce convenient data structures, but 
call semantic actions that you have to write to build up a data 
structure your program can use. Therefore, you must describe 
the format up to three times—in the grammar, the data struc-
ture, and the semantic actions. Second, most parser generators 
only address parsing inputs, so you have to manually construct 
outputs. Some parser generators, such as Boost.Spirit, allow 

 generating output but require you to write another set of seman-
tic actions.

We address these challenges with Nail, a new parser generator 
for binary formats. First, Nail grammars describe not only a 
format, but also a data type to represent it within the program. 
Therefore, you don’t have to write semantic actions and type 
declarations, and you can no longer combine syntactic validation 
and semantic processing. Second, Nail will also generate output 
from this data type without requiring you to write more risky 
code or giving you a chance to introduce ambiguity.

Third, Nail introduces two abstractions, dependent fields and 
transformations, to elegantly handle problematic structures, 
such as offset fields or checksums. Dependent fields capture 
fields in a protocol whose value depends in some way on the 
value or layout of other parts of the format; for example, offset 
or length fields, which specify the position or length of another 
data structure, fall into this category. Transformations allow you 
to write plugins, allowing your programs to handle complicated 
structures, while keeping Nail itself small, yet flexible.

In the rest of this article, we will show some tricky features of 
real-world formats and how to handle them with Nail.

Design by Example
In this section, we will explain how to handle basic data for-
mats in Nail, how to handle redundancies in the format with 
dependent fields, and how Nail parsers can be extended with 
transformations.

As a motivating example, we will parse DNS packets, as defined 
in RFC 1035. Each DNS packet consists of a header, a set of 
question records, and a set of answer records. Domain names in 
both queries and answers are encoded as a sequence of labels, 
terminated by a zero byte. Labels are Pascal-style strings, con-
sisting of a length field followed by that many bytes comprising 
the label.

Basic Data Formats
Let’s step through a simplified Nail grammar for DNS packets, 
shown in Figure 1. For this grammar, Nail produces the type 
declarations shown in Figure 2 and the parser and  generator 
functions shown in Figure 3. Nail grammars are reusable 
between applications, and we will use this grammar to imple-
ment both a DNS server and a client, which previously would 
have had two separate handwritten parsers, leading to bugs  
such as the Android Master Key.

A Nail grammar file consists of rule definitions—for example, 
lines 1–20 of Figure 1 assign a name (dnspacket) to a  grammar 
production (lines 2–20). If you are not familiar with other pars-
ers, you can imagine rules as C type declarations on steroids 
(although our syntax is inspired by Go).

1  dnspacket =

2 {

3   id uint16

4   qr uint1

5   opcode uint4

6   aa uint1 

7   tc uint1

8   rd uint1

9   ra uint1

10   uint3 = 0

11   rcode uint4 

12   @qc uint16

13   @ac uint16

14   @ns uint16

15   @ar uint16 

16   questions n_of @qc question

17   responses n_of @ac answer 

18   authority n_of @ns answer

19   additional n_of @ar answer

20 } 

21 question = {

22   labels compressed_labels

23   qtype uint16 | 1..16 

24   qclass uint16 | [1,255]

25 }

26 answer = {

27   labels compressed_labels 

28   rtype uint16 | 1..16

29   class uint16 | [1]

30   ttl uint32 

31   @rlength uint16

32   rdata n_of @rlength uint8

33 } 

34 compressed_labels = {

35   $decompressed transform dnscompress ($current) 

36   labels apply $decompressed labels

37 }

38 label = { @length uint8 | 1..64 

39             label n_of @length uint8 }

40 labels = <many label; uint8 = 0>

Figure 1: Nail grammar for DNS packets, used by our prototype DNS server
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Just as C supports various constructs to build up types, such as 
structures and unions from pointers and elemental types, Nail 
supports various combinators to represent features of a file or 
protocol. We will present the features we used in implement-
ing DNS. A more complete reference can be found in [4], with a 
detailed rationale in [1].

