
24  F EB RUA RY 20 1 5 VO L . 4 0, N O. 1 www.usenix.org

PROGRAMMING

Nail
A Practical Tool for Parsing and Generating Data Formats

J U L I A N B A N G E R T A N D N I C K O L A I Z E L D O V I C H

I am ZIP, file of files. Parse me, ye mighty and drop a shell.

 —Edward Shelley on the Android Master Key

Binary file formats and network protocols are hard to parse safely:
The libpng image decompression library had 24 remotely exploitable
vulnerabilities from 2007 to 2013. According to CVEdetails, Adobe’s

PDF and Flash viewers have been notoriously plagued by input processing
vulnerabilities, and even the zlib compression library had input processing
vulnerabilities in the past. Most of these attacks involve memory corruption—
therefore, it is easy to assume that solving memory corruption will end all
our woes when handling untrusted inputs.

However, as memory-safe languages and exploit mitigation tricks are becoming more
prevalent, attackers are moving to a new class of attack—parser differentials. Many appli-
cations use handwritten input processing code, which is often mixed with the rest of the
application—e.g., by passing a pointer to the raw input through the application. This (anti-)
pattern makes it impossible to figure out whether two implementations of the same format or
protocol are identical, and input handling code can’t be easily reused between applications.
As a result, different applications often disagree in the corner cases of a protocol, which can
have fatal security consequences. For example, Android has two parsers for ZIP archives
involved in securely installing applications. First, a Java program checks the signatures of
files contained within an app archive and then another tool extracts them to the file system.
Because the two ZIP parsers disagree in multiple places, attackers can modify a valid file
so that the verifier will see the original contents, but attacker-controlled files will be
extracted to the file system, bypassing Android’s code signing. Similar issues showed up on
iOS [3] and SSL [4].

Instead of attempting to parse inputs by hand and failing, a promising approach is to specify
a precise grammar for the input data format and automatically generate parsing code from
that with tools like yacc. As long as the parser generator is bug-free, the application will be
safe from many input processing vulnerabilities. Grammars can also be reused between
applications, further reducing effort and eliminating inconsistencies.

This approach is typical in compiler design and in other applications handling text-based
inputs, but not common for binary inputs. The Hammer framework [5] and data description
languages such as PADS [2] have been developing generated parsers for binary protocols.

However, if you wanted to use existing tools to parse PDF or ZIP, you would soon find that
they cannot handle the complicated—and therefore most error-prone—aspects of such
formats, so you’d still have to handwrite the riskiest bits of code. For example, existing parser
generators cannot conveniently represent size or offset fields, and more complex features,
such as data compression or checksums, cannot be expressed at all.

Julian Bangert is a second
year PhD student working
on computer security at
MIT. When he is not building
parsers for complicated

formats, he is interested is building exploit
mitigation techniques, side-channel resistant
cryptography, and finding Turing-complete
weird machines in unexpected places, such
as your processor’s virtual memory system.
julian@csail.mit.edu.

Nickolai Zeldovich is an
associate professor at MIT’s
Department of Electrical
Engineering and Computer
Science and a member

of the Computer Science and Artificial
Intelligence Laboratory. His research interests
are in building practical secure systems,
from operating systems and hardware to
programming languages and security analysis
tools. He received his PhD from Stanford
University in 2008, where he developed HiStar,
an operating system designed to minimize
the amount of trusted code by controlling
information flow. In 2005, he co-founded
MokaFive, a company focused on improving
desktop management and mobility using x86
virtualization. Professor Zeldovich received
a Sloan Fellowship (2010), an NSF CAREER
Award (2011), the MIT EECS Spira Teaching
Award (2013), and the MIT Edgerton Faculty
Achievement Award (2014).
nickolai@csail.mit.edu

www.usenix.org F EB RUA RY 20 1 5 VO L . 4 0, N O. 1 25

PROGRAMMING
Nail: A Practical Tool for Parsing and Generating Data Formats

Furthermore, some parser generators are cumbersome to use
when parsing binary data for several reasons. First, many
parser generators don’t produce convenient data structures, but
call semantic actions that you have to write to build up a data
structure your program can use. Therefore, you must describe
the format up to three times—in the grammar, the data struc-
ture, and the semantic actions. Second, most parser generators
only address parsing inputs, so you have to manually construct
outputs. Some parser generators, such as Boost.Spirit, allow

 generating output but require you to write another set of seman-
tic actions.

