
Nemesis: Preventing Authentication & Access
Control Vulnerabilities in Web Applications

Michael Dalton, Christos Kozyrakis, and Nickolai Zeldovich
Computer Systems Laboratory CSAIL

Stanford University MIT
{mwdalton, kozyraki}@stanford.edu nickolai@csail.mit.edu

Abstract
This paper presents Nemesis, a novel methodology for

mitigating authentication bypass and access control vul-
nerabilities in existing web applications. Authentication
attacks occur when a web application authenticates users
unsafely, granting access to web clients that lack the ap-
propriate credentials. Access control attacks occur when
an access control check in the web application is incor-
rect or missing, allowing users unauthorized access to
privileged resources such as databases and files. Such
attacks are becoming increasingly common, and have oc-
curred in many high-profile applications, such as IIS [10]
and WordPress [31], as well as 14% of surveyed web
sites [30]. Nevertheless, none of the currently available
tools can fully mitigate these attacks.

Nemesis automatically determines when an application
safely and correctly authenticates users, by using Dy-
namic Information Flow Tracking (DIFT) techniques to
track the flow of user credentials through the application’s
language runtime. Nemesis combines authentication in-
formation with programmer-supplied access control rules
on files and database entries to automatically ensure that
only properly authenticated users are granted access to
any privileged resources or data. A study of seven pop-
ular web applications demonstrates that a prototype of
Nemesis is effective at mitigating attacks, requires little
programmer effort, and imposes minimal runtime over-
head. Finally, we show that Nemesis can also improve the
precision of existing security tools, such as DIFT analy-
ses for SQL injection prevention, by providing runtime
information about user authentication.

1 Introduction

Web applications are becoming increasingly prevalent
because they allow users to access their data from any
computer and to interact and collaborate with each other.
However, exposing these rich interfaces to anyone on the

internet makes web applications an appealing target for
attackers who want to gain access to other users’ data or
resources. Web applications typically address this prob-
lem through access control, which involves authenticating
users that want to gain access to the system, and ensuring
that a user is properly authorized to perform any operation
the server executes on her behalf. In theory, this approach
should ensure that unauthorized attackers cannot subvert
the application.

Unfortunately, experience has shown that many web
applications fail to follow these seemingly simple steps,
with disastrous results. Each web application typically
deploys its own authentication and access control frame-
work. If any flaw exists in the authentication system,
an authentication bypass attack may occur, allowing at-
tackers to become authenticated as a valid user without
having to present that user’s credentials, such as a pass-
word. Similarly, a single missing or incomplete access
control check can allow unauthorized users to access priv-
ileged resources. These attacks can result in the complete
compromise of a web application.

Designing a secure authentication and access control
system in a web application is difficult. Part of the reason
is that the underlying file system and database layers per-
form operations with the privileges of the web application,
rather than with privileges of a specific web application
user. As a result, the web application must have the super-
set of privileges of all of its users. However, much like a
Unix setuid application, it must explicitly check if the
requesting user is authorized to perform each operation
that the application performs on her behalf; otherwise, an
attacker could exploit the web application’s privileges to
access unauthorized resources. This approach is ad-hoc
and brittle, since these checks must be sprinkled through-
out the application code whenever a resource is accessed,
spanning code in multiple modules written by different
developers over a long period of time. It is hard for devel-
opers to keep track of all the security policies that have to
be checked. Worse yet, code written for other applications

1

or third-party libraries with different security assumptions
is often reused without considering the security implica-
tions. In each case, the result is that it’s difficult to ensure
the correct checks are always performed.

It is not surprising, then, that authentication and ac-
cess control vulnerabilities are listed among the top ten
vulnerabilities in 2007 [17], and have been discovered
in high-profile applications such as IIS [10] and Word-
Press [31]. In 2008 alone, 168 authentication and access
control vulnerabilities were reported [28]. A recent survey
of real-world web sites found that over 14% of surveyed
sites were vulnerable to an authentication or access con-
trol bypass attack [30].

Despite the severity of authentication or authorization
bypass attacks, no defensive tools currently exist to au-
tomatically detect or prevent them. The difficulty in ad-
dressing these attacks stems from the fact that most web
applications implement their own user authentication and
authorization systems. Hence, it is hard for an automatic
tool to ensure that the application properly authenticates
all users and only performs operations for which users
have the appropriate authorization.

This paper presents Nemesis,1 a security methodology
that addresses these problems by automatically tracking
when user authentication is performed in web applications
without relying on the safety or correctness of the existing
code. Nemesis can then use this information to automat-
ically enforce access control rules and ensure that only
authorized web application users can access resources
such as files or databases. We can also use the authentica-
tion information to improve the precision of other security
analyses, such as DIFT-based SQL injection protection,
to reduce their false positive rate.

To determine how a web application authenticates
users, Nemesis uses Dynamic Information Flow Tracking
(DIFT) to track the flow of user credentials, such as a user-
name and password, through the application code. The
key insight is that most applications share a similar high-
level design, such as storing usernames and passwords
in a database table. While the details of the authentica-
tion system, such as function names, password hashing
algorithms, and session management vary widely, we can
nonetheless determine when an application authenticates
a user by keeping track of what happens to user creden-
tials at runtime. Once Nemesis detects that a user has
provided appropriate credentials, it creates an additional
HTTP cookie to track subsequent requests issued by the
authenticated user’s browser. Our approach does not re-
quire the behavior of the application to be modified, and
does not require any modifications to the application’s
existing authentication and access control system. Instead,

1Nemesis is the Greek goddess of divine indignation and retribution,
who punishes excessive pride, evil deeds, undeserved happiness, and
the absence of moderation.

Nemesis is designed to secure legacy applications without
requiring them to be rewritten.

To prevent unauthorized access in web applications,
Nemesis combines user authentication information with
authorization policies provided by the application devel-
oper or administrator in the form of access control rules
for various resources in the application, such as files,
directories, and database entries. Nemesis then automati-
cally ensures that these access control rules are enforced
at runtime whenever the resource is accessed by an (au-
thenticated) user. Our approach requires only a small
amount of work from the programmer to specify these
rules—in most applications, less than 100 lines of code.
We expect that explicitly specifying access control rules
per-resource is less error-prone than having to invoke the
access control check each time the resource is accessed,
and having to enumerate all possible avenues of attack.
Furthermore, in applications that support third-party plug-
ins, these access control rules need only be specified once,
and they will automatically apply to code written by all
plugin developers.

By allowing programmers to explicitly specify access
control policies in their applications, and by tying the au-
thentication information to runtime authorization checks,
Nemesis prevents a wide range of authentication and ac-
cess control vulnerabilities seen in today’s applications.
The specific contributions of this paper are as follows:

• We present Nemesis, a methodology for inferring au-
thentication and enforcing access control in existing
web applications, while requiring minimal annota-
tions from the application developers.

• We demonstrate that Nemesis can be used to prevent
authentication and access control vulnerabilities in
modern web applications. Furthermore, we show
that Nemesis can be used to prevent false positives
and improve precision in real-world security tools,
such as SQL injection prevention using DIFT.

• We implement a prototype of Nemesis by modifying
the PHP interpreter. The prototype is used to collect
performance measurements and to evaluate our secu-
rity claims by preventing authentication and access
control attacks on real-world PHP applications.

The remainder of the paper is organized as follows.
Section 2 reviews the security architecture of modern web
applications, and how it relates to common vulnerabilities
and defense mechanisms. We describe our authentication
inference algorithm in Section 3, and discuss our access
control methodology in Section 4. Our PHP-based pro-
totype is discussed in Section 5. Section 6 presents our
experimental results, and Section 7 discusses future work.
Finally, Section 8 discusses related work and Section 9
concludes the paper.

2

2 Web Application Security Architecture

A key problem underlying many security vulnerabilities
is that web application code executes with full privileges
while handling requests on behalf of users that only have
limited privileges, violating the principle of least priv-
ilege [11]. Figure 1 provides a simplified view of the
security architecture of typical web applications today.
As can be seen from the figure, the web application is
performing file and database operations on behalf of users
using its own credentials, and if attackers can trick the
application into performing the wrong operation, they
can subvert the application’s security. Web application
security can thus be viewed as an instance of the confused
deputy problem [9]. The rest of this section discusses this
architecture and its security ramifications in more detail.