Integers and Constraints. Because Nail is designed to cope 
with binary formats, it handles not only common integer types 
(e.g., uint16) but bit fields of any length, such as uint1. These 
integers are exposed to the programmer as an appropriately 
sized machine integer (e.g., uint8_t). Nail also supports con-
straints on integer values, limiting the values to either a range 
(line 23, |1..16), which can optionally be half open or a fixed set 
(line 24, |[1,255]). Both types of constraint can be combined, 
e.g., | [1..16,255]. Constant values are also  supported—e.g., 
line 10: uint3=0 represents three reserved bits that must be 
0. Because constant values carry no information, they are not 
represented in the data type.

Structures. The body of the dnspacket rule is a structure, 
which contains any number of fields enclosed between curly 
braces. Each field in the structure is parsed in sequence and 
represented as a structure to the programmer. Contrary to other 
programming languages, Nail does not have a special keyword 
for structs. We also reverse the usual structure-field syntax: id 

uint1 is a field called id with type uint1. Often, Nail grammars 
have structures with just one non-constant field—for example, 
when parsing a fixed header. Nail supports this with an alterna-
tive form of structures, using angle brackets, that contains one 

unnamed, non-constant field, which is represented directly in 
the datatype, without introducing another layer of indirection,  
as shown on line 40.

Arrays. Nail supports various forms of arrays. Line 40 shows 
how to parse a domain in a DNS packet with many, which keeps 
repeating the label rule until it fails. In the next section, we will 
explain how to handle count fields, and our full paper describes 
how to handle various array representations (such as delimiters 
or non-empty arrays).

Redundant Data
Data formats often contain values that are determined by other 
values or the layout of information, such as checksums, dupli-
cated information, or offset and length fields. Exposing such 
values risks inconsistencies that could trick the program into 
unsafe behavior. Therefore, we represent such values using 
dependent fields and handle them transparently during pars-
ing and generation without exposing them to the application. 
Dependent fields are handled like other fields when parsing 
input but are only stored temporarily instead of in the data type. 
Their value can be referenced by other parsers until it goes out 
of scope. When generating output, Nail inserts the correct value.

In DNS packets, the packet header contains count fields (qc, ac, 

ns, and ar), which contain the number of questions and answers 
that follow the header and which we represent by dependent 
fields (lines 12–15). Dependent fields are defined within a struc-
ture like normal fields, but their name starts with an @ symbol. 
A dependent field is in scope and can be referred to by the defini-
tion of all subsequent fields in the same structure. Dependent 
fields can be passed to rule invocations as parameters.

Nail allows handling count fields with n_of, which parses an 
exact number of repetitions of a rule. Lines 16–19 in Figure 1 
show how to use n_of to parse the question and answer records 
in a DNS packet. Other dependencies, such as offset fields or 
checksums, are not handled directly by combinators but through 
transformations, as we describe next.

Input Streams and Transformations

So far, we have described a parser that consumes input a byte 
at a time from beginning to end. However, real-world formats 
often require nonlinear parsing. Offset fields require a parser 
to move to a different position in the input, possibly backwards. 
Size fields require the parser to stop processing before the end 
of input has been reached. Other cases, such as compressed data 
and checksums, require more complicated processing on parts of 
the input before it can be handled.

For a parser to be useful, it needs to support all these ways of 
structuring a format. This is why data description languages  
like PADS [2] contain not just a kitchen sink, but a kitchen store 

struct dnspacket {

   uint16_t id;

   uint8_t qr; 

   /* ... */

   struct {

     struct question *elem; 

     size_t count;

   } questions;

  };

Figure 2: Portions of the C data structures defined by Nail for the DNS 
grammar shown in Figure 1

  struct dnspacket *parse_dnspacket(NailArena *arena, 

   const uint8_t *data,

   size_t size);

  int gen_dnspacket(NailArena *tmp_arena,

     NailStream *out, 

     struct dnspacket *val);

Figure 3: The API functions generated by Nail for parsing inputs and 
generating outputs for the DNS grammar shown in Figure 1
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full of features, and a language that can handle all  possible 
 formats will be a general purpose programming language. 
Instead, we keep Nail itself small and introduce an interface  
that allows complicated format structures to be handled by 
 plugin transformations in a general purpose language. Of 
course, we ship Nail with a handy library of common trans-
formations to handle common format features, such as offsets, 
sizes, and checksums.