We address these challenges with Nail, a new parser generator
for binary formats. First, Nail grammars describe not only a
format, but also a data type to represent it within the program.
Therefore, you don’t have to write semantic actions and type
declarations, and you can no longer combine syntactic validation
and semantic processing. Second, Nail will also generate output
from this data type without requiring you to write more risky
code or giving you a chance to introduce ambiguity.

Third, Nail introduces two abstractions, dependent fields and
transformations, to elegantly handle problematic structures,
such as offset fields or checksums. Dependent fields capture
fields in a protocol whose value depends in some way on the
value or layout of other parts of the format; for example, offset
or length fields, which specify the position or length of another
data structure, fall into this category. Transformations allow you
to write plugins, allowing your programs to handle complicated
structures, while keeping Nail itself small, yet flexible.

In the rest of this article, we will show some tricky features of
real-world formats and how to handle them with Nail.

Design by Example
In this section, we will explain how to handle basic data for-
mats in Nail, how to handle redundancies in the format with
dependent fields, and how Nail parsers can be extended with
transformations.

As a motivating example, we will parse DNS packets, as defined
in RFC 1035. Each DNS packet consists of a header, a set of
question records, and a set of answer records. Domain names in
both queries and answers are encoded as a sequence of labels,
terminated by a zero byte. Labels are Pascal-style strings, con-
sisting of a length field followed by that many bytes comprising
the label.

Basic Data Formats
Let’s step through a simplified Nail grammar for DNS packets,
shown in Figure 1. For this grammar, Nail produces the type
declarations shown in Figure 2 and the parser and generator
functions shown in Figure 3. Nail grammars are reusable
between applications, and we will use this grammar to imple-
ment both a DNS server and a client, which previously would
have had two separate handwritten parsers, leading to bugs
such as the Android Master Key.

A Nail grammar file consists of rule definitions—for example,
lines 1–20 of Figure 1 assign a name (dnspacket) to a grammar
production (lines 2–20). If you are not familiar with other pars-
ers, you can imagine rules as C type declarations on steroids
(although our syntax is inspired by Go).

1 dnspacket =

2 {

3 id uint16

4 qr uint1

5 opcode uint4

6 aa uint1

7 tc uint1

8 rd uint1

9 ra uint1

10 uint3 = 0

11 rcode uint4

12 @qc uint16

13 @ac uint16

14 @ns uint16

15 @ar uint16

16 questions n_of @qc question

17 responses n_of @ac answer

18 authority n_of @ns answer

19 additional n_of @ar answer

20 }

21 question = {

22 labels compressed_labels

23 qtype uint16 | 1..16

24 qclass uint16 | [1,255]

25 }

26 answer = {

27 labels compressed_labels

28 rtype uint16 | 1..16

29 class uint16 | [1]

30 ttl uint32

31 @rlength uint16

32 rdata n_of @rlength uint8

33 }

34 compressed_labels = {

35 $decompressed transform dnscompress ($current)

36 labels apply $decompressed labels

37 }

38 label = { @length uint8 | 1..64

39 label n_of @length uint8 }

40 labels = <many label; uint8 = 0>

Figure 1: Nail grammar for DNS packets, used by our prototype DNS server

26  F EB RUA RY 20 1 5 VO L . 4 0, N O. 1 www.usenix.org

PROGRAMMING
Nail: A Practical Tool for Parsing and Generating Data Formats

Just as C supports various constructs to build up types, such as
structures and unions from pointers and elemental types, Nail
supports various combinators to represent features of a file or
protocol. We will present the features we used in implement-
ing DNS. A more complete reference can be found in [4], with a
detailed rationale in [1].

Integers and Constraints. Because Nail is designed to cope
with binary formats, it handles not only common integer types
(e.g., uint16) but bit fields of any length, such as uint1. These
integers are exposed to the programmer as an appropriately
sized machine integer (e.g., uint8_t). Nail also supports con-
straints on integer values, limiting the values to either a range
(line 23, |1..16), which can optionally be half open or a fixed set
(line 24, |[1,255]). Both types of constraint can be combined,
e.g., | [1..16,255]. Constant values are also supported—e.g.,
line 10: uint3=0 represents three reserved bits that must be
0. Because constant values carry no information, they are not
represented in the data type.