2.1 Authentication Overview

When clients first connect to a typical web application,
they supply an application-specific username and pass-
word. The web application then performs an authenti-
cation check, ensuring that the username and password
are valid. Once a user’s credentials have been validated,
the web application creates a login session for the user.
This allows the user to access the web application without
having to log in each time a new page is accessed. Lo-
gin sessions are created either by placing authentication
information directly in a cookie that is returned to the
user, or by storing authentication information in a ses-
sion file stored on the server and returning a cookie to
the user containing a random, unique session identifier.
Thus, a user request is deemed to be authenticated if the
request includes a cookie with valid authentication infor-
mation or session identifier, or if it directly includes a
valid username and password.

Once the application establishes a login session for a
user, it allows the user to issue requests, such as posting
comments on a blog, which might insert a row into a
database table, or uploading a picture, which might re-
quire a file to be written on the server. However, there is
a semantic gap between the user authentication mecha-
nism implemented by the web application, and the access
control or authorization mechanism implemented by the
lower layers, such as a SQL database or the file system.
The lower layers in the system usually have no notion
of application-level users; instead, database and file op-
erations are usually performed with the privileges and
credentials of the web application itself.

Consider the example shown in Figure 1, where the
web application writes the file uploaded by user Bob to
the local file system and inserts a row into the database
to keep track of the file. The file system is not aware
of any authentication performed by the web application

or web server, and treats all operations as coming from
the web application itself (e.g. running as the Apache
user in Unix). Since the web application has access to
every user’s file, it must perform internal checks to en-
sure that Bob hasn’t tricked it into overwriting some other
user’s file, or otherwise performing an unauthorized oper-
ation. Likewise, database operations are performed using
a per-web application database username and password
provided by the system administrator, which authenticates
the web application as user webdb to MySQL. Much like
the filesystem layer, MySQL has no knowledge of any
authentication performed by the web application, inter-
preting all actions sent by the web application as coming
from the highly-privileged webdb user.

2.2 Authentication & Access Control At-
tacks

The fragile security architecture in today’s web appli-
cations leads to two common problems, authentication
bypass and access control check vulnerabilities.

Authentication bypass attacks occur when an attacker
can fool the application into treating his or her requests
as coming from an authenticated user, without having to
present that user’s credentials, such as a password. A
typical example of an authentication bypass vulnerability
involves storing authentication state in an HTTP cookie
without performing any server-side validation to ensure
that the client-supplied cookie is valid. For example,
many vulnerable web applications store only the user-
name in the client’s cookie when creating a new login
session. A malicious user can then edit this cookie to
change the username to the administrator, obtaining full
administrator access. Even this seemingly simple problem
affects many applications, including PHP iCalendar [20]
and phpFastNews [19], both of which are discussed in
more detail in the evaluation section.

Access control check vulnerabilities occur when an
access check is missing or incorrectly performed in the
application code, allowing an attacker to execute server-
side operations that she might not be otherwise autho-
rized to perform. For example, a web application may
be compromised by an invalid access control check if an
administrative control panel script does not verify that the
web client is authenticated as the admin user. A malicious
user can then use this script to reset other passwords, or
even perform arbitrary SQL queries, depending on the
contents of the script. These problems have been found
in numerous applications, such as PhpStat [21].

Authentication and access control attacks often result in
the same unfettered file and database access as traditional
input validation vulnerabilities such as SQL injection and
directory traversal. However, authentication and access
control bugs are more difficult to detect, because their

3

Client
Browser

Web
App

MySql User: webdb
Op: INSERT into pictbl

FS User: apache
Op: Write pic1092.jpg

Web User: Bob Password: ***
Op: Upload Picture

Web Server

FS

DB

Figure 1: The security architecture of typical web applications. Here, user Bob uploads a picture to a web application, which in turn inserts data into
a database and creates a file. The user annotation above each arrow indicates the credentials or privileges used to issue each operation or request.

logic is application-specific, and they do not follow simple
patterns that can be detected by simple analysis tools.

2.3 Other Web Application Attacks

Authentication and access control also play an important,
but less direct role, in SQL injection [27], command in-
jection, and directory traversal attacks. For example, the
PHP code in Figure 2 places user-supplied search parame-
ters into a SQL query without performing any sanitization
checks. This can result in a SQL injection vulnerability;
a malicious user could exploit it to execute arbitrary SQL
statements on the database. The general approach to ad-
dressing these attacks is to validate all user input before
it is used in any filesystem or database operations, and to
disallow users from directly supplying SQL statements.
These checks occur throughout the application, and any
missing check can lead to a SQL injection or directory
traversal vulnerability.

However, these kinds of attacks are effective only be-
cause the filesystem and database layers perform all opera-
tions with the privilege level of the web application rather
than the current authenticated webapp user. If the filesys-
tem and database access of a webapp user were restricted
only to the resources that the user should legitimately
access, input validation attacks would not be effective
as malicious users would not be able not leverage these
attacks to access unauthorized resources.

Furthermore, privileged users such as site administra-
tors are often allowed to perform operations that could
be interpreted as SQL injection, command injection, or
directory traversal attacks. For example, popular PHP
web applications such as DeluxeBB and phpMyAdmin
allow administrators to execute arbitrary SQL commands.
Alternatively, code in Figure 2 could be safe, as long as
only administrative users are allowed to issue such search
queries. This is the very definition of a SQL injection
attack. However, these SQL injection vulnerabilities can
only be exploited if the application fails to check that the
user is authenticated as the administrator before issuing

the SQL query. Thus, to properly judge whether a SQL
injection attack is occurring, the security system must
know which user is currently authenticated.

3 Authentication Inference

Web applications often have buggy implementations of
authentication and access control, and no two applications
have the exact same authentication framework. Rather
than try to mandate the use of any particular authentica-
tion system, Nemesis prevents authentication and access
control vulnerabilities by automatically inferring when
a user has been safely authenticated, and then using this
authentication information to automatically enforce ac-
cess control rules on web application users. An overview
of Nemesis and how it integrates into a web application
software stack is presented in Figure 3. In this section, we
describe how Nemesis performs authentication inference.

3.1 Shadow Authentication Overview

To prevent authentication bypass attacks, Nemesis must
infer when authentication has occurred without depend-
ing on the correctness of the application authentication
system., which are often buggy or vulnerable. To this end,
Nemesis constructs a shadow authentication system that
works alongside the application’s existing authentication
framework. In order to infer when user authentication
has safely and correctly occurred, Nemesis requires the
application developer to provide one annotation—namely,
where the application stores user names and their known-
good passwords (e.g. in a database table), or what external
function it invokes to authenticate users (e.g. using LDAP
or OpenID). Aside from this annotation, Nemesis is ag-
nostic to the specific hash function or algorithm used to
validate user-supplied credentials.

To determine when a user successfully authenticates,
Nemesis uses Dynamic Information Flow Tracking
(DIFT). In particular, Nemesis keeps track of two bits

4

$res = mysql_query(“SELECT * FROM articles WHERE $_GET['search_criteria']}”)

$res = mysql_query(“SELECT * FROM articles WHERE 1 == 1; DROP ALL TABLES”)

Figure 2: Sample PHP code vulnerable to SQL injection, and the resulting query when a user supplies the underlined, malicious input.

2 tag bits per object to track credentials and taint
Tag propagation on all object operations
Automatic inference of authentication checks

Intercept I/O operations to enforce file ACLs
Intercept, rewrite SQL queries to enforce DB ACLs

ACL
Enforce

Blogging
Application

WebMail
Application

Wiki
Application

DIFT

LEGEND
Web Application

Language Runtime

Nemesis

Figure 3: Overview of Nemesis system architecture

of taint for each data item in the application—a “creden-
tial” taint bit, indicating whether the data item represents
a known-good password or other credential, and a “user
input” taint bit, indicating whether the data item was sup-
plied by the user as part of the HTTP request. User input
includes all values supplied by the untrusted client, such
as HTTP request headers, cookies, POST bodies, and
URL parameters. Taint bits can be stored either per object
(e.g., string), or per byte (e.g., string characters), depend-
ing on the needed level of precision and performance.

