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1 INTRODUCTION

Software that is provably correct has been a long-time
goal of computer science. Until recently this goal was
realized for only small programs, but over the last decade
several large systems have been built that have provable
correctness properties. Examples include CompCert [2 1],
selL4 [20], IronClad [13], CertiKOS [12], Bedrock [4, 5],
Termite [32], Click’s dataplane [8], and Jitk [35]. One
aspect not covered by these systems is reasoning about
failures—power failures, hardware faults, or software
bugs—which is well-known to be tricky in systems code.

An important example of where failures matter is a file
system, because developers often make subtle mistakes in
recovery code, and recovery code is complex and not fre-
quently executed. Even if such bugs are rare, they can still
be costly, since they can lead to complete data loss [41].
Proving the absence of such bugs in critical software, such
as a file system, is an appealing proposition.

To explore what it takes to certify a file system, we
are in the process of building one such file system and its
machine-checked proof. Our goal is to certify a simple
Unix-like file system with logging. We want to prove that
our file system’s implementation is correct: it matches the
specification, even if there are crashes.

There are many aspects involved in implementing
a certified file system, but the design choice on which
everything else depends is the question of how to write
specifications. We found that writing specification is
surprisingly tricky. This paper summarizes what we have
learned from exploring several specification strategies,
including one approach that has worked well for us.

Writing a precise specification assumes that you know
what the specification is. Unfortunately, POSIX is not
well specified: file systems have many different interpre-
tations of what POSIX means, in particular under failures.
Furthermore, file systems allow operators to configure
them to have different behaviors under failure, which can
result in surprising results for application writers [29]. In
this paper, we adopt a simple compromise: each system
call runs atomically. If there is a failure, either the system
call happened completely or not all. The system call never
leaves the file system in an intermediate state.

There are many ways to write a specification for
atomic systems calls, like there are many ways to design
and implement an API, and it was initially unclear to us
which one was the right choice. What criteria determine

if a specification is a good one? Our three goals were
(1) to prevent real bugs, (2) to enable proof automation,
and (3) to allow for modularity. The rest of this paper
explores this question by examining different approaches
to specify the behavior of a file system under crashes. We
report on what approaches we discarded and describe why
an approach based on Hoare logic with an extensions for
crash predicates and recovery semantics works well.

2 FILE SYSTEM BUGS

We consider four broad categories of bugs in real-world
file systems [22, 40] that the specifications must handle.

Sequential bugs. Many bugs arise even without con-
currency or failures: (1) Low-level bugs, such as integer
overflows [19] or double-frees [2]; (2) Violating directory
invariants, such as link counts adding up [37], or lack of
directory cycles [24]; (3) Improper handling of corner
cases, such as writing to a large offset in a sparse file [33],
or running out of blocks during rename [ |]; (4) Return-
ing incorrect error codes [3]; (5) Resource allocation bugs,
such as losing disk blocks [38] or returning ENOSPC when
space is available [26].

Concurrency bugs. Bugs due to concurrent system
calls, such as a race when two threads allocate blocks [23].

Recovery. Bugs in the transaction logic that imple-
ments recovery after a crash, such as not issuing disk
writes and flushes in the right order [18].

Misusing transactions. Finally, file systems devel-
opers sometimes misuse transactions, such as forgetting
to allocate data blocks as part of the same transaction that
updates the inode size [25], or freeing an indirect block
and clearing the pointer to it in different transactions [17].

3 SPECIFICATION STYLES

To prove the correctness of a file system, we need to for-
malize the specification of what it means for a file system
to be correct. This section describes several approaches
for writing down specifications, using a running example
of a file-system create operation.

Traces. One approach for reasoning about the file-
system interface is to use execution traces, as introduced
by Herlihy and Wing [14]. Traces have been used for
reasoning about system-call commutativity [6] and for
verifying distributed systems [36]. This led us to believe
they would be a good fit for capturing the concurrency in
a file system, such as multiple threads, crashes, etc.



opl: create("/tmp", "foo") opl:
crash

op2: open("/tmp/foo") op2:

op2: return OK, fd = 5 op2:

create("/tmp", "foo")
crash
open("/tmp/foo")
return OK, fd = 5
crash

op2: open("/tmp/foo")
op2: return Error, ENOENT

(a) valid (b) invalid

Figure 1: Trace examples. Crashes are highlighted in red.