These transformations consume and produce streams—sequences 
of bytes—which can be further passed to other transformations 
and eventually parsed by a Nail rule. Transformations can also 
access values in dependent fields. Streams can be subsets of 
other streams: for example, the substream starting at an offset 
given in a dependent field to handle pointer fields, or computed 
at runtime, such as by decompressing another stream with zlib.

Figure 4: Syntax of Nail parser declarations and the formats and data types they describe

Nail Grammar External Format Internal Data Type in C
uint4 4-bit unsigned integer uint8_t

int32 | [1,5..255,512] Signed 32-bit integer x ∈{1,5..255,512} int32_t

uint8 = 0 8-bit constant with value 0 /* empty */

optional int8 | 16.. 8-bit integer ≥ 16 or nothing int8_t *

many int8 | ![0] A NULL-terminated string struct { 

  size_t N_count; 

  int_t *elem; 

}; 

{ 

  hours uint8 

  minutes uint8 

}

Structure with two fields struct { 

  uint8_t hours; 

  uint8_t minutes; 

};

<int8=’”’; p; int8=’”’> A value described by parser p, in quotes The data type of p

choose { 

  A = uint8 | 1..8 

  B = uint16 | 256.. 

}

Either an 8-bit integer between 1 and 8, 
or a 16-bit integer larger than 256

struct { 

  enum {A, B} N_type; 

  union { 

    uint8_t a; 

    uint16_t b; 

  }; 

};

@valuelen uint16 

value n_of @valuelen uint8

A 16-bit length field, followed by that many bytes struct { 

  size_t N_count; 

  uint8_t *elem; 

}; 

$data transform 

  deflate($current @method)

Applies programmer-specified function to 
create new stream  

/* empty */

apply $stream p Apply parser p to stream $stream The data type of p

foo = p Define rule foo as parser p typedef /* type of p */ foo;

* p Apply parser p Pointer to the data type of p 
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Transformations are two arbitrary functions called during pars-
ing and output generation. The parsing function consumes any 
number of streams and dependent field values, and produces any 
number of temporary streams. This function may reposition and 
read from the input streams and read the values of dependent 
fields, but not change their contents and values. The generating 
function has to be an inverse of the parsing function, consuming 
streams and producing dependent field values and other streams.

As a concrete example, we will show a grammar for ProtoZIP, a 
very simple archive format inspired by ZIP in Figure 5. ProtoZIP 
consists of a variable-length end-of-file directory, which is a 
magic number followed by an array of filenames and pointers to 
compressed files. A grammar for the real ZIP format, which has 
more layers of indirection, is presented in the full paper.

In Figure 5, the grammar first calls the zipdir transform on 
line 2, which finds the magic number and splits the file into 
two streams, one containing the compressed files, the other the 
directory. Streams are referred to with $identifiers, similar to 
dependent fields. A C prototype of the zipdir transform is shown 
in Figure 6.

When parsing input, this will call zipdir_parse, which takes 
$current—an implicit identifier always referring to the stream 
currently being handled—and returns $files and $header. When 
generating output, this will call zipdir_generate, which appends 
$files and $header to $current.

Line 3 of Figure 5 then applies the dir rule to the $header 

stream, passing it the $files stream. Within dir, $current is 
now $header and input is parsed from and output generated to 
that stream. The dir rule in turn describes the structure of the 
directory—a magic number and a count field, followed by that 
many file descriptors. Each file descriptor is then parsed with 
two transformations: the standard-library slice, which describes 
an offset and a size within another stream, and the custom zlib, 
which compresses a stream using zlib. Finally, we apply a trivial 
grammar (line 14) to the contents.