Structures. The body of the dnspacket rule is a structure,
which contains any number of fields enclosed between curly
braces. Each field in the structure is parsed in sequence and
represented as a structure to the programmer. Contrary to other
programming languages, Nail does not have a special keyword
for structs. We also reverse the usual structure-field syntax: id

uint1 is a field called id with type uint1. Often, Nail grammars
have structures with just one non-constant field—for example,
when parsing a fixed header. Nail supports this with an alterna-
tive form of structures, using angle brackets, that contains one

unnamed, non-constant field, which is represented directly in
the datatype, without introducing another layer of indirection,
as shown on line 40.

Arrays. Nail supports various forms of arrays. Line 40 shows
how to parse a domain in a DNS packet with many, which keeps
repeating the label rule until it fails. In the next section, we will
explain how to handle count fields, and our full paper describes
how to handle various array representations (such as delimiters
or non-empty arrays).

Redundant Data
Data formats often contain values that are determined by other
values or the layout of information, such as checksums, dupli-
cated information, or offset and length fields. Exposing such
values risks inconsistencies that could trick the program into
unsafe behavior. Therefore, we represent such values using
dependent fields and handle them transparently during pars-
ing and generation without exposing them to the application.
Dependent fields are handled like other fields when parsing
input but are only stored temporarily instead of in the data type.
Their value can be referenced by other parsers until it goes out
of scope. When generating output, Nail inserts the correct value.

In DNS packets, the packet header contains count fields (qc, ac,

ns, and ar), which contain the number of questions and answers
that follow the header and which we represent by dependent
fields (lines 12–15). Dependent fields are defined within a struc-
ture like normal fields, but their name starts with an @ symbol.
A dependent field is in scope and can be referred to by the defini-
tion of all subsequent fields in the same structure. Dependent
fields can be passed to rule invocations as parameters.

Nail allows handling count fields with n_of, which parses an
exact number of repetitions of a rule. Lines 16–19 in Figure 1
show how to use n_of to parse the question and answer records
in a DNS packet. Other dependencies, such as offset fields or
checksums, are not handled directly by combinators but through
transformations, as we describe next.

Input Streams and Transformations

So far, we have described a parser that consumes input a byte
at a time from beginning to end. However, real-world formats
often require nonlinear parsing. Offset fields require a parser
to move to a different position in the input, possibly backwards.
Size fields require the parser to stop processing before the end
of input has been reached. Other cases, such as compressed data
and checksums, require more complicated processing on parts of
the input before it can be handled.

For a parser to be useful, it needs to support all these ways of
structuring a format. This is why data description languages
like PADS [2] contain not just a kitchen sink, but a kitchen store

struct dnspacket {

 uint16_t id;

 uint8_t qr;

 /* ... */

 struct {

 struct question *elem;

 size_t count;

 } questions;

 };

Figure 2: Portions of the C data structures defined by Nail for the DNS
grammar shown in Figure 1

 struct dnspacket *parse_dnspacket(NailArena *arena,

 const uint8_t *data,

 size_t size);

 int gen_dnspacket(NailArena *tmp_arena,

 NailStream *out,

 struct dnspacket *val);

Figure 3: The API functions generated by Nail for parsing inputs and
generating outputs for the DNS grammar shown in Figure 1

www.usenix.org F EB RUA RY 20 1 5 VO L . 4 0, N O. 1 27

PROGRAMMING
Nail: A Practical Tool for Parsing and Generating Data Formats

full of features, and a language that can handle all possible
 formats will be a general purpose programming language.
Instead, we keep Nail itself small and introduce an interface
that allows complicated format structures to be handled by
 plugin transformations in a general purpose language. Of
course, we ship Nail with a handy library of common trans-
formations to handle common format features, such as offsets,
sizes, and checksums.

These transformations consume and produce streams—sequences
of bytes—which can be further passed to other transformations
and eventually parsed by a Nail rule. Transformations can also
access values in dependent fields. Streams can be subsets of
other streams: for example, the substream starting at an offset
given in a dependent field to handle pointer fields, or computed
at runtime, such as by decompressing another stream with zlib.