In the traces approach, the specification is a predicate
for a trace that determines whether a trace—consisting
of operation invocations and responses to them—is valid.
Figure 1(a) shows an example valid trace involving the
create system call (for now, imagine that instead of
crash, opl returns OK). The specification itself is written
in some formal language, such as Coq [7] in the case of
Verdi [36]. A proof in this trace approach has to demon-
strate that any sequence of operations generated by an
implementation is legal according to the specification.

Behavioral.  Behavioral specifications prove the equiv-
alence of two implementations of some function f. One
of the implementations (the “specification”) is typically
written in a high-level pseudo-code-like language, which
incorporates non-determinism and higher-level abstrac-
tions (e.g., data structures like sets and lists, rather than
raw bytes of disk/memory). The specification code indi-
rectly describes how f modifies the state. This approach
is used by selL4 [20], and in the context of file systems by
BilbyFS [1] and VFES [9].

function CREATE(dirpath, filename)
if « then CRASH
dir < LOOKUP(dirpath)
if filename € dir then
ret <— EEXIST
else
f < new FILE
dir < dir U {filename — f}
ret <— OK
if « then CRASH
return ret

Figure 2: Behavioral specification for an atomic create.

Figure 2 shows a sketch of a specification for file
creation, inspired by specifications from BilbyFS and
VES; for now, ignore the crash statements. Here, dir is a
dictionary mapping directory entries to files, which avoids
having to reason about the low-level layout of a directory
on disk. Of course, the proof has to demonstrate that the
implementation follows this abstract specification.

Hoare logic.  Instead of specifying that the real imple-
mentation of f is equivalent to some abstract implementa-
tion of f, Hoare logic [10, 15] reasons about what predi-

cates hold before and after f runs. Hoare specifications
are written as {pre} f {post}, meaning that, if precondi-
tion pre holds before function f runs, then postcondition
post will be true afterwards. Unlike the approaches we
sketcher earlier, the specification is exactly the theorem
that needs to be proved about the implementation: for
any state that matches pre, the result after running f’s
implementation will match post. Hoare logic is used in
Verve [39], IronClad [13], and Bedrock [4].

{ rep(tree) }
create(dirpath, filename)
{ ret = Err A rep(tree) V
ret = OK A rep(tree’)
where tree’ = tree_upd( tree, dirpath, filename) }
AFTER RECOVERY USING log_recover
{ rep(tree) V rep(tree’)
where tree’ = tree_upd( tree, dirpath, filename) }

Figure 3: Hoare-style specification for create using crash
predicates and recovery execution semantics.

For example, Figure 3 shows the Hoare specification
for create; for now, ignore the “after recovery” portion.
Here, rep(tree) is a predicate that describes the state
of the disk corresponding to a logical tree structure tree
(e.g., using separation logic [30] to precisely describe the
on-disk state) and tree_upd is a function that adds a new
entry to this logical tree.

Domain-specific languages.  An approach commonly
used in the programming languages community is to in-
troduce a domain-specific language (DSL) to represent
the high-level interface exported by some module (e.g., a
file system). Formalizing the specification involves writ-
ing down precise semantics for this language, including
a logical model of the state, how a program executes in
this language, and how each primitive operation in this
language (e.g., create) affects the logical state; these are
typically written down as small-step semantics [21]. This
approach is used by the CompCert compiler [21] and the
CertiKOS operating system [ 2].

In this approach, an implementation is a compiler that
takes a program written in one language (e.g., the system
call interface) and translates it into a lower-level language
(e.g., another DSL that supports reading and writing disk
blocks). Proving the correctness of an implementation
entails establishing a correspondence between the high-
level and low-level DSLs, and proving that a translated
program running in the low-level DSL behaves exactly
as the original program interpreted according to the high-
level DSL’s semantics.