Nemesis must also track the flow of authentication cre-
dentials and user input during runtime code execution.
Much like other DIFT systems [8, 15, 16], this is done by
performing taint propagation in the language interpreter.
Nemesis propagates both taint bits at runtime for all data
operations, such as variable assignment, load, store, arith-
metic, and string concatenation. The propagation rule we
enforce is union: a destination operand’s taint bit is set if
it was set in any of the source operands. Since Nemesis
is concerned with inferring authentication rather than ad-
dressing covert channels, implicit taint propagation across
control flow is not considered. The rest of this section
describes how Nemesis uses these two taint bits to infer
when successful authentication has taken place.

3.2 Creating a New Login Session

Web applications commonly authenticate a new user ses-
sion by retrieving a username and password from a storage
location (typically a database) and comparing these cre-
dentials to user input. Other applications may use a dedi-
cated login server such as LDAP or Kerberos, and instead
defer all authentication to the login server by invoking
a special third-party library authentication function. We
must infer and detect both of these authentication types.

As mentioned, Nemesis requires the programmer to
specify where the application stores user credentials
for authentication. Typical applications store password
hashes in a database table, in which case the program-
mer should specify the name of this table and the column
names containing the user names and passwords. For
applications that defer authentication to an external login
server, the programmer must provide Nemesis with the
name of the authentication function (such as ldap login),
as well as which function arguments represent the user-
name and password, and what value the function returns
upon authentication success. In either case, the shadow
authentication system uses this information to determine
when the web application has safely authenticated a user.

5

3.2.1 Direct Password Authentication

When an application performs authentication via direct
password comparisons, the application must read the user-
name and password from an authentication storage lo-
cation, and compare them to the user-supplied authenti-
cation credentials. Whenever the authentication storage
location is read, our shadow authentication system records
the username read as the current user under authentication,
and sets the “credential” taint bit for the password string.
In most web applications, a client can only authenticate
as a single user at any given time. If an application allows
clients to authenticate as multiple users at the same time,
Nemesis would have to be extended to keep track of mul-
tiple candidate usernames, as well as multiple “credential”
taint bits on all data items. However, we are not aware of
a situation in which this occurs in practice.

When data tagged as “user input” is compared to data
tagged as “credentials” using string equality or inequal-
ity operators, we assume that the application is checking
whether a user-supplied password matches the one stored
in the local password database. If the two strings are
found to be equal, Nemesis records the web client as au-
thenticated for the candidate username. We believe this is
an accurate heuristic, because known-good credentials are
the only objects in the system with the “credential” taint
bit set, and only user input has the “user input” taint bit
set. This technique even works when usernames and pass-
words are supplied via URL parameters (such as “magic
URLs” which perform automatic logins in HotCRP) be-
cause all values supplied by clients, including URL pa-
rameters, are tagged as user input.

Tag bits are propagated across all common operations,
allowing Nemesis to support standard password tech-
niques such as cryptographic hashes and salting. Hashing
is supported because cryptographic hash functions consist
of operations such as array access and arithmetic com-
putations, all of which propagate tag bits from inputs to
outputs. Similarly, salting is supported because prepend-
ing a salt to a user-supplied password is done via string
concatenation, an operation that propagates tag bits from
source operands to the destination operand.

This approach allows us to infer user authentication
by detecting when a user input string is compared and
found to be equal to a password. This avoids any internal
knowledge of the application, requiring only that the sys-
tem administrator correctly specify the storage location
of usernames and passwords. A web client will only be
authenticated by our shadow authentication system if they
know the password, because authentication occurs only
when a user-supplied value is equal to a known password.
Thus, our approach does not suffer from authentication
vulnerabilities, such as allowing a user to log in if a magic
URL parameter or cookie value is set.

3.2.2 Deferred Authentication to a Login Server

We use similar logic to detect authentication when using
a login server. The web client is assumed to be authenti-
cated if the third-party authentication function is called
with a username and password marked as “user input”,
and the function returns success. In this case, Neme-
sis sets the authenticated user to the username passed
to this function. Nemesis checks to see if the username
and password passed to this function are tainted in order
to distinguish between credentials supplied by the web
client and credentials supplied internally by the applica-
tion. For example, phpMyAdmin uses MySQL’s built-in
authentication code to both authenticate web clients, and
to authenticate itself to the database for internal database
queries [23]. Credentials used internally by the applica-
tion should not be treated as the client’s credentials, and
Nemesis ensures this by only accepting credentials that
came from the web client. Applications that use single
sign-on systems such as OpenID must use deferred au-
thentication, as the third-party authentication server (e.g.,
OpenID Provider) performs the actual user authentication.

3.3 Resuming a Previous Login Session

As described in Section 2.1, web applications create login
sessions by recording pertinent authentication informa-
tion in cookies. This allows users to authenticate once,
and then access the web application without having to
authenticate each time a new page is loaded. Applications
often write their own custom session management frame-
works, and session management code is responsible for
many authentication bypass vulnerabilities.

Fortunately, Nemesis does not require any per-
application customization for session management. In-
stead, we use an entirely separate session management
framework. When Nemesis infers that user authentica-
tion has occurred (as described earlier in this section),
a new cookie is created to record the shadow authenti-
cation credentials of the current web client. We do not
interpret or attempt to validate any other cookies stored
and used by the web application for session management.
For all intents and purposes, session management in the
web application and Nemesis are orthogonal. We refer to
the cookie used for Nemesis session management as the
shadow cookie. When Nemesis is presented with a valid
shadow cookie, the current shadow authenticated user is
set to the username specified in the cookie.

Shadow authentication cookies contain the shadow
authenticated username of the current web user and an
HMAC of the username computed using a private key kept
on the server. The user cannot edit or change their shadow
authentication cookie because the username HMAC will
no longer match the username itself, and the user does

6

not have the key used to compute the HMAC. This cookie
is returned to the user, and stored along with any other
authentication cookies created by the web application.

Our shadow authentication system detects a user safely
resuming a prior login session if a valid shadow cookie
is presented. The shadow authentication cookie is ver-
ified by recomputing the cookie HMAC based on the
username from the cookie. If the recomputed HMAC
and the HMAC from the cookie are identical, the user is
successfully authenticated by our shadow authentication
system. Nemesis distinguishes between shadow cookies
from multiple applications running on the same server
by using a different HMAC key for each application, and
including a hash derived from the application’s HMAC
key in the name of the cookie.

In practice, when a user resumes a login session, the
web application will validate the user’s cookies and ses-
sion file, and then authorize the user to access a priv-
ileged resource. When the privileged resource access
is attempted, Nemesis will examine the user’s shadow
authentication credentials and search for valid shadow
cookies. If a valid shadow cookie is found and verified to
be safe, the user’s shadow authentication credentials are
updated. Nemesis then performs an access control check
on the shadow authentication credentials using the web
application ACL.

3.4 Registering a New User
The last way a user may authenticate is to register as a
new user. Nemesis infers that new user registration has
occurred when a user is inserted into the authentication
credential storage location. In practice, this is usually a
SQL INSERT statement modifying the user authentica-
tion database table. The inserted username must be tainted
as “user input”, to ensure that this new user addition is
occurring on behalf of the web client, and not because the
web application needed to add a user for internal usage.

Once the username has been extracted and verified as
tainted, the web client is then treated as authenticated
for that username, and the appropriate session files and
shadow authentication cookies are created. For the com-
mon case of a database table, this requires us to parse the
SQL query, and determine if the query is an INSERT into
the user table or not. If so, we extract the username field
from the SQL statement.

3.5 Authentication Bypass Attacks
Shadow authentication information is only updated when
the web client supplies valid user credentials, such as
a password for a web application user, or when a valid
shadow cookie is presented. During authentication bypass
attacks, malicious users are authenticated by the web

application without supplying valid credentials. Thus,
when one of these attacks occurs, the web application
will incorrectly authenticate the malicious web client, but
shadow authentication information will not be updated.

