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Abstract
Modeling efficient algorithms as polynomial size circuits rather than as polynomial time Turing

machines has been the rule with few exceptions in cryptographic constructions which provide “secure
versions” of general efficient algorithms. A consequence of this modeling is that the resulting “secure
version” of an efficient algorithm A incurs the worst-case runtime of A over all inputs of a certain length,
rather than the runtime of A on specific inputs.

In this work, we address the challenge of achieving input-specific runtime rather than worst-case
runtime for a wide variety of cryptographic tasks. In particular, we construct (under cryptographic
assumptions detailed below):

• An attribute-based encryption (ABE) scheme for any polynomial-time Turing and RAMs (including
those with non-uniform advice), where the length of the function keys (or Turing machine keys)
depends on the size of the Turing machine (and does not depend on its runtime). Moreover, the
decryption algorithm has input-specific runtime (as opposed to worst-case).

• A single-key functional encryption scheme (FE) for any polynomial-time Turing machines (uniform
or non-uniform), where the length of the function keys (or Turing machine keys) depends only on
the size of the Turing machine independent of its runtime. In addition, we construct a decryption
algorithm that has input-specific runtime (at the price of revealing this runtime).

• A reusable garbling scheme for arbitrary Turing machines (uniform or non-uniform), where the size
of the garbling depends only on the size of the Turing machine.

Previously, it was known how to construct all these objects for depth d circuits, where all the
parameters grow with d. Our constructions remove this depth d restriction, and moreover, avoid the
worst-case “curse”.

We also show a fully homomorphic encryption scheme for Turing machines (including those with
non-uniform advice), where given a ciphertext Enc(x) and any Turing machine M , one can compute
Enc(M(x)) in time that is dependent on the runtime of M on input x as opposed to the worst-case
runtime. Previously, such a result was known only for a restricted class of Turing machines and it required
an expensive preprocessing phase (with worst-case runtime). Our result is for any class of polynomial
time Turing machines and removes the expensive preprocessing.

Our results are obtained via a reduction from (a variant of) the witness encryption scheme, recently
introduced by Garg et al. (STOC 2013) and the existence of SNARKs (Bitansky et al. STOC 2013). In
particular, when instantiating our schemes using the witness encryption construction proposed by Garg
et al., the security of our schemes relies on a strengthening of their assumption. We thus view our results
as a “proof of concept". We note that previously, no proposals or even heuristics for such schemes existed.
We also point out the connection between this variant of witness encryption and the obfuscation of point
filter functions as defined by Goldwasser and Kalai in 2005.

Keywords: Functional encryption; Fully homomorphic encryption; Turing machines; Input-specific
running time.



1 Introduction

Modeling general efficient algorithms as polynomial size circuits is prominent in cryptographic constructions.1

A consequence of this modeling is that all these secure variants of efficient algorithms incur worst-case
performance regardless of the running time of the computation on the actual inputs, namely, the input-specific
performance of the underlying algorithm. The reason is that the known transformations from algorithms
modeled as Turing machines to algorithms modeled as circuits essentially work by unrolling computations
to their worst case runtime; the outcome is that the runtime on any input of length n is as long as the time
required by the worst case input of length n – implying a major slow down of secure variants of algorithms
(even without taking into account the cost of additional cryptographic building blocks). To exemplify, consider
algorithms (or even heuristics) which may run in polynomial time on all instances one encounters in practice,
but run in exponential time on rare inputs, such as the simplex algorithm for linear programming.

The earliest example of this phenomenon is Yao’s secure function evaluation protocol [Yao86] which
takes as input any polynomial time computable function f – specified by a Boolean circuit – and outputs a
“garbled circuit” with the same input-output functionality. In this example, it is thus entirely possible that the
performance of the best algorithm (or heuristic) for computing f on most inputs x would take linear time, and
yet the size of the garbled circuit for f on inputs of length n is n100. This worst case run-time “curse” affects
known two-party and multi-party protocols for general secure function evaluation [Yao86, GMW87, BGW88,
CCD88], constructions of fully homomorphic encryption schemes [Gen09, BV11a, BV11b, BGV12, Bra12],
constructions of attribute-based encryption [GVW13, SW12, GGH12], and constructions of functional
encryption schemes for general functions [SS10, AGVW12, GKP+13].

In this work we address this challenge. Stated broadly and informally, we consider a variety of
cryptographic tasks all of which (in a sense) “compile” a given generic Turing machine algorithm M
into an “encrypted” algorithm which works on “encrypted” data using circuits. For each such task, we show
how to ensure that the latter algorithms achieve the runtime of M on input x rather than the worst-case
runtime of M on all inputs of length n where n = |x|. As a necessary by product of our results, the new
encrypted algorithms will leak the runtime of M on x. The cryptographic tasks we address include the
construction of an FHE scheme, a (non-adaptive) ABE scheme, (single-key or bounded-collusion) functional
encryption scheme, and (reusable) computation garbling schemes, where we model functions as Turing
machines.

Interestingly, the worst-case curse can be easily overcome for interactive tasks such as two-party and
multi-party protocols: in order to securely compute a Turing machine M , first compute Turing machines
M1, . . . ,Mω(logn) sequentially, one after the other, where Mi runs the Turing machine M for 2i steps and
outputs the answer if M halts within 2i steps, and ⊥ otherwise. To compute Mi, we use any multi-party
computation protocol and note that the circuit size for Mi is poly(2i). Since we halt the computation as
soon as we get an answer (which is not ⊥), this protocol runs in input-specific time. More generally, the
reason we are able to overcome the worst-case curse in the case of two-party and multi-party computation
setting is precisely the interactive nature of these tasks. In this work, we focus on non-interactive tasks such
as attribute-based encryption, fully homomorphic encryption, functional encryption and reusable garbled
schemes.

Throughout this introduction, we assume that Turing machines may have a non-uniform tape, and thus
such Turing machines can in particular compute any circuit.

Our schemes (listed explicitly below) are all based on a strong (and new) computational assumption
which is a strengthening of the assumption made in a recent paper of Garg et al. [GGSW13]. Given that
this assumption is a newcomer to the cryptographic scheme, we view our contribution mainly as a “proof of
concept”. We are not aware of even heuristic constructions for such schemes.

1See Sec. 1.4 for a discussion of some exceptions.
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1.1 Our results

Let us now explain our specific results in detail.

Attribute-based encryption (ABE) for Turing and RAM machines. Attribute-based encryption schemes,
originally defined by Sahai and Waters [SW05], allow a user holding the secret key sk to generate function-
keys skf for any function f of his choice. The user can generate many such function keys. Given the
corresponding public key pk, and given an ‘attribute” x, any user can encrypt a message m with respect to
the (public) attribute x. Such ciphertext is denoted by Enc(x;m). The ciphertext Enc(x;m) does not hide x,
and hides only m. Given a function key skf and a ciphertext Enc(x;m) one can compute m only if f(x) = 1.
On the other hand if f(x) = 0 then no information about m is leaked, and semantic security is achieved.