Figure 4: Syntax of Nail parser declarations and the formats and data types they describe

Nail Grammar External Format Internal Data Type in C
uint4 4-bit unsigned integer uint8_t

int32 | [1,5..255,512] Signed 32-bit integer x ∈{1,5..255,512} int32_t

uint8 = 0 8-bit constant with value 0 /* empty */

optional int8 | 16.. 8-bit integer ≥ 16 or nothing int8_t *

many int8 | ![0] A NULL-terminated string struct {

 size_t N_count;

 int_t *elem;

};

{

 hours uint8

 minutes uint8

}

Structure with two fields struct {

 uint8_t hours;

 uint8_t minutes;

};

<int8=’”’; p; int8=’”’> A value described by parser p, in quotes The data type of p

choose {

 A = uint8 | 1..8

 B = uint16 | 256..

}

Either an 8-bit integer between 1 and 8,
or a 16-bit integer larger than 256

struct {

 enum {A, B} N_type;

 union {

 uint8_t a;

 uint16_t b;

 };

};

@valuelen uint16

value n_of @valuelen uint8

A 16-bit length field, followed by that many bytes struct {

 size_t N_count;

 uint8_t *elem;

};

$data transform

 deflate($current @method)

Applies programmer-specified function to
create new stream

/* empty */

apply $stream p Apply parser p to stream $stream The data type of p

foo = p Define rule foo as parser p typedef /* type of p */ foo;

* p Apply parser p Pointer to the data type of p

28  F EB RUA RY 20 1 5 VO L . 4 0, N O. 1 www.usenix.org

PROGRAMMING
Nail: A Practical Tool for Parsing and Generating Data Formats

Transformations are two arbitrary functions called during pars-
ing and output generation. The parsing function consumes any
number of streams and dependent field values, and produces any
number of temporary streams. This function may reposition and
read from the input streams and read the values of dependent
fields, but not change their contents and values. The generating
function has to be an inverse of the parsing function, consuming
streams and producing dependent field values and other streams.

As a concrete example, we will show a grammar for ProtoZIP, a
very simple archive format inspired by ZIP in Figure 5. ProtoZIP
consists of a variable-length end-of-file directory, which is a
magic number followed by an array of filenames and pointers to
compressed files. A grammar for the real ZIP format, which has
more layers of indirection, is presented in the full paper.

In Figure 5, the grammar first calls the zipdir transform on
line 2, which finds the magic number and splits the file into
two streams, one containing the compressed files, the other the
directory. Streams are referred to with $identifiers, similar to
dependent fields. A C prototype of the zipdir transform is shown
in Figure 6.

When parsing input, this will call zipdir_parse, which takes
$current—an implicit identifier always referring to the stream
currently being handled—and returns $files and $header. When
generating output, this will call zipdir_generate, which appends
$files and $header to $current.

Line 3 of Figure 5 then applies the dir rule to the $header

stream, passing it the $files stream. Within dir, $current is
now $header and input is parsed from and output generated to
that stream. The dir rule in turn describes the structure of the
directory—a magic number and a count field, followed by that
many file descriptors. Each file descriptor is then parsed with
two transformations: the standard-library slice, which describes
an offset and a size within another stream, and the custom zlib,
which compresses a stream using zlib. Finally, we apply a trivial
grammar (line 14) to the contents.

In a more complicated example, such as an Office document, we
could now specify grammars for each entry within an archive.

Transformations need to be carefully written, because they can
violate Nail’s safety properties and introduce bugs. However, as
we will show below (see Applications), Nail transformations are
much shorter than handwritten parsers, and many formats can
be represented with just the transformations in Nail’s standard
library. For example, our Zip transformations are 78 lines of
code, compared to 1600 lines of code for a handwritten parser.
Additionally, Nail provides convenient and safe interfaces for
allocating memory and accessing streams that address the most
common occurrences of buffer overflow vulnerabilities.

Using Nail
Real-World Formats
We used Nail to implement grammars for seven protocols with a
range of challenging features. Figure 7 summarizes our results.
Despite the challenging aspects of these protocols, Nail is able to
capture them by relying on its novel features: dependent fields,
streams, and transforms. In contrast, state-of-the-art parser
generators would be unable to fully handle five out of the seven
data formats.