While we could detect authentication bypass attacks by
trying to discern when shadow authentication information
differs from the authenticated state in the web application,
this would depend on internal knowledge of each web
application’s code base. Authentication frameworks are
often complex, and each web application typically cre-
ates its own framework, possibly spreading the current
authentication information among multiple variables and
complex data structures.

Instead, we note that the goal of any authentication
bypass attack is to use the ill-gotten authentication to
obtain unauthorized access to resources. These are exactly
the resources that the current shadow authenticated user is
not permitted to access. As explained in the next section,
we can prevent authentication bypass attacks by detecting
when the current shadow authenticated user tries to obtain
unauthorized access to a system resource such as a file,
directory, or database table.

4 Authorization Enforcement

Both authentication and access control bypass vulnera-
bilities allow an attacker to perform operations that she
would not be otherwise authorized to perform. The previ-
ous section described how Nemesis constructs a shadow
authentication system to keep track of user authentication
information despite application-level bugs. However, the
shadow authentication system alone is not enough to pre-
vent these attacks. This section describes how Nemesis
mitigates the attacks by connecting its shadow authentica-
tion system with an access control system protecting the
web application’s database and file system.

To control what operations any given web user is al-
lowed to perform, Nemesis allows the application de-
veloper to supply access control rules (ACL) for files,
directories, and database objects. Nemesis extends the
core system library so that each database or file operation
performs an ACL check. The ACL check ensures that
the current shadow authenticated user is permitted by the
web application ACL to execute the operation. This en-
forcement prevents access control bypass attacks, because
an attacker exploiting a missing or invalid access control
check to perform a privileged operation will be foiled
when Nemesis enforces the supplied ACL. This also miti-
gates authentication bypass attacks—even if an attacker
can bypass the application’s authentication system (e.g.,
due to a missing check in the application code), Neme-
sis will automatically perform ACL checks against the
username provided by the shadow authentication system,
which is not subject to authentication bypass attacks.

7

4.1 Access Control
In any web application, the authentication framework
plays a critical role in access control decisions. There
are often numerous, complex rules determining which re-
sources (such as files, directories, or database tables, rows,
or fields) can be accessed by a particular user. However,
existing web applications do not have explicit, codified
access control rules. Rather, each application has its own
authentication system, and access control checks are in-
terspersed throughout the application.

For example, many web applications have a privileged
script used to manage the users of the web application.
This script must only be accessed by the web application
administrator, as it will likely contain logic to change the
password of an arbitrary user and perform other privileged
operations. To restrict access appropriately, the beginning
of the script will contain an access control check to ensure
that unauthorized users cannot access script functionality.
This is actually an example of the policy, “only the admin-
istrator may access the admin.php script”, or to rephrase
such a policy in terms of the resources it affects, “only the
administrator may modify the user table in the database”.
This policy is often never explicitly stated within the web
application, and must instead be inferred from the autho-
rization checks in the web application. Nemesis requires
the developer or system administrator to explicitly provide
an access control list based on knowledge of the applica-
tion. Our prototype system and evaluation suggests that,
in practice, this requires little programmer effort while
providing significant security benefits. Note that a single
developer or administrator needs to specify access control
rules. Based on these rules, Nemesis will provide security
checks for all application users.

4.1.1 File Access

Nemesis allows developers to restrict file or directory ac-
cess to a particular shadow authenticated user. For exam-
ple, a news application may only allow the administrator
to update the news spool file. We can also restrict the set
of valid operations that can be performed: read, write, or
append. For directories, read permission is equivalent to
listing the contents of the directory, while write permis-
sion allows files and subdirectories to be created. File
access checks happen before any attempt to open a file or
directory. These ACLs could be expressed by listing the
files and access modes permitted for each user.

4.1.2 SQL Database Access

Nemesis allows web applications to restrict access to SQL
tables. Access control rules specify the user, name of the
SQL database table, and the type of access (INSERT,
SELECT, DELETE, or UPDATE). For each SQL query,

Nemesis must determine what tables will be accessed
by the query, and whether the ACLs permit the user to
perform the desired operation on those tables.

In addition to table-level access control, Nemesis also
allows restricting access to individual rows in a SQL table,
since applications often store data belonging to different
users in the same table.

An ACL for a SQL row works by restricting a given
SQL table to just those rows that should be accessible to
the current user, much like a view in SQL terminology.
Specifically, the ACL maps SQL table names and access
types to an SQL predicate expression involving column
names and values that constrain the kinds of rows the
current user can access, where the values can be either
fixed constants, or the current username from the shadow
authentication system, evaluated at runtime. For example,
a programmer can ensure that a user can only access their
own profile by confining SQL queries on the profile table
to those whose user column matches the current shadow
username.

SELECT ACLs restrict the values returned by a SE-
LECT SQL statement. DELETE and UPDATE query
ACLs restrict the values modified by an UPDATE or
DELETE statement, respectively. To enforce ACLs for
these statements, Nemesis must rewrite the database
query to append the field names and values from the
ACL to the WHERE condition clause of the query. For
example, a query to retrieve a user’s private messages
might be “SELECT * FROM messages WHERE recip-
ient=$current user”, where $current user is supplied by
the application’s authentication system. If attackers could
fool the application’s authentication system into setting
$current user to the name of a different user, they might
be able to retrieve that user’s messages.

Using Nemesis, the programmer can specify an ACL
that only allows SELECTing rows whose sender or recip-
ient column matches the current shadow user. As a result,
if user Bob issues the query, Nemesis will transform it into
the query “SELECT * FROM messages WHERE recipi-
ent=$current user AND (sender=Bob or recipient=Bob)”,
which mitigates any possible authentication bypass attack.

Finally, INSERT statements do not read or modify ex-
isting rows in the database. Thus, access control for
INSERT statements is governed solely by the table access
control rules described earlier. However, sometimes de-
velopers may want to set a particular field to the current
shadow authenticated user when a row is inserted into
a table. Nemesis accomplishes this by rewriting the IN-
SERT query to replace the value of the designated field
with the current shadow authenticated user (or to add an
additional field assignment if the designated field was not
initialized by the INSERT statement).

Modifying INSERT queries has a number of real-world
uses. Many database tables include a field that stores

8

the username of the user who inserted the field. The ad-
ministrator can choose to replace the value of this field
with the shadow authenticated username, so that authen-
tication flaws do not allow users to spoof the owner of a
particular row in the database. For example, in the PHP
forum application DeluxeBB, we can override the author
name field in the table of database posts with the shadow
authenticated username. This prevents malicious clients
from spoofing the author when posting messages, which
can occur if an authentication flaw allows attackers to
authenticate as arbitrary users.

4.2 Enhancing Access Control with DIFT
Web applications often perform actions which are not au-
thorized for the currently authenticated user. For example,
in the PHP image gallery Linpha, users may inform the
web application that they have lost their password. At
this point, the web client is unauthenticated (as they have
no valid password), but the web application changes the
user’s password to a random value, and e-mails the new
password to the user’s e-mail account. While one user
should not generally be allowed to change the password
of a different user, doing so is safe in this case because the
application generates a fresh password not known to the
requesting user, and only sends it via email to the owner’s
address.

One heuristic that helps us distinguish these two cases
in practice is the taint status of the newly-supplied pass-
word. Clearly it would be a bad idea to allow an unauthen-
ticated user to supply the new password for a different
user’s account, and such password values would have the
“user input” taint under Nemesis. At the same time, our
experience suggests that internally-generated passwords,
which do not have the “user input” taint, correspond to
password reset operations, and would be safe to allow.

To support this heuristic, we add one final parameter
to all of the above access control rules: taint status. An
ACL entry may specify, in addition to its other parameters,
taint restrictions for the file contents or database query.
For example, an ACL for Linpha allows the application
to update the password field of the user table regardless
of the authentication status, as long as the query is un-
tainted. If the query is tainted, however, the ACL only
allows updates to the row corresponding to the currently
authenticated user.