In a more complicated example, such as an Office document, we 
could now specify grammars for each entry within an archive.

Transformations need to be carefully written, because they can 
violate Nail’s safety properties and introduce bugs. However, as 
we will show below (see Applications), Nail transformations are 
much shorter than handwritten parsers, and many formats can 
be represented with just the transformations in Nail’s standard 
library. For example, our Zip transformations are 78 lines of 
code, compared to 1600 lines of code for a handwritten parser. 
Additionally, Nail provides convenient and safe interfaces for 
allocating memory and accessing streams that address the most 
common occurrences of buffer overflow vulnerabilities.

Using Nail
Real-World Formats
We used Nail to implement grammars for seven protocols with a 
range of challenging features. Figure 7 summarizes our results. 
Despite the challenging aspects of these protocols, Nail is able to 
capture them by relying on its novel features: dependent fields, 
streams, and transforms. In contrast, state-of-the-art parser 
generators would be unable to fully handle five out of the seven 
data formats.

DNS. Previously, we used a grammar for DNS packets shown 
in Figure 1 to show how to write Nail grammars. This example 
grammar corresponds almost directly to the diagrams in RFC 
1035, which defines DNS. Nail’s dependent fields handle DNS’s 
count fields, and transformations represent label compression. 
At best, both of these features are awkward to handle with exist-
ing tools.

ZIP. An especially tricky data format is the ZIP compressed 
archive format, as specified by PKWARE. At the end of each 
ZIP file is an end-of-directory header. This header contains a 
variable-length comment, so it has to be located by scanning 
backwards from the end of the file until a magic number and a 
valid length field are found. Many ZIP implementations disagree 

1  protozip = {

2    $files, $header transform zipdir($current) 

3    contents apply $header dir($files)

4  }

5  dir ($files) = { 

6    uint32 =  0x00034b50

7    @count uint32

8    files n_of @count { 

9       @off uint32

10      @size uint32

11      filename many (uint8 | ![0]) 

12      $compr transform slice_u32($files @off @size) 

13      $decomp transform zlib($compr) 

14      contents apply $decomp (many uint8)

15    }

16  }

Figure 5: Nail grammar for ZIP files. Various fields have been cut for brevity.

  int zip_end_of_directory_parse( 

    NailArena *tmp, NailStream *out_files, 

    NailStream *out_dir, NailStream *in_current); 

  int zip_end_of_directory_generate( 

    NailArena *tmp, NailStream *in_files, 

    NailStream *in_dir, NailStream *out_current);

Figure 6: Signatures of stream transform functions for handling the  
end-to-beginning structure of ProtoZIP files
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on the exact semantics of this, such as when the comment con-
tains the magic number [6]. This header contains the offset and 
the size of the ZIP directory, which is an array of directory entry 
headers, one for every file in the archive. Each entry stores file 
metadata in addition to the offset of a local file header. The local 
file header duplicates most information from the directory entry 
header and is followed immediately by the compressed archive 
entry. Duplicating information made sense when ZIP files were 
stored on floppy disks with slow seek times and high fault rates, 
but nowadays it leads to parsers being confused, such as in the 
recent Android Master Key bug.

Nail captures these redundancies with dependent fields, elimi-
nating the ambiguities. It also decompresses archive contents 
transparently with transformations, which allows parsing the 
contents of an archive file—allowing formats based on ZIP, such 
as Microsoft Office documents, to be handled with one grammar.

Applications
We implemented two applications—a DNS server and an unzip 
program—based on the above grammars, and will compare the 
effort involved and the resulting security to similar applications 
with handwritten parsers and with other parser generators. 
We will use lines of code as a proxy for programmer effort. To 
evaluate security, we will argue how our design avoids classes of 
vulnerabilities and fuzz-test one of our applications.