Attribute-based encryption is a powerful primitive with many applications, and has deserved significant
attention [GPSW06, LOS+10, LW12], culminating with the work of Gorbunov, Vaikuntanathan and
Wee [GVW13], who constructed under the LWE assumption an attribute-based encryption scheme for
the class of all circuits of depth at most d, where d is an arbitrary parameter. However, the efficiency of the
scheme (such as the size of the ciphertexts) deteriorates with d. In concurrent work, Sahai and Waters [SW12]
and Garg, Gentry, Sahai, and Waters [GGSW13] have constructed attribute-based encryption schemes with
similar properties from multi-linear maps. The recent work of Garg et al. [GGSW13] constructs an ABE
scheme for all poly-size circuit, however their scheme is not succinct (the ciphertexts grow with the worst-case
runtime of the circuits).

In this work, we construct an attribute-based encryption scheme for all circuits, with no restriction on the
depth. Moreover, and arguably more importantly, in our ABE scheme we model the functions as (possibly
non-uniform) Turing machines, as opposed to circuits as in all previous work. Computing a function-key
skM corresponding to a Turing machine M , takes time that is polynomial to the size of M , independent of
the runtime of M . Moreover, given skM and Enc(x;m) where f(x) = 1, one can compute m in time that
depends only on the time it takes to compute M on input x (as opposed to the worst-case running time of M ).
We prove the security of our scheme with respect to a non-adaptive simulation-based definition (we refer the
reader to Section 3 for details). Our ABE construction also carries through for RAMs.

Theorem 1.1 (Informal). There exists a secure attribute-based encryption scheme (as per Def. C.2) for the
class of all (uniform or non-uniform) polynomial time Turing and RAMs from the assumptions in Sec. 1.2.

Functional encryption (FE) for Turing machines. Functional encryption, formalized by Boneh, Sahai and
Waters [BSW11], is a generalization of attribute-based encryption. In a functional encryption scheme a user
holding the secret key sk can generate a function-key skf corresponding to any function f , and then any
user who holds a ciphertext Enc(m) and a key skf can compute f(m), but learns nothing else about the
message m.

Previously, the only functional encryption schemes known (where the user is allowed to release many
keys), was for the inner product functionality [KSW08, LOS+10]. Agrawal et al. [AGVW12] showed that
there does not exist an arbitrary number of keys functional encryption scheme achieving a simulation-based
definition for general functions.2 This led to the quest of single-key functional encryption (or bounded-
collusion functional encryption). Indeed, Sahai and Seyalioglu [SS10] constructed a single-key functional
encryption for arbitrary circuits of size at most s, followed by Gorbunov, Vaikuntanathan and Wee [GVW12]
for a bounded number of keys. However, the size of the ciphertexts in both schemes grow with the circuit size
s. Thus these schemes are not succinct.

Very recently, Goldwasser et al. [GKP+13], constructed a succinct single-key functional encryption
scheme for any depth d circuit, where the parameters of the scheme grow with d (but are independent of the

2We note however, that the negative result of Agrawal et al. is only for a simulation-based definition, and we do not know of a
negative result for indistinguishability based definitions.
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circuit size).
In this work we remove this depth d restriction. Moreover, we model the functions as (possibly non-

uniform) Turing machines, as opposed to circuits as in all prior work. In our scheme computing the function-
key of a Turing machine M , depends only on the size of M and does not depend on the run-time of M . We
note that in all previous schemes the size of a function-key for a function f grows (at least linearly) with the
worst-case runtime of f . We note however, that as opposed to our ABE scheme, in a functional encryption
scheme, given Enc(x) and skM , the time it takes to compute M(x) must be proportional to the worst-case
runtime of M , since the runtime of M on input x may leak sensitive information about x. However, if one is
willing to slightly relax security and allow to leak the runtime of M on the secret input x, then we also show
how to construct a decryption algorithm that has input-specific runtime (i.e., runs in time polynomial in the
runtime of M on input x) – we denote this input-specific runtime functional encryption.

Theorem 1.2 (Informal). There exists a single-key functional encryption scheme and a single-key input-
specific runtime functional encryption scheme for the class of all (uniform or non-uniform) polynomial time
Turing machines from the assumptions in Sec. 1.2.

FHE for Turing machines. We construct an FHE scheme where one can evaluate a program P on a
ciphertext Enc(x) in time that depends on the runtime of P on the specific input x. At first glance, this may
seem impossible, since revealing the runtime of P on input xmay reveal secret information about x. However,
for many Turing machines M , revealing the runtime of M on various inputs is not harmful, and is many
times essential to make the FHE usable in practice.

Our construction is an improvement of the one of Goldwasser et al. [GKP+13] who showed how to
construct input-specific runtime FHE from single-key functional encryption. In our scheme, one encrypts a
Turing machine M and x together into a token tkM,x. Producing such a token only depends on the size of x
and M , and not on the running time of M . The evaluator can use tkM,x and public information to compute
M(x) in input-specific time. There are two reasons why M and x are combined in a token tkM,x: (1) For
security, the FHE evaluator must no longer be able to evaluate TMs of its choice on the encrypted inputs
because the running time of those TMs can leak the input. Therefore, the evaluator must receive a token
permitting it to run a certain TM M ; (2) Since the FE scheme is only secure for a single-key, we encrypt both
M and x in the FE ciphertext, and generate a FE key for the universal Turing machine U .

Comparing to the scheme of Goldwasser et al. [GKP+13], we make the following improvements:

• Remove costly preprocessing. [GKP+13] had an expensive preprocessing phase taking as long as the
worst-case runtime. With our scheme, the preprocessing is cheap: polynomial in the size of the TMs and
independent of the worst-case runtime (so in fact it can be performed in the online phase).

• Works for any class of polynomial time Turing machines. Because ciphertexts depended on the depth of
the worst case circuit representation of the class of Turing machines in [GKP+13], they only allowed a
restricted class of Turing machines: the class of TMs that can be expressed by shallow depth circuits (e.g.,
log-space Turing machines). Our result does not have the depth dependency and thus applies to any class
of polynomial time Turing machines.

Theorem 1.3 (Informal). There exists an input-specific runtime fully homomorphic encryption scheme for
the class of all (uniform or non-uniform) polynomial time Turing machines from the assumptions in Sec. 1.2.

Reusable garbling scheme for Turing machines. Garbling schemes, introduced in the seminal work of
Yao [Yao86], have been proven to be very useful in cryptography. In such schemes, a user can “garble”
a function f , such that the garbling itself does not yield any information about f . Given any input x the
garbler (who has secret key) can release a token tkx. Given a garbling of f and a token tkx one can
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compute f(x), but learns nothing else about f or x. Various works have also considered an authenticity
property [BHR12, GVW13] on which we do not delve.