For example, Figure 4 shows a sketch of a specifi-
cation for a DSL that includes a create operation. The
semantics of a DSL is essentially a simple reference im-
plementation as an interpreter. Here we write the inter-
preter in OCaml notation, though implementations com-



let rec interpreter ((program : dsl_program),
(state : tree)) : retCode * tree =
match program with
Create (dirpath, filename) ->
nondeterministic_choice:
(Err, state)
|| (OK, tree_upd (state, dirpath, filename))
| (* ...other operations here... *)
| Sequence (progl, prog2) ->
let (retl, statel) = interpreter (progl, state) in
interpreter (prog2 (retl), statel)

Figure 4: Sketch of a DSL-style specification for create.

monly use logic programs in the style of Prolog (otherwise
known as operational semantics). The example recur-
sive interpreter here makes crucial use of an imaginary
nondeterministic_choice construct in OCaml, which
allows us to say that some piece of code goes down one of
several control-flow paths unpredictably. The particular
use of nondeterminism here is to say that any system call
may fail (here, return Err) for any reason; but we also
specify which state change occurs in both the error case
(here, no change) and the success case (here, returning OK,
accompanied by an updated file-system state).

Other approaches.  The list above is not exhaustive in
its coverage of ways to specify and verify the correctness
of a system. One notable alternative, used by model check-
ing [8] and synthesis [32], is to express specifications as
a series of assertions, written in the same programming
language as the program being verified. Verification boils
down to ensuring that the assertions are never triggered.

4 CERTIFYING CRASH SAFETY

In order to reason about crashes using any of the specifi-
cations from §3, we have to address three key questions:
(1) How to specify the failure model at the low level?; (2)
How to capture semantics in case of crashes at the high
level?; and (3) How to reason about recovery logic that
runs after a crash before the system resumes operation
(e.g., log recovery)?

Traces. Modeling both low- and high-level crashes
with traces is, at some level, straightforward. We intro-
duce a new event that can show up in a trace, crash, which
signifies that the machine crashed, and specifications still
reason about which traces (now including crash) are valid.
Figure 1(a) shows an example of a valid trace of disk
block operations involving a crash; here, open is allowed
to return either OK or ENOENT because the file might or
might not have been created when the crash occurred.
One difficulty with traces comes from reasoning about
state, which is not made explicit. For example, Figure 1(b)
shows a trace that is not valid: once a system crashes in
the middle of create, it commits to some state—either
the create happened or not—and should not change after

future crashes. Capturing this can be tedious without an
explicit notion of state, and we made several such mis-
takes in our trace-based file-system specification attempts.

Reasoning about recovery functions with traces boils
down to treating the crash event as an implicit invoca-
tion of some recovery code. The recovery code could
finish, represented by another event in the trace, or the
machine could crash before recovery finishes, represented
by another crash event.

Behavioral. There are several ways to reason about
crashes in the behavioral approach. One plan is to intro-
duce a crash statement that represents the system crash-
ing. A specification can describe possible crash points
by inserting non-deterministic calls to crash. At the low
level, a specification can capture the notion of atomic sec-
tor writes by introducing non-deterministic crash calls
before and after updating the disk state in the disk write
function. At the high level, a specification can capture the
notion of an atomic system call by non-deterministically
calling crash just at the beginning and end of an oper-
ation, as shown in Figure 2. Reasoning about recovery
boils down to associating some function with the crash
statement, which can then be thought of as a goto state-
ment to that function.

Inserting crash statements is a good fit for specifying
operations that are atomic with respect to crashes. How-
ever, it is awkward to use the crash statement to specify
more complex crash scenarios, where the crash state does
not correspond to any point in the pseudocode. For in-
stance, consider the specification in Figure 2, where the
new file is initialized before the directory entry is added.
There is no easy way to add a crash statement to model a
possible crash scenario where the directory entry has been
added but the new file has not been initialized, which can
happen with asynchronous disk writes.

An alternative way to model crashes in behaviors,
explored by Pfihler et al [28], is to reason about logical
sets of all possible states after a crash. The specification
can then non-deterministically select one of the states
after a crash. Reasoning about recovery can probably be
done in a similar way to the crash statement, although
Pfahler, Schellhorn, et al have only shown that this works
for recovering in-memory state, and it is not clear if this
works for recovering the on-disk contents [34].

Hoare logic.  To reason about crashes in Hoare logic,
we came up with the notion of a crash predicate, which
describes all possible states in which a program might
crash. For example, consider a function write_pair that
writes to two disk blocks. Figure 5 shows our crash-
predicate-style specification for this function, assuming
that the two blocks are distinct, and that each block write
is itself atomic. The crash predicate enables us to specify
both low-level failure model (in the crash condition of the



disk write function) and high-level crash semantics (by
describing the states in which the system might crash).