4.3 Protecting Authentication Credentials
Additionally, there is one security rule that does not easily
fit into our access control model, yet can be protected via
DIFT. When a web client is authenticating to the web ap-
plication, the application must read user credentials such
as a password and use those credentials to authenticate

the client. However, unauthenticated clients do not have
permission to see passwords. A safe web application will
ensure that these values are never leaked to the client. To
prevent an information leak bug in the web application
from resulting in password disclosure, Nemesis forbids
any object that has the authentication credential DIFT tag
bit set from being returned in any HTTP response. In
our prototype, this rule has resulted in no false positives
in practice. Nevertheless, we can easily modify this rule
to allow passwords for a particular user to be returned
in a HTTP response once the client is authenticated for
that user. For example, this situation could arise if a se-
cure e-mail service used the user’s password to decrypt
e-mails, causing any displayed emails to be tagged with
the password bit.

5 Prototype Implementation

We have implemented a proof-of-concept prototype of
Nemesis by modifying the PHP interpreter. PHP is one of
the most popular languages for web application develop-
ment. However, the overall approach is not tied to PHP by
design, and could be implemented for any other popular
web application programming language. Our prototype is
based on an existing DIFT PHP tainting project [29]. We
extend this work to support authentication inference and
authorization enforcement.

5.1 Tag Management
PHP is a dynamically typed language. Internally, all val-
ues in PHP are instances of a single type of structure
known as a zval, which is stored as a tagged union. In-
tegers, booleans, and strings are all instances of the zval
struct. Aggregate data types such as arrays serve as hash
tables mapping index values to zvals. Symbol tables are
hash tables mapping variable names to zvals.

Our prototype stores taint information at the granular-
ity of a zval object, which can be implemented without
storage overhead in the PHP interpreter. Due to alignment
restrictions enforced by GCC, the zval structure has a few
unused bits, which is sufficient for us to store the two taint
bits required by Nemesis.

By keeping track of taint at the object level, Nemesis
assumes that the application will not combine different
kinds of tagged credentials in the same object (e.g. by con-
catenating passwords from two different users together, or
combining untrusted and authentication-based input into
a single string). While we have found this assumption to
hold in all encountered applications, a byte granularity
tainting approach could be used to avoid this limitation
if needed, and prior work has shown it practical to im-
plement byte-level tainting in PHP [16]. When multiple
objects are combined in our prototype, the result’s taint

9

bits are the union of the taint bits on all inputs. This works
well for combining tainted and untainted data, such as
concatenating an untainted salt with a tainted password
(with the result being tainted), but can produce impre-
cise results when concatenating objects with two different
classes of taint.

User input and password taint is propagated across all
standard PHP operations, such as variable assignment,
arithmetic, and string concatenation. Any value with
password taint is forbidden from being returned to the
user via echo, printf, or other output statements.

5.2 Tag Initialization

Any input from URL parameters (GET, PUT, etc), as well
as from any cookies, is automatically tainted with the
’user input’ taint bit. Currently, password taint initializa-
tion is done by manually inserting the taint initialization
function call as soon as the password enters the system
(e.g., from a database) as we have not yet implemented a
full policy language for automated credential tainting. For
a few of our experiments in Section 6 (phpFastNews, PHP
iCalendar, Bilboblog), the admin password was stored in
a configuration php script that was included by the appli-
cation scripts at runtime. In this case, we instrumented the
configuration script to set the password bit of the admin
password variable in the script.

At the same time as we initialize the password taint,
we also set a global variable to store the candidate user-
name associated with the password, to keep track of the
current username being authenticated. If authentication
succeeds, the shadow authentication system uses this can-
didate username to set the global variable that stores the
shadow authenticated user, as well as to initialize the
shadow cookie. If a client starts authenticating a second
time as a different user, the candidate username is reset
to the new value, but the authenticated username is not
affected until authentication succeeds.

Additionally, due to an implementation artifact in the
PHP setcookie() function, we also record shadow au-
thentication in the PHP built-in session when appropriate.
This is because PHP forbids new cookies to be added
to the HTTP response once the application has placed
part of the HTML body in the response output buffer. In
an application that uses PHP sessions, the cookie only
stores the session ID and all authentication information
is stored in session files on the server. These applications
may output part of the HTML body before authentication
is complete. We correctly handle this case by storing
shadow authentication credentials in the server session
file if the application has begun a PHP session. When val-
idating and recovering shadow cookies for authentication
purposes, we also check the session file associated with
the current user for shadow authentication credentials.

This approach relies on PHP safely storing session files,
but as session files are stored on the server in a temporary
directory, this is a reasonable assumption.

5.3 Authentication Checks
When checking the authentication status of a user, we first
check the global variable that indicates the current shadow
authenticated user. This variable is set if the user has
just begun a new session and been directly authenticated
via password comparison or deferred authentication to
a login server. If this variable is not set, we check to
see if shadow authentication information is stored in the
current session file (if any). Finally, we check to see if the
user has presented a shadow authentication cookie, and if
so we validate the cookie and extract the authentication
credentials. If none of these checks succeeds, the user is
treated as unauthenticated.

5.4 Password Comparison Authentication
Inference

Authentication inference for password comparisons is
performed by modifying the PHP interpreter’s string com-
parison equality and inequality operators. When one of
these string comparisons executes, we perform a check
to see if the two string operands were determined to be
equal. If the strings were equal, we then check their tags,
and if one string has only the authentication credential
tag bit set, and the other string has only the user input
tag bit set, then we determine that a successful shadow
authentication has occurred. In all of our experiments,
only PhpMyAdmin used a form of authentication that did
not rely on password string comparison, and our handling
of this case is discussed in Section 6.

5.5 Access Control Checks
We perform access control checks for files by checking the
current authenticated user against a list of accessible files
(and file modes) on each file access. Similarly, we restrict
SQL queries by checking if the currently authenticated
user is authorized to access the table, and by appending
additional WHERE clause predicates to scope the effect
of the query to rows allowed for the current user.

Due to time constraints, we manually inserted these
checks into applications based on the ACL needed by the
application. ACLs that placed constraints on field values
of a database row required simple query modifications to
test if the field value met the constraints in the ACL.

In a full-fledged design, the SQL queries should be
parsed, analyzed for the appropriate information, and
rewritten if needed to enforce additional security guar-
antees (e.g., restrict rows modified to be only those cre-

10

ated by the current authenticated user). Depending on
the database used, query rewriting may also be partially
or totally implemented using database views and trig-
gers [18, 26].

5.6 SQL Injection
Shadow authentication is necessary to prevent authentica-
tion bypass attacks and enforce our ACL rules. However,
it can also be used to prevent false positives in DIFT SQL
injection protection analyses. The most robust form of
SQL injection protection [27] forbids tainted keywords
or operators, and enforces the rule that tainted data may
never change the parse tree of a query.

Our current approach does not support byte granular-
ity taint, and thus we must approximate this analysis.
We introduce a third taint bit in the zval which we use
to denote user input that may be interpreted as a SQL
keyword or operator. We scan all user input at startup
(GET, POST, COOKIE superglobal arrays, etc) and set
this bit only for those user input values that contain a
SQL keyword or operator. SQL quoting functions, such
as mysql real escape string(), clear this tag bit.
Any attempt to execute a SQL query with the unsafe SQL
tag bit set is reported as a SQL injection attack.

We use this SQL injection policy to confirm that DIFT
SQL Injection has false positives and real-world web ap-
plications. This is because DIFT treats all user input as
untrusted, but some web applications allow privileged
users such as the admin to submit full SQL queries. As
discussed in Section 6, we eliminate all encountered false
positives using authentication policies which restrict SQL
injection protection to users that are not shadow authen-
ticated as the admin user. We have confirmed that all of
these false positives are due to a lack of authentication
information, and not due to any approximations made in
our SQL injection protection implementation.

6 Experimental Results

To validate Nemesis, we used our prototype to protect
a wide range of vulnerable real-world PHP applications
from authentication and access control bypass attacks. A
summary of the applications and their vulnerabilities is
given in Table 1, along with the lines of code that were
added or modified in order to protect them.

For each application, we had to specify where the ap-
plication stores its username and password database, or
what function it invokes to authenticate users. This step is
quite simple for all applications, and the “authentication
inference” column indicates the amount of code we had to
add to each application to specify the table used to store
known-good passwords, and to taint the passwords with
the “credential” taint bit.