In known garbling schemes (even non reusable garbling), the garbled circuits evaluation and program
garbling are as large as the worst-case runtime of f . Often, the reason is that the programs are modeled as
circuits, and the size of the garbling is at least the size of the corresponding circuit. In this work we construct
a (reusable) garbling scheme for (uniform or non-uniform) Turing machines, where the size of the garbling
depends only on the size of the Turing machine, and is independent of its runtime.

As in our FHE and FE schemes, if one allows to leak the runtime of M on input x, we can additionally
avoid worst-case evaluation time: then a garbling for a Turing machine M , and given a token tkx
corresponding to an input x, the time it takes to compute M(x) is polynomial in the runtime of M on
the specific input x. Goldwasser et al. [GKP+13] only provide such a scheme for depth bounded circuits, and
we thus remove the depth dependency, and moreover, can additionally avoid worst-case running time.

Theorem 1.4 (Informal). There exists a reusable garbling scheme for the class of all (uniform or non-uniform)
polynomial time Turing machines from the assumptions in Sec. 1.2.

1.2 Our Assumptions

Our schemes rely on two assumptions: extractable witness encryption and the existence of SNARKs.
Extractable Witness Encryption. To describe our first assumption, we first refer to a recent work of Garg
et al. [GGSW13]. This work constructs a new beautiful primitive called a witness encryption scheme. A
witness encryption scheme is associated with some NP complete language L. Any user given an instance x
and a message m, can encrypt m with respect to x; this is denoted by Encx(m). Any user given Encx(m) and
a valid witness w of x can decrypt x efficiently. On the other hand, if x is not in the language then semantic
security is ensured. The construction of Garg et al. relies on a new computational assumption called Decision
Graded Encoding No-Exact-Cover or shortly DGE No-Exact-Cover assumption.

In our work, we additionally assume that the [GGSW13] scheme is extractable – and such an extractable
scheme can be constructed from an extractable version of their assumption; thus, we strengthen their
assumption. Loosely speaking, we require that any adversary that can decrypt Encx(m) with non-negligible
advantage, must “know” a valid witness w corresponding to x. Specifically, we require that there exists
a PPT extractor E such that for every PPT (possibly non-uniform) adversary A, if A on input Encx(m)
outputs m with non-negligible advantage, then the extractor E(x,A) extracts a valid witness w from A
with non-negligible probability. Thus, our witness encryption scheme is with respect to an NP relation (as
opposed to an NP language). We call this assumption the extractable DGE No-Exact-Cover assumption.

We refer the reader to Section 2 for more details on the assumption, and emphasize that we view our
result as a reduction from any extractable witness encryption scheme, as opposed to a result that is tied to the
specific computational assumption.

Interestingly, we remark that extractable witness encryption is highly related to another task that was
already well-known in the cryptographic literature, namely (weakly) obfuscating point-filter functions, first
defined in 2005 by Goldwasser and Kalai [GK05]. Informally, point-filter functions for a language L ∈ NP
with witness relation RL are a class of functions {δx,b}, indexed by a string x ∈ {0, 1}n and a bit b ∈ {0, 1}
that behave as follows:

δx,b(w) =

{
(x, b) if (x,w) ∈ RL

(x,⊥) otherwise

In other words, the function reveals the “secret bit” b only when given a witness w such that (x,w) ∈ RL.
It can be shown that (weak)3 extractable witness encryption is indeed equivalent to (weakly) obfuscating
point filter function. Thus, the former implies the consequences of the later regarding the impossibility of

3A relaxation of extractable witness encryption
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obfuscation for a wide range of natural tasks [GK05]. See Sec. B for more details on this equivalence and its
consequences.
The existence of SNARKs, Succinct Non-interactive Arguments of Knowledge (SNARK) as defined
in [GLR11, BCCT12, DFH12]. Bitansky et al. [BCCT13] construct SNARKs in a generic way (via a
reduction from weaker SNARKs). Their work is based on non-falsifiable assumptions, such as “knowledge of
exponent assumptions” as in [Gro10] or [BCI+13], and the existence of collision resistant hash functions.

Our functional encryption schemes, FHE for Turing machines scheme, and reusable garbling scheme,
additionally rely on the existence of a fully homomorphic encryption scheme, which can be obtained from
the LWE assumption with circular security [BGV12].

1.3 Our Techniques

ABE for Turing machines. The main technical challenge in this work is constructing an ABE scheme for
Turing machines. The other primitives use the ABE scheme as a building block, similarly to the recent work
of Goldwasser et al. [GKP+13], who showed how to construct a functional encryption scheme and a reusable
garbling schemes from an ABE scheme.

Our ABE construction relies on a variant of the recent work of Garg et al. [GGSW13], who defined
and constructed a witness encryption scheme (described above). The basic idea is the following: The secret
key corresponding to a Turing machine M is simply a signature of M (using any signature scheme that
is existentially unforgeable against adaptive chosen message attacks). The master secret and public keys
generated during the setup algorithm are the secret and verification keys (SigSK,VK) for the signature
scheme. To encrypt a bit b with respect to a (public) attribute x, we compute a witness encryption Encx∗(b),
where x∗ = (x,VK) and where a valid witness for x∗ is a tuple (M,σ, π), where M is a Turing machine, σ
is a signature of M using SigSK, and π the tableau of the computation, which is a “proof” that M(x) = 1.

Loosely speaking, the security proof proceeds as follows: Suppose there exists an adversary A that given
Encx∗(b), which is an ABE encryption of a random bit b w.r.t. public attribute x, and given several secret keys
skMi = σi such that Mi(x) = 0 (where σi is a signature of Mi), succeeds in guessing b with non-negligible
advantage. The security of the extractable witness encryption implies that there exists a poly-time extractor
that extracts a valid witness from A with non-negligible probability. Recall that a valid witness is a triplet the
form (M∗, σ∗, π∗) where σ∗ is a valid signature of the Turing machine M∗ and π∗ is a proof that M∗(x) = 1.
Note that since Mi(x) = 0 for every i, it must be the case that M∗ ̸=M , which contradicts the security of
the underlying signature scheme.

Unfortunately, this idea does not quite give us the results we want. The reason is that a witness for an
instance x∗ = (x,VK) is very long since it consists of a triplet (M∗, σ∗, π∗), where π∗ is the entire tableau
of M∗ on input x. The witness encryption of Garg et al. [GGSW13], as well as our stronger version, is
not “succinct”, in the sense that the size of the ciphertext Encx∗(b) grows with the witness size. Thus, the
approach above gives us a non-succinct ABE scheme, where the size of a ciphertext corresponding to a
public-attribute x depends on the worst-case runtime of any (allowed) Turing machine on input x.

In order to get the succinctness property we use a SNARG (succinct non-interactive argument) scheme. A
SNARG has a common-reference string crs, which is assumed to be securely generated. Then any user can
prove any NP statement, by computing a short proof π. Both the length of the crs and the length of valid
proofs depend only on the security parameter, and are independent of the witness size. Moreover, verification
can be done efficiently (in time that is independent of the witness size).