DNS. Previously, we used a grammar for DNS packets shown
in Figure 1 to show how to write Nail grammars. This example
grammar corresponds almost directly to the diagrams in RFC
1035, which defines DNS. Nail’s dependent fields handle DNS’s
count fields, and transformations represent label compression.
At best, both of these features are awkward to handle with exist-
ing tools.

ZIP. An especially tricky data format is the ZIP compressed
archive format, as specified by PKWARE. At the end of each
ZIP file is an end-of-directory header. This header contains a
variable-length comment, so it has to be located by scanning
backwards from the end of the file until a magic number and a
valid length field are found. Many ZIP implementations disagree

1 protozip = {

2 $files, $header transform zipdir($current)

3 contents apply $header dir($files)

4 }

5 dir ($files) = {

6 uint32 = 0x00034b50

7 @count uint32

8 files n_of @count {

9 @off uint32

10 @size uint32

11 filename many (uint8 | ![0])

12 $compr transform slice_u32($files @off @size)

13 $decomp transform zlib($compr)

14 contents apply $decomp (many uint8)

15 }

16 }

Figure 5: Nail grammar for ZIP files. Various fields have been cut for brevity.

 int zip_end_of_directory_parse(

 NailArena *tmp, NailStream *out_files,

 NailStream *out_dir, NailStream *in_current);

 int zip_end_of_directory_generate(

 NailArena *tmp, NailStream *in_files,

 NailStream *in_dir, NailStream *out_current);

Figure 6: Signatures of stream transform functions for handling the
end-to-beginning structure of ProtoZIP files

www.usenix.org F EB RUA RY 20 1 5 VO L . 4 0, N O. 1 29

PROGRAMMING
Nail: A Practical Tool for Parsing and Generating Data Formats

on the exact semantics of this, such as when the comment con-
tains the magic number [6]. This header contains the offset and
the size of the ZIP directory, which is an array of directory entry
headers, one for every file in the archive. Each entry stores file
metadata in addition to the offset of a local file header. The local
file header duplicates most information from the directory entry
header and is followed immediately by the compressed archive
entry. Duplicating information made sense when ZIP files were
stored on floppy disks with slow seek times and high fault rates,
but nowadays it leads to parsers being confused, such as in the
recent Android Master Key bug.

Nail captures these redundancies with dependent fields, elimi-
nating the ambiguities. It also decompresses archive contents
transparently with transformations, which allows parsing the
contents of an archive file—allowing formats based on ZIP, such
as Microsoft Office documents, to be handled with one grammar.

Applications
We implemented two applications—a DNS server and an unzip
program—based on the above grammars, and will compare the
effort involved and the resulting security to similar applications
with handwritten parsers and with other parser generators.
We will use lines of code as a proxy for programmer effort. To
evaluate security, we will argue how our design avoids classes of
vulnerabilities and fuzz-test one of our applications.

DNS. Our DNS server parses a zone file, listens to incom-
ing DNS requests, parses them, and generates appropriate
responses. The DNS server is implemented in 183 lines of C,
together with 48 lines of Nail grammar and 64 lines of C code
implementing stream transforms for DNS label compression.
In comparison, Hammer [5] ships with a toy DNS server that
responds to any valid DNS query with a CNAME record to the
domain “spargelze.it”. Their server consists of 683 lines of C,
mostly custom validators, semantic actions, and data structure

definitions, with 52 lines of code defining the grammar with
Hammer’s combinators. Their DNS server does not implement
label compression, zone files, etc.

To evaluate whether Nail-based parsers are compatible with
good performance, we compare the performance of our DNS
server to that of ISC BIND 9 release 9.9.5, a mature and widely
used DNS server. We simulate a load resembling that of an
authoritative name server, generating a random zone file and a
random sequence of queries, with 10% non-existent domains. We
repeated this sequence of queries for one minute against both
DNS servers. We found that our DNS server is approximately
three times faster than BIND. Although BIND is a more sophis-
ticated DNS server and implements many features that are not
present in our Nail-based DNS server and that allow it to be
used in more complicated configurations, we believe our results
demonstrate that Nail’s parsers are not a barrier to achieving
good performance.