DNS. Our DNS server parses a zone file, listens to incom-
ing DNS requests, parses them, and generates appropriate 
responses. The DNS server is implemented in 183 lines of C, 
together with 48 lines of Nail grammar and 64 lines of C code 
implementing stream transforms for DNS label compression. 
In comparison, Hammer [5] ships with a toy DNS server that 
responds to any valid DNS query with a CNAME record to the 
domain “spargelze.it”. Their server consists of 683 lines of C, 
mostly custom validators, semantic actions, and data structure 

definitions, with 52 lines of code defining the grammar with 
Hammer’s combinators. Their DNS server does not implement 
label compression, zone files, etc.

To evaluate whether Nail-based parsers are compatible with 
good performance, we compare the performance of our DNS 
server to that of ISC BIND 9 release 9.9.5, a mature and widely 
used DNS server. We simulate a load resembling that of an 
authoritative name server, generating a random zone file and a 
random sequence of queries, with 10% non-existent domains. We 
repeated this sequence of queries for one minute against both 
DNS servers. We found that our DNS server is approximately 
three times faster than BIND. Although BIND is a more sophis-
ticated DNS server and implements many features that are not 
present in our Nail-based DNS server and that allow it to be 
used in more complicated configurations, we believe our results 
demonstrate that Nail’s parsers are not a barrier to achieving 
good performance.

ZIP. We implemented a ZIP file extractor in 50 lines of C code, 
together with 92 lines of Nail grammar and 78 lines of C code 
implementing two stream transforms (one for the DEFLATE 
compression algorithm with the help of the zlib library, and 
one for finding the end-of-directory header). The unzip utility 
contains a file extract.c, which parses ZIP metadata and calls 
various decompression routines in other files. This file measures 
over 1,600 lines of C, which suggests that Nail is highly effective 
at reducing manual input parsing code, even for the complex ZIP 
file format.

In our full paper [1], we present a study of 15 ZIP parsing bugs. 
Eleven of these vulnerabilities involved memory corruption dur-
ing input handling, which Nail’s generated code is immune to by 
design. We also fuzz-tested our DNS server. More interestingly, 
Nail also protects against parsing inconsistency vulnerabilities 
like the four others we studied. Nail grammars explicitly encode 
duplicated information such as the redundant length fields in 
ZIP that caused a vulnerability in the Python ZIP library. The 
other three vulnerabilities exist because multiple implementa-
tions of the same protocol disagree on some inputs. Handwritten 
protocol parsers are not very reusable, as they build application-
specific data structures and are tightly coupled to the rest of the 
code. Nail grammars, however, can be reused between applica-
tions, avoiding protocol misunderstandings.

Protocol LoC Challenging Features

DNS packets 48+64 Label compression, count fields

ZIP archives 92+78
Checksums, offsets, variable 
length trailer, compression

Ethernet 16+0 —

ARP 10+0 —

IP 25+0 Total length field, options

UDP 7+0 Checksum, length field

ICMP 5+0 Checksum

Figure 8: Comparison of code size for two applications written in Nail, and 
a comparable existing implementation without Nail

Figure 7: Protocols, sizes of their Nail grammars, and challenging aspects 
of the protocol that cannot be expressed in existing grammar languages.  
A + symbol counts lines of Nail grammar code (before the +) and lines of 
C code for protocol-specific transforms (after the +).

Application LoC w/ Nail LoC w/o Nail

DNS server 295 683 (Hammer parser)

unzip 220 1,600 (Info-Zip)
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Conclusion
We presented the design and implementation of Nail, a tool for 
parsing and generating complex data formats based on a precise 
grammar. This helps programmers avoid memory corruption 
and inconsistency vulnerabilities while reducing effort in pars-
ing and generating real-world protocols and file formats. Nail 
captures complex data formats by introducing dependent fields, 
streams, and transforms. Using these techniques, Nail is able to 
support DNS packet and ZIP file formats, and enables applica-
tions to handle these data formats in many fewer lines of code.

Nail and all of the applications and grammars developed in this 
paper are released as open-source software, available at https://
github.com/jbangert/nail. A more detailed discussion of our 
design and our results is available in [1].
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