Encx∗(b) now proceeds as follows. We generate a crs corresponding the underlying SNARG scheme. To
encrypt a bit b w.r.t. a public-attribute x, simply compute Encx∗(b), where now x∗ = (x, crs,VK). A valid
witness for x∗ is a tuple of the form (M,σ, π) where σ is a valid signature of the Turing machine M , and π is
a succinct proof that M(x) = 1. Note that the fact that π is succinct makes the witness succinct (independent
of the computation time), as desired.
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This indeed gives us an ABE for Turing machines. There is a slight drawback to this scheme, which is
that it is succinct only for uniform Turing machines. If the Turing machine is non-uniform, and is of the size
of the runtime then again the witness becomes non-succinct, and the resulting ABE becomes non-succinct.
We would like our ABE scheme to be a generalization of previous work, and in particular to be succinct for
any non-uniform Turing machine.

To this end, instead of using a SNARG scheme we use a SNARK (succinct non-interactive argument
of knowledge) scheme. In a SNARK scheme the soundness requirement is strengthened, and the security
guarantee is that if an adversaryA succeeds in proving that x ∈ L then an extractor can extract a corresponding
witness w from A.

The ABE scheme is exactly as before, except that now a valid witness for x∗ = (x, crs,VK) is a pair (π, t)
(without the Turing machine and the signature), where π is a proof-of-knowledge of a Turing machine M and
a signature σ such that σ is a valid signature of M and M(x) = 1. Now the witness size and the verification
time is efficient (independent of the size of the Turing machine or its runtime). We refer the reader to Section 3
for more details on our ABE scheme and the security proof.

To extend the ABE scheme to RAMs, the key for a RAM M with memory D also contains a per-entry
signature of the database D: (M,D, σM , {σDi}i), where σM is a signature on M and {σDi}i represents an
individual signature on every element in the database. The rest of the details are similar.
Functional encryption for Turing machines. To construct a (single-key) functional encryption scheme,
we use the reduction of Goldwasser et al. [GKP+13] that shows how to construct a (single-key) functional
encryption scheme from an ABE scheme. In their work the functions were modeled as circuits, but a
similar reduction works when functions are modeled as Turing machines. Namely, in the resulting functional
encryption scheme, the secret key size of a Turing machine depends only on the size of the Turing machine
(as opposed to depending on its worst-case runtime, as in previous constructions). In addition the ciphertext
size depends only on the size of the message x being encrypted, and thus is succinct.

Note however, that the time it takes to compute M(x), from skM and Enc(x), does depend on the worst
case running time of M . This is inherent to the security requirement, which asserts that the only thing that is
leaked about x is f(x), and nothing else. In particular the runtime of M on input x is not leaked.

In many applications it is strongly desired to avoid the worst-case running time during the decryption.
Moreover, often releasing the runtime does not compromise security. We show how to convert a (single-key)
functional encryption for Turing machines into one where the decryption algorithm, on input skM and Enc(x),
runs in time that is polynomial in the runtime of M on input x. This comes at the price of revealing the
runtime of f on input x.

The idea is simple, as in [GKP+13]: instead of generating a secret key skM for a Turing machine M , we
generate many keys skM1 , . . . , skMlogBn

, where Mi is the Turing machine that runs M for 2i time steps, and
outputs⊥ if the computation did not halt in 2i steps, and otherwise outputs the output ofM . The parameterBn

is a global bound on the worst-case runtime of the Turing machines we consider. For polynomial time Turing
machines, we can set Bn = nlogn. To be able to generate logBn keys, we use logBn instances of our
single-key functional encryption scheme above, by generating fresh keys for every instance of it. Moreover,
note that since the underlying functional encryption scheme is for Turing machines, generating skMi can be
done very efficiently, in time polynomial in the description size of Mi, independent on the runtime of Mi.

Encrypting a message x is done exactly as in the underlying scheme. The decryption algorithm, on input
a ciphertext Enc(x) and a secret key (skM1 , . . . , skMlogB

) for the Turing machine M , first tries to decrypt
with skM1 , then tries with skM2 , and so on. The first time that it succeeds it stops. Note that the runtime of
this decryption algorithm depends on the runtime of M on the specific input x, denoted by tx. This is the
case since it runs the original decryption algorithm (which runs in the worst-case) only with the secret keys
skM1 , . . . , skMlog tx

, and all the Turing machines M1, . . . ,Mlog tx run in time at most tx.
Other primitives. Finally, we show how to use any (single-key) functional encryption scheme for Turing
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machines to construct an FHE for Turing machines and a reusable garbling scheme for Turing machines. This
again follows the reduction of Goldwasser et al. in a straightforward manner. We will not elaborate on the
construction of garbling schemes in the rest of this paper because the construction is almost exactly the same
as the one in [GKP+13].

1.4 Other Related Work

Perhaps the two main cryptographic constructions that deal with Turing machines and RAM machines directly
instead of going through circuits are (1) Oblivious RAMs, first proposed by Goldreich and Ostrovsky [GO96]
and studied in many subsequent works [OS97, Ajt10, DMN11, PR10, LO11, GMOT11, GMOT12, LO13];
and (2) succinct arguments, originating from the works of Kilian and Micali [Kil92, Mic00]. In particular, our
constructions will make extensive use of succinct non-interactive arguments of knowledge (SNARKs) [GW11,
BCCT12, GLR11, DFH12, BCCT13], which are direct descendants of CS proofs.

Oblivious RAM has also been used to perform some two-party computation tasks on the RAM machine
model [OS97, GKK+12, LO11], sometimes with input-specific runtimes, but always in an interactive setting.
In contrast, the main focus of this work is non-interactive secure computation tasks, where input-specific
runtimes are more challenging.

In a recent paper, Lu and Ostrovsky [LO12] consider another limitation of circuits versus uniform
computational models, in their case RAM machines. They observe that there are tasks in the RAM machine
model that take an exponentially large hit when converted to circuits, their most prominent example being
binary search. They show how to compile a RAM machine (with a worst-case running time t) into a garbled
RAM program whose size and running time are polynomially related to t. Our work and theirs are like apples
and oranges. On the one hand, we consider Turing machines whereas their focus is on the RAM machine
model. On the other hand, in their case, both the size of their garbled machines and the time required for
the garbled machine evaluation depend polynomially on a worst-case upper bound t on the running time
of the program, whereas we achieve input-specific running times. Furthermore, their garbled circuits are
not reusable. We achieve reusability, albeit at the expense of much stronger cryptographic assumptions. We
consider the question of achieving the “best of both works” very interesting.

There has been a large body of work on fully homomorphic encryption [Gen09, BV11b, BV11a,
GH11, BGV12, Bra12], attribute-based encryption [SW05, GPSW06, GVW13, SW12] and functional
encryption [KSW08, LOS+10, LW12, BSW11, GKP+13], all of which use the Boolean circuit model
of computation. A singular exception is the recent work of Waters [Wat12] that constructs an attribute-based
encryption scheme for finite state machines, a uniform model of computation.