We also specified ACLs on files and database tables
to protect them from unauthorized accesses; the number
of access control rules for each application is shown in
the table. As explained in Section 5, we currently enforce
ACLs via explicitly inserted checks, which slightly in-
creases the lines of code needed to implement the check
(shown in the table as well). As we develop a full MySQL
parser and query rewriter, we expect the lines of code
needed for these checks to drop further.

We validated our rules by using each web application
extensively to ensure there are no false positives, and then
verifying that our rules prevented real-world attacks that
have been found in these applications in the past. We also
verified that our shadow authentication information is able
to prevent false positives in DIFT SQL injection analyses
for both the DeluxeBB and phpMyAdmin applications.

6.1 PHP iCalendar

PHP iCalendar is a PHP web application for presenting
calendar information to users. The webapp administra-
tor is authenticated using a configuration file that stores
the admin username and password. Our ACL for PHP
iCalendar allows users read access to various template
files, language files, and all of the calendars. In addition,
caches containing parsed calendars can be read or written
by any user. The admin user is able to write, create, and
delete calendar files, as well as read any uploaded calen-
dars from the uploads directory. We added 8 authorization
checks to enforce our ACL for PHP iCalendar.

An authentication bypass vulnerability occurs in PHP
iCalendar because a script in the admin subdirectory in-
correctly validates a login cookie when resuming a ses-
sion [20]. This vulnerability allows a malicious user to
forge a cookie that will cause her to be authenticated as
the admin user.

Using Nemesis, when an attacker attempts to exploit
the authentication bypass attack, she will find that her
shadow authentication username is not affected by the
attack. This is because shadow authentication uses its
own secure form of cookie authentication, and stores its
credentials separately from the rest of the web application.
When the attacker attempts to use the admin scripts to
perform any actions that require admin access, such as
deleting a calendar, a security violation is reported be-
cause the shadow authentication username will not be
’admin’, and the ACL will prevent that username from
performing administrative operations.

6.2 Phpstat

Phpstat is an application for presenting a database of IM
statistics to users, such as summaries and logs of their IM

11

Program LoC LoC for Number of LoC for Vulnerability
in program auth inference ACL checks ACL checks prevented

PHP iCalendar 13500 3 8 22 Authentication bypass
phpStat (IM Stats) 12700 3 10 17 Missing access check

Bilboblog 2000 3 4 11 Invalid access check
phpFastNews 500 5 2 17 Authentication bypass

Linpha Image Gallery 50000 15 17 49 Authentication bypass
DeluxeBB Web Forum 22000 6 82 143 Missing access check

Table 1: Applications used to evaluate Nemesis.

conversations. Phpstat stores its authentication credentials
in a database table.

The access control list for PhpStat allows users to read
and write various cache files, as well as read the statistics
database tables. Users may also read profile information
about any other user, but the value of the password field
may never be sent back to the Web client. The administra-
tive user is also allowed to create users by inserting into
or updating the users table, as well as all of the various
statistics tables. We added 10 authorization checks to
enforce our ACL for PhpStat.

A security vulnerability exists in PhpStat because an
installation script will reset the administrator password if
a particular URL parameter is given. This behavior occurs
without any access control checks, allowing any user to
reset the admin password to a user-specified value [21].
Successful exploitation grants the attacker full adminis-
trative privileges to the Phpstat. Using Nemesis, when
this attack occurs, the attacker will not be shadow au-
thenticated as the admin, and any attempts to execute
a SQL query that changes the password of the adminis-
trator are denied by our ACL rules. Only users shadow
authenticated as the admin may change passwords.

6.3 Bilboblog

Bilboblog is a simple PHP blogging application that au-
thenticates its administrator using a username and pass-
word from a configuration file.

Our ACL for bilboblog permits all users to read and
write blog caching directories, and read any posted articles
from the article database table. Only the administrator is
allowed to modify or insert new entries into the articles
database table. Bilboblog has an invalid access control
check vulnerability because one of its scripts, if directly
accessed, uses uninitialized variables to authenticate the
admin user [3]. We added 4 access control checks to
enforce our ACL for bilboblog.

In PHP, if the register globals option is set, unini-
tialized variables may be initialized at startup by user-
supplied URL parameters [22]. This allows a malicious
user to supply the administrator username and password

that the login will be authenticated against. The attacker
may simply choose a username and password, access
the login script with these credentials encoded as URL
parameters, and then input the same username and pass-
word when prompted by the script. This attack grants the
attacker full administrative access to Bilboblog.

This kind of attack does not affect shadow authentica-
tion. A user is shadow authenticated only if their input
is compared against a valid password. This attack in-
stead compares user input against a URL parameter. URL
parameters do not have the password bit set – only pass-
words read from the configuration do. Thus, no shadow
authentication occurs when this attack succeeds. If an
attacker exploits this vulnerability on a system protected
by our prototype, she will find herself unable to perform
any privileged actions as the admin user. Any attempt
to update, delete, or modify an article will be prevented
by our prototype, as the current user will not be shadow
authenticated as the administrator.

6.4 phpFastNews

PhpFastNews is a PHP application for displaying news
stories. It performs authentication via a configuration
file with username and password information. This web
application displays a news spool to users. Our ACL for
phpFastNews allows users to read the news spool, and
restricts write access to the administrator. We added 2 ac-
cess control checks to enforce our ACL for phpFastNews.

An authentication bypass vulnerability occurs in php-
FastNews due to insecure cookie validation [19], much
like in PHP iCalendar. If a particular cookie value is set,
the user is automatically authenticated as the administra-
tor without supplying the administrator’s password. All
the attacker must do is forge the appropriate cookie, and
full admin access is granted.

Using Nemesis, when the authentication bypass attack
occurs, our prototype will prevent any attempt to perform
administrator-restricted actions such as updating the news
spool because the current user is not shadow authenticated
as the admin.

12

6.5 Linpha

Linpha is a PHP web gallery application, used to display
directories of images to web users. It authenticates its
users via a database table.

Our ACL for Linpha allows users to read files from the
images directory, read and write files in the temporary and
cache directories, and insert entries into the thumbnails
table. Users may also read from the various settings,
group, and configuration tables. The administrator may
update or insert into the users table, as well as the settings,
groups, and categories tables. Dealing with access by non-
admin users to the user table is the most complex part of
the Linpha ACL, and is our first example of a database
row ACL. Any user may read from the user table, with
the usual restriction that passwords may never be output
to the Web client via echo, print, or related commands.

Users may also update entries in the user table. Up-
dating the password field must be restricted so that a
malicious user cannot update the other passwords. This
safety restriction can be enforced by ensuring that only
user table rows that have a username field equal to the
current shadow authenticated user can be modified. The
exception to this rule is when the new password is un-
tainted. This can occur only when the web application
has internally generated the new user password without
using user input. We allow these queries even when they
affect the password of a user that is not the current shadow
authenticated user because they are used for lost password
recovery.

In Linpha, users may lose their password, in which case
Linpha resets their password to an internally generated
value, and e-mails this password to the user. This causes
an arbitrary user’s password to be changed on the behalf
of a user who isn’t even authenticated. However, we
can distinguish this safe and reasonable behavior from an
attack by a user attempting to change another user’s pass-
word by examining the taint of the new password value
in the SQL query. Thus, we allow non-admin users to
update the password field of the user table if the password
query is untainted, or if the username of the modified row
is equal to the current shadow authenticated user. Overall,
we added 17 authorization checks to enforce all of our
ACLs for Linpha.

Linpha also has an authentication bypass vulnerability
because one of its scripts has a SQL injection vulnerabil-
ity in the SQL query used to validate login information
from user cookies [13]. Successful exploitation of this
vulnerability grants the attacker full administrative access
to Linpha. For this experiment, we disabled SQL injection
protection provided by the tainting framework we used
to implement the Nemesis prototype [29], to allow the
user to submit a malicious SQL query in order to bypass
authentication entirely.

Using Nemesis, once a user has exploited this authen-
tication bypass vulnerability, she may access the various
administration scripts. However, any attempt to actually
use these scripts to perform activities that are reserved
for the admin user will fail, because the current shadow
authenticated user will not be set to admin, and our ACLs
will correspondingly deny any admin-restricted actions.