{ diSk[ao} = X0 N\ disk[al} = xl}
write_pair(ay, vo,a,vi)
{ disk[ag] = vo A disk[a;] = v}
AFTER CRASH: { disk[ag] = xo A disk[a;] = x;V
disk[ag] = vo A disk[a;] = x;V
disk[ag] = vo A disk|a;] = v }
Figure 5: Hoare logic specification with crash predicates
for a function that writes to two disk blocks.

To reason about recovery, we came up with a new
recovery execution semantics that captures both the notion
of crashes and of jumps to recovery code. This enables us
to write specifications such as the one shown in Figure 3,
which says that the entire create system call is atomic,
after the recovery function runs (and cleans up non-atomic
intermediate states).

One downside of this approach above is that it requires
modifying the Hoare logic and the execution semantics
to model crashes. This would be a non-trivial change for
an existing system like Dafny [3 1], which has been built
around traditional Hoare logic and execution semantics.

An alternative approach is to model crashes as non-
deterministic calls to a crash function, much as we sug-
gested earlier for behavioral specifications. In this plan,
the crash predicate effectively becomes the precondition
of the crash function. However, this approach does not
let the developer specify different crash predicates for
different functions, and does not directly allow reasoning
about recovery.

Domain-specific languages.  To model crashes in the
DSL approach, we added crashes to the execution seman-
tics of each language, much as described above in Hoare
logic. One downside of DSLs is the fact that the notion of
crashes has to be explicitly incorporated into each DSL
(e.g., low-level disk, top-level file-system API, interme-
diate inode and directory APIs, etc). For instance, to add
crashes to Figure 4, we had to add an extra nondetermin-
istic choice at the top level of the interpreter, to either
crash or run the usual code for the first instruction of the
program. Such a change captures crash phenomena like
losing some pending writes.

Another complexity is that it can be difficult to reason
about recovery logic, because some intermediate states
might not be representable in the top-level DSL. For in-
stance, suppose that create crashes after allocating an
inode but before adding it to a directory. There may be
no way to describe this state in the top-level DSL, if it
reasons about the state as a complete tree. As a result,
we found no easy way to reason about programs with-
out considering the recovery function, and found this to
be a significant source of complexity. This motivated us

Bug class Traces Behavior Hoare DSL
Sequential bugs N Y Y Y
Concurrency Y N N N
Recovery N N Y Y
Mis-using txns Y Y Y Y

Figure 6: Evaluating whether a proof approach is a good
match for reasoning about a bug category.

to split the crash predicate from the recovery execution
semantics in our design, as described above.

5 EVALUATION

This section qualitatively evaluates how well the different
specification approaches achieve our three goals: prevent-
ing real bugs, enabling proof automation, and allowing
for modularity. Although it’s difficult to give hard evi-
dence for any of these results, our results are based on our
experience trying to implement a file system using several
of these approaches, as well as some speculation, since
we did not build a complete system with each approach.

5.1 Bugs

Figure 6 summarizes our qualitative experience by indi-
cating which specification approaches are a good match
for reasoning about the classes of bugs we introduced
in §2. We find that traces are a natural fit for reasoning
about concurrency and about prefix properties (e.g., using
transactions). No other approach is as good of a match for
reasoning about concurrency. On the other hand, traces
do not help much for sequential bugs and transaction in-
ternals, because they are not a good match for reasoning
about state. Behavioral specs are a good fit for sequen-
tial bugs and for ensuring the transactional API is used
correctly. However, they have trouble reasoning about
asynchronous disk writes, which arise in the internals of
a logging system or recovering on-disk state. The chal-
lenge comes from out-of-order writes, which result in
crash states that do not correspond to any sequential exe-
cution of a prefix of the behavioral spec. Hoare logic and
DSLs can handle most bug classes except for concurrency.
(Many concurrent extensions of Hoare logic have been
developed [ 16, 27], but the formal-methods community
has yet to converge on the one appropriate base strategy,
to the extent that it has for the foundation of sequential
program verification that we have adopted.)
Additionally, we found that significant care is needed
when writing specifications; even if a specification ap-
proach is a good match, it is easy to write an incomplete
specification that does not eliminate the possibility of
some bugs. For example, in order to ensure that proper
error codes are returned, the specification has to precisely
define what error code is appropriate in every situation.