The problem of designing secure solutions avoiding worst-case running times, and working directly
with natural models of computation such as RAM machines has been recently investigated in the security
community as well. Fletcher, van Dijk and Devadas [FvD12] show solutions for performing specific
computations, such as Euclid’s algorithm and SAT solvers, on encrypted data avoiding the worst-case
curse. Mitchell et al. [MSSZ12] design a programming language for computations on encrypted data, where
the computations are represented as programs and not circuits.

1.5 Paper Roadmap

The rest of this paper is organized as follows. Sec. 2 describes extractable witness encryption and how to
obtain it from a strengthening of the Garg et al. assumption. Next, Sec. 3 presents our ABE for Turing
machines scheme. Finally, Sec. 4 shows how to construct functional encryption for Turing machines.

Because of space constraints, we delegate certain sections to the appendix. Our preliminaries are in
appendix A: they contain notation and with definitions of witness encryption, signature schemes, and SNARKs.
In appendix B, we show that an extractable witness encryption scheme implies a (weak) obfuscator for
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the class of point-filter functions. Based on [GK05], this implies wide-ranging impossibility results for the
obfuscation of natural functionalities such as pseudo-random functions. Then, in appendix C, we provide
definitions for ABE and functional encryption for Turing machines; these are natural adaptations of the
circuit-based equivalents with improved efficiency requirements. Appendices D–F provide additional proofs
and details referenced in the rest of the paper. Finally, we show how to construct FHE for Turing machines in
appendix G.

2 Extractable Witness Encryption

In this section we define and construct an extractable witness encryption under a new computational
assumption. This notion is a strengthening of witness encryption as recently defined by Garg et al. [GGSW13]
(see Definition 2.1).

Recall that a witness encryption scheme is associated with some NP complete language L. Any user
given an instance x and a message m, can encrypt m with respect to x; this is denoted by Encx(m). Any
user given Encx(m) and a valid witness w of x can decrypt x efficiently. On the other hand, if x is not in the
language then semantic security is ensured.

An extractable witness encryption scheme is a witness encryption scheme (with syntax defined in
Def. A.1) with a strong soundness property. In particular, it is required that any adversary that can decrypt
Encx(m) with non-negligible advantage, must “know” a valid witness w corresponding to x.

Definition 2.1 (Extractable security). A witness encryption scheme for a language L ∈ NP is secure if for all
p.p.t. adversaries A, there exists a p.p.t. extractor E, for all poly q, there exists a poly p, such that for all
auxiliary inputs z, such that for all x ∈ {0, 1}∗, the following holds:

Pr[b← {0, 1}; ct←WE.Enc(1κ, x, b) : A(x, ct, z) = b] ≥ 1/2 + 1/q(|x|)

⇒ Pr[E(x, z) = w : (x,w) ∈ RL] ≥ 1/p(|x|).

Remark 2.2. We note that the probability that E outputs a valid witness can be amplified to 1− µ(|x|) for
any negligible function µ simply by running E with independent random coins p(|x|) · log(1/µ(|x|)) times.

We next claim that under an appropriate assumption the witness encryption scheme of Garg et al. is
extractable. To this end, let us first recall their scheme.
The witness encryption scheme of Garg et al. The witness encryption scheme of Garg et al. is w.r.t. the
exact set cover language, where instances are of the form x = (n, T1, . . . , Tℓ) where each Ti is a subset of
{1, . . . , n}. The instance x is in the language if and only if there is a subset {Ti1 , . . . , Tik} ⊆ {T1, . . . , Tℓ}
that covers the set {1, . . . , n} exactly.

Their scheme uses a group G with multi-linear maps. Namely, they assume the existence of groups
G1, . . . ,Gn, with corresponding generators g1, . . . , gn, and a bilinear map e such that for every i, j with
i+ j ≤ n, and for every α, β ∈ Zp where p is the order of G, it holds that e(gαi , g

β
j ) = gα·βi+j .

The encryption algorithm Encx(m), where x = (n, T1, . . . , Tℓ), is defined as follows: Choose at random
a1, . . . , an ← Zp, and set

Encx(m) =
((
g|T1|

)∏
j∈T1

aj , . . . ,
(
g|Tℓ|

)∏
j∈Tℓ

aj , g
∏n

j=1 aj
n ·m

)
Given an exact cover {Ti1 , . . . , Tik} of {1, . . . , n} one can efficiently compute the mask g

∏n
j=1 aj

n , by pairing

the elements
(
g|Ti1

|

)∏
j∈Ti1

aj
, . . . ,

(
g|Tik

|

)∏
j∈Tik

aj
.
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The DGE No-Exact-Cover assumption. Garg et al. proved security based a new computational assumption.
Their assumption is on the multi-linear group G, and depends on the actual NP complete language L.4 More
specifically, their assumption is the following: For any instance x = (n, T1, . . . , Tℓ), if x /∈ L then given(

g|T1|
)∏

j∈T1
aj , . . . ,

(
g|Tℓ|

)∏
j∈Tℓ

aj

it is hard to distinguish (gn)
∏n

j=1 aj from a uniform element in Gn, where a1, . . . , an ← Zp. This assumption
immediately implies the security of their scheme (since this assumption essentially assumes security).
The Extractable DGE No-Exact-Cover assumption. We require a stronger security guarantee (since we
need an extractable witness encryption), and therefore we rely on an even stronger computational assumption.
Our assumption states that if there exists an adversary who can distinguish between the above two distributions,
then there exists an extractor who can extract a witness from him. More formally, our assumption states that
there exists a poly-time extractor E and for any polynomial p there exists a polynomial q such that for any
instance (n, T1, . . . , Tℓ) and any poly-size adversary A, if

Pr
[
A
((
g|T1|

)∏
j∈T1

aj , . . . ,
(
g|Tℓ|

)∏
j∈Tℓ

aj , (gn)
∏n

j=1 aj
)
= 1

]
−

Pr
[
A
((
g|T1|

)∏
j∈T1

aj , . . . ,
(
g|Tℓ|

)∏
j∈Tℓ

aj , (gn)
r
)
= 1

]
≥ 1

p(k)

where a1, . . . , an, r are uniformly generated in Zp and k is the security parameter (which is assumed to be
polynomially related to the instance size), then

Pr [E(n, T1, . . . , Tℓ,A) = w s.t. w is a valid witness] ≥ 1

q(k)
.

This assumption immediately implies the security guarantee of an extractable witness encryption (since
this assumption essentially assumes security).

3 Attribute-based Encryption for Turing Machines and RAM machines

We construct an ABE scheme for Turing machines based on three ingredients:

1. an extractable witness encryption scheme WE = (WE.Enc,WE.Dec) based on the work of [GGSW13],
on which we elaborate in Sec. 2,

2. a succinct argument of knowledge scheme, SNARK = (SNARK.Gen, SNARK.Prover,SNARK.Verify),
based on the work of [BCCT13] defined in Sec. A.4,

3. an existentially unforgeable signature scheme SIG = (SIG.KeyGen,SIG.Sign,SIG.Verify) [GMR88].