6.6 DeluxeBB

DeluxeBB is a PHP web forum application that supports a
wide range of features, such as an administration console,
multiple forums, and private message communication
between forum users. Authentication is performed using
a table from a MySQL database.

DeluxeBB has the most intricate ACL of any appli-
cation in our experiments. All users in DeluxeBB may
read and write files in the attachment directory, and the
admin user may also write to system log files. Non-admin
users in DeluxeBB may read the various configuration
and settings tables. Admin users can also write these ta-
bles, as well as perform unrestricted modifications to the
user table. DeluxeBB treats user table updates and lost
password modifications in the same manner as Linpha,
and we use the equivalent ACL to protect the user table
from non-admin modifications and updates.

DeluxeBB allows unauthenticated users to register via
a form, and thus unauthenticated users are allowed to
perform inserts into the user table. As described in Sec-
tion 3.4, inserting a user into the user table results in
shadow authentication with the credentials of the inserted
user.

The novel and interesting part of the ACLs for
DeluxeBB are the treatment of posts, thread creation,
and private messages. All inserts into the post, thread
creation, or private message tables are rewritten to use the
shadow authenticated user as the value for the author field
(or the sender field, in the case of a private message). The
only exception is when a query is totally untainted. For
example, when a new user registers, a welcome message
is sent from a fake system mailer user. As this query is
totally untainted, we allow it to be inserted into the pri-
vate message table, despite the fact that the identity of the
sender is clearly forged. We added fields to the post and
thread tables to store the username of the current shadow
authenticated user, as these tables did not directly store
the author’s username. We then explicitly instrumented
all SQL INSERT statements into these tables to append
this information accordingly.

Any user may read from the thread or post databases.
However, our ACL rules further constrain reads from the
private message database. A row may only be read from
the private message database if the ’from’ or ’to’ fields of
the row are equal to the current shadow authenticated user.

13

We manually instrumented all SELECT queries from the
private message table to add this condition to the WHERE
clause of the query. In total, we modified 16 SQL queries
to enforce both our private message protection and our
INSERT rules to prevent spoofing messages, threads, and
posts. We also inserted 82 authorization checks to enforce
the rest of the ACL.

A vulnerability exists in the private message script
of this application [6]. This script incorrectly validates
cookies, missing a vital authentication check. This allows
an attacker to forge a cookie and be treated as an arbitrary
web application user by the script. Successful exploitation
of this vulnerability gives an attacker the ability to access
any user’s private messages.

Using Nemesis, when this attack is exploited, the at-
tacker can fool the private message script into thinking he
is an arbitrary user due to a missing access control check.
The shadow authentication for the attack still has the last
safe, correct authenticated username, and is not affected
by the attack. Thus, the attacker is unable to access any
unauthorized messages, because our ACL rules only allow
a user to retrieve messages from the private message table
when the sender or recipient field of the message is equal
to the current shadow authenticated user. Similarly, the
attacker cannot abuse the private message script to forge
messages, as our ACLs constrain any messages inserted
into the private message table to have the sender field set
to the current shadow authenticated username.

DeluxeBB allows admin users to execute arbitrary SQL
queries. We verified that this results in false positives in
existing DIFT SQL injection protection analyses. After
adding an ACL allowing SQL injection for web clients
shadow authenticated as the admin user, all SQL injection
false positives were eliminated.

6.7 PhpMyAdmin

PhpMyAdmin is a popular web application used to re-
motely administer and manage MySQL databases. This
application does not build its own authentication sys-
tem; instead, it checks usernames and passwords against
MySQL’s own user database. A web client is validated
only if the underlying MySQL database accepts their user-
name and password.

We treat the MySQL database connection function
as a third-party authentication function as detailed in
Section 3.2.2. We instrumented the call to the MySQL
database connection function to perform shadow authenti-
cation, authenticating a user if the username and password
supplied to the database are both tainted, and if the login
was successful.

The ACL for phpMyAdmin is very different from other
web applications, as phpMyAdmin is intended to provide
an authenticated user with unrestricted access to the un-

derlying database. The only ACL we include is a rule
allowing authenticated users to submit full SQL database
queries. We implemented this by modifying our SQL
injection protection policy defined in Section 5.6 to treat
tainted SQL operators in user input as unsafe only when
the current user was unauthenticated. Without this pol-
icy, any attempt to submit a query as an authenticated
user results in a false positive in the DIFT SQL injection
protection policy. We confirmed that adding this ACL
removes all observed SQL injection false positives, while
still preventing unauthenticated users from submitting
SQL queries.

6.8 Performance
We also performed performance tests on our prototype im-
plementation, measuring overhead against an unmodified
version of PHP. We used the bench.php microbenchmark
distributed with PHP, where our overhead was 2.9% com-
pared to unmodified PHP. This is on par with prior results
reported by object-level PHP tainting projects [29]. How-
ever, bench.php is a microbenchmark which performs
CPU-intensive operations. Web applications often are
network or I/O-bound, reducing the real-world perfor-
mance impact of our information flow tracking and access
checks.

To measure performance overhead of our prototype
for web applications, we used the Rice University Bid-
ding System (RUBiS) [24]. RUBiS is a web application
benchmark suite, and has a PHP implementation that is
approximately 2,100 lines of code. Our ACL for RU-
BiS prevents users from impersonating another user when
placing bids, purchasing an item, or posting a bid com-
ment. Three access checks were added to enforce this
ACL. We compared latency and throughput for our pro-
totype and an unmodified PHP, and found no discernible
performance overhead.

7 Future Work

There is much opportunity for further research in pre-
venting authentication bypass attacks. A fully developed,
robust policy language for expressing access control in
web applications must be developed. This will require
support for SQL query rewriting, which can be imple-
mented by developing a full SQL query parser or by using
database table views and triggers similar to the approach
described in [18].

Additionally, all of our ACL rules are derived from
real-world behavior observed when using the web appli-
cation. While we currently generate such ACLs manually,
it should be possible to create candidate ACLs automati-
cally. A log of all database and file operations, as well as
the current shadow authenticated user at the time of the

14

operation, would be recorded. Using statistical techniques
such as machine learning [14], this log could be analyzed
and access control files generated based on application
behavior. This would allow system administrators to au-
tomatically generate candidate ACL lists for their web
applications without a precise understanding of the access
control rules used internally by the webapp.

8 Related Work

Preventing web authentication and authorization vulner-
abilities is a relatively new area of research. The only
other work in this area of which we are aware is the
CLAMP research project [18]. CLAMP prevents autho-
rization vulnerabilities in web applications by migrating
the user authentication module of a web application into
a separate, trusted virtual machine (VM). Each new login
session forks a new, untrusted session VM and forwards
any authentication credentials to the authentication VM.
Authorization vulnerabilities are prevented by a trusted
query restricter VM which interposes on all session VM
database accesses, examining queries to enforce the ap-
propriate ACLs using the username supplied by the au-
thentication VM.

In contrast to Nemesis, CLAMP does not prevent au-
thentication vulnerabilities as the application authentica-
tion code is part of the trusted user authentication VM.
CLAMP also cannot support access control policies that
require taint information as it does not use DIFT. Further-
more, CLAMP requires a new VM to be forked when
a user session is created, and experimental results show
that one CPU core could only fork two CLAMP VMs per
second. This causes significant performance degradation
for throughput-driven, multi-user web applications that
have many simultaneous user sessions.

Researchers have extensively explored the use of DIFT
to prevent security vulnerabilities. Robust defenses
against SQL injection [15, 27], cross-site scripting [25],
buffer overflows [5] and other attacks have all been pro-
posed. DIFT has been used to prevent security vulner-
abilities in most popular web programming languages,
including Java [8], PHP [16], and even C [15]. This pa-
per shows how DIFT techniques can be used to address
authentication and access control vulnerabilities. Fur-
thermore, DIFT-based solutions to attacks such as SQL
injection have false positives in the real-world due to a
lack of authentication information. Nemesis avoids such
false positives by incorporating authentication and autho-
rization information at runtime.