One way to ensure that a specification is good enough
is to try to use it in the next level up (e.g., building an
application on top of a file system) and prove application-
level properties using the underlying spec. For example,
our initial specification for file writes forgot to mention
that file attributes (e.g., inode type) were preserved. We
discovered this while proving a stronger property (that
the entire file system formed a tree).

We found it cumbersome to write liveness specifica-
tions. For instance, our current specs do not exclude bugs
where the file system returns an out-of-space error despite
there being available resources. Instead, our specification
allows all writes to return ENOSPC. Similarly, it is easy to
write specifications that could lose resources (e.g., losing
track of a disk block if a crash occurs at an inopportune
time). Separation logic [30] helps avoid such bugs.

5.2 Proof effort and automation

We found that for traces and behavioral specifications,
proofs are mostly manual, which mirrors the experience
reported by seL.4 developers in their proof effort [20].

The Hoare-style approach is more amenable to au-
tomation, because it has clear, mechanical rules for how
to reason about programs (e.g., if a program invokes the
disk write function, the proof system can mechanically
determine what predicate holds after the disk write re-
turns, using the specification of the disk write function).
Most systems based on Hoare logic provide significant
automation [4, 5, 13, 31], and we were able to extend
this style of automated reasoning to cover crashes. The
two places where manual effort is required is in defining
loop invariants for every single for loop, and in proving
representation invariants (e.g., that the entire directory
tree is still intact after a directory entry is modified).

DSLs require more proof effort than Hoare logic, be-
cause each DSL introduces its own execution model. This
requires proving that the different execution models are
equivalent, which takes effort (as observed by the Comp-
Cert authors, backward simulation proofs that are neces-
sary to do so are tedious [21]).

5.3 Modularity

We do not have sufficient experience with traces or be-
havioral specifications to say how well they handle mod-
ularity. We expect modularity to be somewhat tricky for
traces, and a reasonable fit for behavioral specs.

With Hoare logic, we believe that introducing crash
predicates and recovery execution semantics was a signifi-
cant improvement for modularity. The alternative, using a
global crash invariant, forces the developer to commit to a
crash invariant early on, and makes it difficult to develop
modules of the file system (e.g., logging, bitmaps, inodes,
directories) in isolation. A further concern is that the
global crash invariant may have to involve the application
using the file system (e.g., a mail server), if the invariant

has to connect the on-disk state (e.g., which files are on
disk) to application-visible state (e.g., which SMTP mes-
sages were acknowledged), which again makes it difficult
to develop modules (and applications) in isolation.

We found that DSLs provide strong modularity, but
also that the hard modularity boundaries can be a bur-
den. For example, we tried to define separate languages
for reasoning about inodes, directories, and data blocks.
However, the strict static partitioning between these lan-
guages, and between the disk blocks used by them, was
at odds with the needs of a file system, where the same
disk blocks can store either file data or directory entries.

5.4 File system

As an end-to-end evaluation, we are building a certified
file system using the Hoare logic approach with crash
predicates and recovery semantics. This approach has
been working out well for us. Our specification eliminates
the possibility of most bugs that we considered in this
paper, except for multi-thread concurrency, which we
do not know how to handle. We find that the Hoare
approach leads to relatively short proofs, that the proof
effort was modest, and that the proofs and specifications
are modular. For example, we were able to change the
design of our logging subsystem without changing any
higher-level code or specifications, and we were able
to add indirect blocks to our file system with similarly
minimal effort.

6 SUMMARY

Specifying crash-safe storage systems is challenging. We
experimented with a number of specification approaches
in developing a certified file system. Although the ap-
proaches share many similarities, we had to discard sev-
eral of them because the approach was not a good match
for our goals: it either failed to capture real bugs, was not
amenable to proof automation, or did not allow for mod-
ularity. After trial and error, we found that Hoare logic
augmented with crash predicates and recovery execution
semantics achieves our goals. An interesting direction
for future work may be integrating the best parts of each
approach, such as integrating a trace-based approach to
concurrency with Hoare logic. We hope the qualitative
discussion and evaluation in this paper helps inform future
work in reasoning about crashes.
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