Theorem 3.1. Assuming the above three primitives, there exists a secure attribute-based encryption scheme
(as per Def. C.2) for the class of all (uniform or non-uniform) polynomial time Turing machines and for all
polynomial time RAM machines.

Corollary 3.2. There exists a secure attribute-based encryption scheme for the class of all (uniform or
non-uniform) polynomial time Turing machines and polynomial time RAM machines under extractable DGE
No-Exact-Cover assumption (Sec. 2), “knowledge of exponent assumption” (Sec. 1.2), and the existence of
collision-resistant hash functions.

We will now focus on the construction and proof for Turing machines, and later explain how to obtain
ABE for RAM machines, which only entails a few modifications.

4Garg et al. show that the fact that the assumption depends on the NP complete language is inherent. We refer the reader
to [GGSW13] for details.
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3.1 The Setup

Recall the intuition provided in technique overview, Sec. 1.3; we also refer the reader to appendix C for a
definition of ABE for Turing machines.
The language L for SNARK. We define L by defining its relation, RL. Let RL be the following instance-
witness relation: the instance is of the form y = (VK, x, t) (a verification key VK for a signature scheme, an
input x, and a time bound t) and the witness is of the form w = (M,σ), for M a Turing machine and σ a
signature. Then, (y, w) ∈ RL iff SIG.Verify(VK,M, σ) = 1 and M halts on x in at most t steps and outputs
one.

Note that this does not map directly onto the precise format of the universal language RU,c provided in
Sec. A.4 which requires the TM to take as input the rest of the instance and the witness; however, it can be
easily mapped to that setting using a universal TM U , and we prefer this formulation for simplicity.

Let (Gen, SNARK.Prover, SNARK.Verify) be a SNARK system for L and let (SIG.KeyGen,SIG.Sign,
SIG.Verify) be an existentially unforgeable signature scheme.
The Language L∗ for WE. Based on the above language L and the SNARK system (SNARK.Gen,
SNARK.Prover, SNARK.Verify) for L, we define a language L∗ for the witness encryption scheme using the
witness relation RL∗ as follows:

RL∗
[
x∗ = (x, crs,VK), w∗ = (π, t)

]
= 1 if and only if SNARK.Verify(crs, (VK, x, t), π) = 1.

Let WE = (WE.Enc,WE.Dec) be an extractable witness encryption scheme for the witness relation RL∗ .
Our construction of a Turing machine ABE scheme, ABE = (ABE.Setup,ABE.KeyGen,ABE.Enc,ABE.Dec),

proceeds as follows.

3.2 Construction of ABE for Turing machines

Let T be the class of (uniform or non-uniform) polynomial time Turing machines for the ABE scheme.
Setup ABE.Setup(1κ) where κ is the security parameter:

1. Sample a verification key / signing key pair (VK,SigSK) ← SIG.KeyGen(1κ), and output mpk := VK
and msk := SigSK.

Encryption ABE.Enc(mpk, x, b) where mpk = VK, x ∈ {0, 1}∗ and b ∈ {0, 1}:
1. Run the SNARK generator SNARK.Gen to get crs← SNARK.Gen(1κ).

2. Let x∗ = (x, crs,VK). Compute ctWE ←WE.Enc(1κ, x∗, b).

3. Output ct := (x∗, ctWE).

Key generation ABE.KeyGen(msk,M) where M is a Turing machine:

1. Compute σ ← SIG.Sign(SigSK,M) and output skM := (M,σ).

Decryption ABE.Dec(skM , ct) where skM = (M,σ) and ct = (x∗ = (x, crs,VK), ctWE):

1. Run M on x and let t be the number of steps after which M halts (note that M is a polynomial time
Turing machine so it must halt within a polynomial number of steps).

2. If M(x) = 0, output ⊥ and exit.

3. Otherwise, let w := (M,σ) and note that
(
(VK, x, t), w

)
∈ RL.

4. Run SNARK.Prover to obtain a proof π ← SNARK.Prover(crs, (VK, x, t), w).

5. Let w∗ = (π, t). Compute and output WE.Dec(w∗, ctWE).
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Proof Intuition. In appendix Sec. D, we formally prove Th. 3.1. Here we only give intuition into the security
proof. We start by assuming the ABE scheme is not secure, and reach a contradiction by showing that one
can forge signatures using the extractability properties of the WE and SNARK schemes. Therefore, assume
there is an adversary for ABE, AABE = (AABE,1, AABE,2). We will show how to construct an adversary AWE

for the WE scheme: AWE simply embeds its challenge ciphertext into the ciphertext for AABE and lets AABE

decide.
Once we have the adversary AWE, by the security definition of WE, we also have an extractor EWE which

on input x∗, outputs a valid witness w∗ = (π, t) of (x∗, w∗) ∈ RL∗ .
Using EWE, we construct a prover P ∗ for the SNARK system that is able to construct an instance

y = (VK, x, t) and a proof π for which the SNARK verifier accepts. By the proof of knowledge property of
the SNARK, there exists an extractor ESNARK that outputs a witness for the SNARK language L, namely
w = (M,σ), such that (y, w) ∈ RL. This means that M(x) = 1 and that σ is a correct signature on M ; thus
we can use P ∗ and ESNARK to forge a signature and reach a contradiction.

3.3 ABE for RAMs

In this section, we discuss how to construct ABE for RAMs. This construction is similar to our construction
for Turing machines, so we only mention the main differences here: the language L for the SNARK and key
generation. Let (M,D) be a RAM pair: a RAM machine M and a memory D.
The language L for SNARK. Let RL be the following instance-witness relation: the instance is of the
form y = (VK, x, t) (a verification key VK for a signature scheme, an input x, and a time bound t) and the
witness is of the form w = (r,M, σ(r,M), S, {i,Di, σ(r,i,Di)}i∈S), where r is a nonce, M is a RAM, σ(M,r)

is a signature on the description of the machine M and the nonce r, S is a set of accesses M makes to the
memory, Di is the value in the i-th slot of memory and σr,i,Di is a signature on r and Di. Then, (y, w) ∈ RL

iff

1. SIG.Verify(VK, (r,M), σ(r,M)) = 1,

2. SIG.Verify(VK, (r, i,Di), σ(r,i,Di)) = 1 for all i ∈ S,

3. M halts on x in at most t, all of its memory queries are in S, and outputs one.

Key generation ABE.KeyGen(msk,M,D) where M is a RAM and D its memory:

1. Choose r ← {0, 1}poly(κ).

2. Compute σ(r,M) ← SIG.Sign(SigSK, (r,M)).

3. For every i ∈ 1 . . . |D|, compute σ(r,i,Di) ← SIG.Sign(SigSK, (r, i,Di)).

4. Output (r,M, σ(r,M), {Di, σ(r,i,Di)}
|D|
i=1).

Key generation runtime and the key size are polynomial in the description of the RAM machine and the
size of memory, but they do not depend on the runtime of the RAM machine. The time to decrypt also only
depends on the time to run the RAM and not on its worst case running time or on the memory size.