Much work has also been done in the field of secure
web application design. Information-flow aware program-
ming language extensions such as Sif [4] have been de-
veloped to prevent information leaks and security vulner-
abilities in web application programs using the language

and compiler. Unfortunately these approaches typically
require legacy applications to be rewritten in the new,
secure programming language.

Some web application frameworks provide common
authentication or authorization code libraries [1, 2, 7].
The use of these authentication libraries is optional, and
many application developers choose to partially or en-
tirely implement their own authentication and authoriza-
tion systems. Many design decisions, such as how users
are registered, how lost passwords are recovered, or what
rules govern access control to particular database tables
are application-specific. Moreover, these frameworks do
not connect the user authentication mechanisms with the
access control checks in the underlying database or file
system. As a result, the application programmer must
still apply access checks at every relevant filesystem and
database operation, and even a single mistake can com-
promise the security of the application.

Operating systems such as HiStar [32] and Flume [12]
provide process-granularity information flow control sup-
port. One of the key advantages of these systems is that
they give applications the flexibility to define their own
security policies (in terms of information flow categories),
which are then enforced by the underlying kernel. A web
application written for HiStar or Flume can implement its
user authentication logic in terms of the kernel’s informa-
tion flow categories. This allows the OS kernel to then
ensure that one web user cannot access data belonging to
a different web user, even though the OS kernel doesn’t
know how to authenticate a web user on its own. Our
system provides two distinct advantages over HiStar and
Flume. First, we can mitigate vulnerabilities in existing
web applications, without requiring the application to be
re-designed from scratch for security. Second, by pro-
viding sub-process-level information flow tracking and
expressive access control checks instead of labels, we
allow programmers to specify precise security policies in
a small amount of code.

9 Conclusion

This paper presented Nemesis, a novel methodology for
preventing authentication and access control bypass at-
tacks in web applications. Nemesis uses Dynamic In-
formation Flow Tracking to automatically detect when
application-specific users are authenticated, and con-
structs a shadow authentication system to track user au-
thentication state through an additional HTTP cookie.

Programmers can specify access control lists for re-
sources such as files or database entries in terms of
application-specific users, and Nemesis automatically en-
forces these ACLs at runtime. By providing a shadow
authentication system and tightly coupling the authenti-
cation system to authorization checks, Nemesis prevents

15

a wide range of authentication and access control bypass
attacks found in today’s web applications. Nemesis can
also be used to improve precision in other security tools,
such as those that find SQL injection bugs, by avoiding
false positives for properly authenticated requests.

We implemented a prototype of Nemesis in the PHP
interpreter, and evaluated its security by protecting seven
real-world applications. Our prototype stopped all known
authentication and access control bypass attacks in these
applications, while requiring only a small amount of work
from the application developer, and introducing no false
positives. For most applications we evaluated, the pro-
grammer had to write less than 100 lines of code to avoid
authentication and access control vulnerabilities. We also
measured performance overheads using PHP benchmarks,
and found that our impact on web application perfor-
mance was negligible.

Acknowledgments

We would like to thank the anonymous reviewers for their
feedback. Michael Dalton was supported by a Sequoia
Capital Stanford Graduate Fellowship. This work was
supported NSF Awards number 0546060 and 0701607.

References
[1] Turbogears documentation: Identity management. http://

docs.turbogears.org/1.0/Identity.
[2] Zope security. http://www.zope.org/

Documentation/Books/ZDG/current/Security.
stx.

[3] BilboBlog admin/index.php Authentication Bypass Vulnerability.
http://www.securityfocus.com/bid/30225, 2008.

[4] S. Chong, K. Vikram, and A. C. Myers. Sif: Enforcing confiden-
tiality and integrity in web applications. In Proceedings of the
16th Annual USENIX Security Symposium, 2007.

[5] M. Dalton, H. Kannan, and C. Kozyrakis. Real-World Buffer Over-
flow Protection for Userspace and Kernelspace. In Proceedings of
the 17th Annual USENIX Security Symposium, 2008.

[6] DeluxeBB PM.PHP Unauthorized Access Vulnerability. http:
//www.securityfocus.com/bid/19418, 2006.

[7] Django Software Foundation. User authentication in
Django. http://docs.djangoproject.com/en/dev/
topics/auth/.

[8] V. Haldar, D. Chandra, and M. Franz. Dynamic taint propagation
for java. Annual Computer Security Applications Conference,
2005.

[9] N. Hardy. The Confused Deputy: (or why capabilities might have
been invented). SIGOPS Operating System Review, 1988.

[10] Microsoft Internet Information Server Hit Highlighting Authenti-
cation Bypass Vulnerability. http://www.securityfocus.
com/bid/24105, 2007.

[11] M. Krohn, P. Efstathopoulos, C. Frey, F. Kaashoek, E. Kohler,
D. Mazières, R. Morris, M. Osborne, S. VanDeBogart, and
D. Ziegler. Make Least Privilege a Right (Not a Privilege). In
Proceedings of the 10th Workshop on Hot Topics in Operating
Systems, 2005.

[12] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek,
E. Kohler, and R. Morris. Information flow control for stan-
dard OS abstractions. In Proceedings of the 21st ACM SIGOPS
Symposium on Operating Systems Principles, 2007.

[13] Linpha User Authentication Bypass Vulnerability. http://
secunia.com/advisories/12189, 2004.

[14] E. Martin and T. Xie. Inferring access-control policy properties
via machine learning. In Proc. 7th IEEE Workshop on Policies for
Distributed Systems and Networks, 2006.

[15] S. Nanda, L.-C. Lam, and T. Chiueh. Dynamic multi-process infor-
mation flow tracking for web application security. In Proceedings
of the 8th International Conference on Middleware, 2007.

[16] A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, and
D. Evans. Automatically Hardening Web Applications using
Precise Tainting. In Proceedings of the 20th IFIP Intl. Information
Security Conference, 2005.

[17] Top 10 2007 - Broken Authentication and Session Manage-
ment. http://www.owasp.org/index.php/Top_10_
2007-A7, 2007.

[18] B. Parno, J. M. McCune, D. Wendlandt, D. G. Andersen, and
A. Perrig. CLAMP: Practical Prevention of Large-Scale Data
Leaks. In Proceedings of the 2009 IEEE Symposium on Security
and Privacy, May 2009.

[19] phpFastNews Cookie Authentication Bypass Vulnerability. http:
//www.securityfocus.com/bid/31811, 2008.

[20] PHP iCalendar Cookie Authentication Bypass Vulnerability.
http://www.securityfocus.com/bid/31320, 2008.

[21] Php Stat Vulnerability Discovery. http://www.soulblack.
com.ar/repo/papers/advisory/PhpStat_
advisory.txt, 2005.

[22] PHP: Using Register Globals. http://us2.php.net/
register_globals.

[23] PhpMyAdmin control user. http://wiki.cihar.com/
pma/controluser.

[24] Rice University Bidding System. http://rubis.
objectweb.org, 2009.

[25] P. Saxena, D. Song, and Y. Nadji. Document structure integrity:
A robust basis for cross-site scripting defense. Network and Dis-
tributed Systems Security Symposium, 2009.

[26] S. R. Shariq, A. Mendelzon, S. Sudarshan, and P. Roy. Extending
Query Rewriting Techniques for Fine-Grained Access Control. In
Proceedings of the ACM SIGMOD International Conference on
Management of Data, 2004.

[27] Z. Su and G. Wassermann. The Essence of Command Injection At-
tacks in Web Applications. In Proceedings of the 33rd Symposium
on Principles of Programming Languages, 2006.

[28] The MITRE Corporation. Common vulnerabilities and expo-
sures (CVE) database. http://cve.mitre.org/data/
downloads/.

[29] W. Venema. Taint support for php. http://wiki.php.net/
rfc/taint, 2008.

[30] Web Application Security Consortium. 2007 web application secu-
rity statistics. http://www.webappsec.org/projects/
statistics/wasc_wass_2007.pdf.

[31] WordPress Cookie Integrity Protection Unauthorized Access
Vulnerability. http://www.securityfocus.com/bid/
28935, 2008.

[32] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières.
Making information flow explicit in histar. In Proceedings of the
7th Symposium on Operating Systems Design and Implementation,
2006.

16