ZIP. We implemented a ZIP file extractor in 50 lines of C code,
together with 92 lines of Nail grammar and 78 lines of C code
implementing two stream transforms (one for the DEFLATE
compression algorithm with the help of the zlib library, and
one for finding the end-of-directory header). The unzip utility
contains a file extract.c, which parses ZIP metadata and calls
various decompression routines in other files. This file measures
over 1,600 lines of C, which suggests that Nail is highly effective
at reducing manual input parsing code, even for the complex ZIP
file format.

In our full paper [1], we present a study of 15 ZIP parsing bugs.
Eleven of these vulnerabilities involved memory corruption dur-
ing input handling, which Nail’s generated code is immune to by
design. We also fuzz-tested our DNS server. More interestingly,
Nail also protects against parsing inconsistency vulnerabilities
like the four others we studied. Nail grammars explicitly encode
duplicated information such as the redundant length fields in
ZIP that caused a vulnerability in the Python ZIP library. The
other three vulnerabilities exist because multiple implementa-
tions of the same protocol disagree on some inputs. Handwritten
protocol parsers are not very reusable, as they build application-
specific data structures and are tightly coupled to the rest of the
code. Nail grammars, however, can be reused between applica-
tions, avoiding protocol misunderstandings.

Protocol LoC Challenging Features

DNS packets 48+64 Label compression, count fields

ZIP archives 92+78
Checksums, offsets, variable
length trailer, compression

Ethernet 16+0 —

ARP 10+0 —

IP 25+0 Total length field, options

UDP 7+0 Checksum, length field

ICMP 5+0 Checksum

Figure 8: Comparison of code size for two applications written in Nail, and
a comparable existing implementation without Nail

Figure 7: Protocols, sizes of their Nail grammars, and challenging aspects
of the protocol that cannot be expressed in existing grammar languages.
A + symbol counts lines of Nail grammar code (before the +) and lines of
C code for protocol-specific transforms (after the +).

Application LoC w/ Nail LoC w/o Nail

DNS server 295 683 (Hammer parser)

unzip 220 1,600 (Info-Zip)

30  F EB RUA RY 20 1 5 VO L . 4 0, N O. 1 www.usenix.org

PROGRAMMING
Nail: A Practical Tool for Parsing and Generating Data Formats

Conclusion
We presented the design and implementation of Nail, a tool for
parsing and generating complex data formats based on a precise
grammar. This helps programmers avoid memory corruption
and inconsistency vulnerabilities while reducing effort in pars-
ing and generating real-world protocols and file formats. Nail
captures complex data formats by introducing dependent fields,
streams, and transforms. Using these techniques, Nail is able to
support DNS packet and ZIP file formats, and enables applica-
tions to handle these data formats in many fewer lines of code.

Nail and all of the applications and grammars developed in this
paper are released as open-source software, available at https://
github.com/jbangert/nail. A more detailed discussion of our
design and our results is available in [1].

Acknowledgments
We thank M. Frans Kaashoek, the OSDI reviewers, and K.
Park for their feedback. This research was supported by the
DARPA Clean-slate design of Resilient, Adaptive, Secure Hosts
(CRASH) program under contract #N66001-10-2-4089, and by
NSF award CNS-1053143.

References
[1] J. Bangert and N. Zeldovich, “Nail: A Practical Tool for
Parsing and Generating Data Formats,” in 11th USENIX
Symposium on Operating Systems Design and Implementa-
tion (OSDI ’14), pp. 615–628, Broomfield, CO, Oct. 2014,
USENIX Association: https://www.usenix.org/conference
/osdi14/technical-sessions/presentation/bangert.

[2] K. Fisher and R. Gruber, “PADS: A Domain-Specific
Language for Processing Ad Hoc Data,” in Proceedings of the
2005 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pp. 295–304, Chicago,
IL, June 2005.

[3] G. Hotz, evasi0n 7 writeup, 2013: http://geohot.com
/e7writeup.html.

[4] D. Kaminsky, M.L. Patterson, and L. Sassaman, “PKI
Layer Cake: New Collision Attacks against the Global X.509
Infrastructure,” in Proceedings of the 2010 Conference on
Financial Cryptography and Data Security, pp. 289–303, Jan.
2010.

[5] M. Patterson and D. Hirsch, Hammer parser generator,
March 2014: https://github.com/UpstandingHackers
/hammer.

[6] J. Wolf, “Stupid ZIP file tricks!” in BerlinSides 0x7DD,
2013.