4 Functional encryption for Turing machines

In this section we construct a (single-key) functional encryption scheme for Turing machines from any ABE
scheme for Turing machine (such as from the one constructed in Section 3). In a recent work, Goldwasser
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et al. [GKP+13] showed how to construct a (single-key) functional encryption scheme from any ABE and
FHE scheme, where functions are modeled as circuits. This reduction also gives a (single-key) functional
encryption scheme for Turing machines if the ABE we started with is for Turing machines. For completeness,
we include the reduction below.

Theorem 4.1. Assuming we have:

• a secure attribute-based encryption scheme for the class of all (uniform or non-uniform) polynomial time
Turing machines, and

• a fully homomorphic encryption scheme,

there is a (single-key) functional encryption scheme for the class of all (uniform or non-uniform) polynomial
time Turing machines.

Theorem 4.2. Assuming there exists a (single-key) functional encryption scheme for the class of all (uniform
or non-uniform) polynomial time Turing machines, there is a (single-key) input-specific runtime functional
encryption scheme for the class of all (uniform or non-uniform) polynomial time Turing machines.

Corollary 4.3. There exists a secure (single-key) functional encryption scheme FE and a (single-key) input-
specific runtime functional encryption scheme FE∗ for the class of all (uniform or non-uniform) polynomial
time Turing machines under the extractable DGE No-Exact-Cover assumption (Sec. 2), “knowledge of
exponent assumption” (Sec. 1.2), and the LWE assumption with circular security.

We refer the reader to appendix C for a definition of FE for Turing machines. For simplicity, we construct
a (single-key) functional encryption scheme for functions outputting one bit; functions with larger outputs
can be handled by repeating our scheme below for every output bit. Our construction uses not only an ABE
scheme, but also uses an FHE scheme FHE = (FHE.KeyGen,FHE.Enc,FHE.Dec,FHE.Eval) and Yao’s
garbling scheme Gb = (Gb.Garble,Gb.Enc).

Our construction of FE = (FE.Setup, FE.KeyGen, FE.Enc, FE.Dec) proceeds similarly to the [GKP+13]
construction. The main difference is that instead of circuits we deal with Turing machines, and we need to
describe how to obtain a Turing machine MFHE that runs the FHE evaluation of a Turing machine. We only
present here this difference and delegate the full construction to appendix F.1.

4.1 FHE.Eval of a Turing machine

We describe a compiler CompileFHE that takes as input a Turing machine M and a number of steps t and
produces a Turing machine that computes the FHE evaluation of M for t steps. In the following, let x̂ denote
the FHE encryption of x.

Algorithm 1 (CompileFHE(M, t)).
1. Transform M into an oblivious Turing machine MO by applying the Pippenger-Fischer transforma-

tion [PF79] for time bound t. This transformation results in a new Turing machine MO and a transition
function δ for MO. Namely, δ takes as input a tape input bit b, a state state and outputs a new state
state′, new content b′ for the tape location, and a bit next indicating whether to move left or right;
namely δ(b, state) = (state′, b′, next). Let the movement function next be such that next(i) indicates
whether the head on the input tape of MO should move left or right after step i.

2. Based on (MO, next), construct a new Turing machine MFHE that takes as input a FHE public key hpk
and an input encryption x̂. MFHE applies the transition function δFHE (the FHE evaluation of δ using
hpk) t times. Each cell of the tapes of MO corresponds to an FHE encrypted value for MFHE. The state
of MFHE at time i is the FHE encryption of the state of MO at time i. At step i, the transition function
δFHE takes as input the encrypted bit from the input tape b̂ that the head currently points at, the current
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encrypted state ŝtate, and outputs an encrypted new state ŝtate′ and a new content b̂′. To determine
whether to move the head left or right, compute next(i).

3. Output the description of MFHE.

The running time of CompileFHE and MFHE is polynomial in t.

5 Input-specific runtime functional encryption for Turing machines

In what follows we show how to convert a (single-key) functional encryption scheme for Turing machines
FE into one where the decryption algorithm, on input fskM and FE.Enc(MPK, x), runs in time that depends
on the runtime of M on input x. Denote by FE∗ such a functional encryption scheme. (We refer the reader
to appendix C.2.2 for the definition of input-specific runtime functional encryption, and to Sec. 1.3 for an
overview of our construction).
Setup FE∗.Setup(1κ):
1. Generate τ := logBn independent pair of keys for the FE scheme: (mski,mpki)← FE.Setup(1κ).

2. Output MPK := (mpk1, . . . ,mpkτ ) and MSK := (msk1, . . . ,mskτ ).

Key Generation FE∗.KeyGen(MSK,M): with MSK = (msk1, . . . ,mskτ ).

1. Let Mi be the Turing machine that runs M for 2i steps and outputs M(x) if M finishes in that number of
steps, otherwise, it outputs ⊥. Let ti be the number of steps Mi runs for.5

2. Let fskMi ← FE.KeyGen(mski,Mi, ti), for i = 1 . . . τ .

3. Output fskM := (fskM1 , . . . , fskMτ ).

Encryption FE∗.Enc(MPK, x) with MPK = (mpk1, . . . ,mpkτ )

1. Compute cti ← FE.Enc(mpki, x) for i = 1 . . . τ .

2. Output ct := (ct1, . . . , ctτ ).

Decryption FE∗.Dec(fskM , ct): with fskM = (fskM1 , . . . , fskMτ ) and ct = (ct1, . . . , ctτ ).

1. Starting with i = 1, repeat until v ̸= ⊥:

(a) v ← FE.Dec(fskMi , cti)

(b) i← i+ 1

2. Output v.

Based on this construction, we prove Th. 4.2 in appendix F.2.
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A Preliminaries

A.1 Notation

We let κ denote the security parameter throughout this paper. For a distribution D, we say x← D when x
is sampled from the distribution D. If S is a finite set, by x← S, we mean x is sampled from the uniform
distribution over the set S.

We use p(·) to denote that p is a function that takes one input. Similarly, p(·, ·) denotes a function p that
takes two inputs.

We say that a function f is negligible in an input parameter κ, if for all d > 0, there exists K such that
for all κ > K, f(κ) < k−d. For brevity, we write: for all sufficiently large κ, f(κ) = negl(κ). We say
that a function f is polynomial in an input parameter κ, if there exists a polynomial p such that for all κ,
f(κ) ≤ p(κ). We write f(κ) = poly(κ). A similar definition holds for polylog(κ).

Two ensembles, X = {Xκ}κ∈N and Y = {Yκ}κ∈N, are said to be computationally indistinguishable
(and denoted {Xκ}κ∈N

c
≈ {Yκ}κ∈N) if for every probabilistic polynomial-time algorithm D,

|Pr[D(Xκ, 1
κ) = 1]− Pr[D(Yκ, 1

κ) = 1]| = negl(κ).

In our security definitions, we will define probabilistic experiments and denote by random variables their
outputs. For example, ExprealE,A(1

κ) denotes the random variable representing the output of the real experiment
for scheme E with adversary A on security parameter κ. Moreover, {ExprealE,A(1

κ)}κ∈N denotes the ensemble
of such random variables indexed by κ ∈ N.

Given a Turing machine M and an input x, let runtime(M,x) denote the running time of M on x.

A.2 Witness encryption (WE)

We now define the syntax and security definition of witness encryption as defined by Garg et al. [GGSW13],
although we use a stronger security definition as detailed in Sec. 2.

Definition A.1 (Witness Encryption). A witness encryption for a language L ∈ NP with corresponding
witness relation RL consists of two polynomial-time algorithms (WE.Enc,WE.Dec) such that

• Encryption WE.Enc(1κ, x, b): takes as input a security parameter κ, x ∈ {0, 1}∗ and a bit b and
outputs a ciphertext ct.

• Decryption WE.Dec(w, ct): takes as input x ∈ {0, 1}∗ and a ciphertext ct and outputs a bit b.

Correctness: For all (x,w) ∈ RL, for all bits b, for every sufficiently large security parameter κ

Pr[ct←WE.Enc(1κ, x, b) : WE.Dec(w, ct) = b] = 1− negl(κ).
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Definition A.2 (Security). A witness encryption scheme for a language L ∈ NP is secure if for any x /∈ L,
for all p.p.t. adversaries A, for all sufficiently large security parameters κ:

|Pr[A(WE.Enc(1κ, x, 0)) = 1]− Pr[A(WE.Enc(1κ, x, 1)) = 1]| = negl(κ).

A.3 Signature schemes

For completeness, we briefly remind the security definition of existentially unforgeable signatures schemes
(for more details, see [Gol04]).

Definition A.3. A signature scheme SIG = (SIG.KeyGen, SIG.Sign, SIG.Verify) is unforgeable, if for all
p.p.t. adversaries A, for all sufficiently large, letting OSigSK be a signing oracle that on input m outputs
SIG.Sign(SigSK,m), we have

Pr[(VK,SigSK)← SIG.KeyGen(1κ); (m,σ)← AOSigSK(VK) :

SIG.Verify(VK,m, σ) = 1 and A did not ask for m to OSigSK] < negl(κ).

A.4 Succinct arguments of knowledge (SNARK)

Using succinct arguments of knowledge (abbreviated SNARKs), a prover can prove to a verifier that
an instance y is in a language. We use SNARKs that are publicly-verifiable, fully-succinct, and have
adaptive soundness (see [BCCT13] for definitions of these properties). Bitansky, Canetti, Chiesa and
Tromer [BCCT13] constructed such SNARKs.

We present the definition of SNARKs adapted from [BCCT13]. We define the universal relation as a
canonical form to represent verification-of-computation problems.

Definition A.4. The universal relation is the set RU of instance-witness pairs (y, w) =
(
(U, x, t), w

)
, where

|y|, |w| ≤ t and U is a Turing machine, such that U accepts (x,w) after at most t steps. We denote by LU

the universal language corresponding to RU . For any c ∈ N, the universal NP relation is the set RU,c defined
as RU with the additional constraint that t ≤ |x|c.

A SNARK is a triple of algorithms (SNARK.Gen,SNARK.Prover,SNARK.Verify) that works as follows.

• The generator SNARK.Gen, on input the security parameter κ, samples a reference string crs (since
we consider publicly-verifiable SNARKs, the crs can also contain the public verification state).
SNARK.Gen also takes as input a time bound B but we set this to be B = κlog κ which will never be
achieved for an NP language. Therefore, for simplicity, we do not make B explicit from now on.

• The honest prover SNARK.Prover(crs, y, w) produces a proof π for the statement y = (U, x, t) given
a valid witness w.

• The verifier SNARK.Verify(crs, y, π) takes as input the crs, the instance y and a proof π and
deterministically verifies π.

The SNARG is adaptive if the prover may choose the statement after seeing crs.

Definition A.5 (SNARK). A triple of algorithms (SNARK.Gen,SNARK.Prover, SNARK.Verify) for the
relation RU,c, where SNARK.Gen is probabilistic and SNARK.Verify is deterministic, is a SNARG if the
following conditions are satisfied:

17



• Completeness: For every large enough security parameter κ ∈ N, and every instance-witness pair
(y, w) =

(
(U, x, t), w

)
∈ RU ,

Pr[crs← SNARK.Gen(1κ);π ← P (crs, y, w) : SNARK.Verify(crs, y, π) = 1]

• Proof of knowledge: For every polynomial-size prover P ∗ there exists a polynomial-size extractor EP ∗

such that for every large enough security parameter κ ∈ N, every auxiliary input z ∈ {0, 1}poly(κ),
and every constant c:

Pr[crs← SNARK.Gen(1κ); (y, π)← P ∗(crs, z);w ← EP ∗(crs, z) :

SNARK.Verify(crs, y, π) = 1 and (y, w) /∈ RU,c] = negl(κ).

• Efficiency: There exists a universal polynomial p such that, for every large enough security parameter
κ, and every instance y = (M,x, t),

– the generator SNARK.Gen(1κ) runs in time p(κ);

– the prover SNARK.Prover(crs, y, w) runs in time p(k + |U |+ |x|+ t);

– the verifier SNARK.Verify(crs, y, π) runs in time p(k + |U |+ |x|);
– an honestly generated proof has size p(k).

Theorem A.6 ([BCCT13]). There exists a SNARK scheme as in Def. A.5 under “knowledge-of-exponent”
assumptions.

B Witness Encryption and Obfuscation of Point Filter Functions

It turns out that the notion of extractable witness encryption is very similar to another task that was
already well-known in the cryptographic literature, namely obfuscating point-filter functions, first defined
by Goldwasser and Kalai [GK05]. Informally, point-filter functions for a language L ∈ NP with witness
relation RL are a class of functions {δx,b}, indexed by a string x ∈ {0, 1}n and a bit b ∈ {0, 1} that behave
as follows:

δx,b(w) =

{
(x, b) if (x,w) ∈ RL

(x,⊥) otherwise

In other words, the description of the function reveals the string x, but the function reveals the “secret bit” b
only when given a witness w such that (x,w) ∈ RL.

First, we formally show that an extractable witness encryption scheme for a language L can be used to
construct a (weak) obfuscator for the class of point-filter functions for L.

Secondly, Goldwasser and Kalai [GK05] show that the existence of (even weak) obfuscators for the class
of point-filter functions for some NP-complete language L gives wide-ranging impossibility results for the
obfuscation of natural functionalities such as pseudo-random functions. Thus, we recover these impossibilities
under the assumption that an extractable version of the [GGSW13] assumption holds.

We start by defining the class of point-filter functions, and the notion of weak obfuscation with dependent
auxiliary inputs from [GK05].

Definition B.1. For every language L ∈ NP, the class ∆L = {∆L
n}n∈N is a class of point-filter functions,

where ∆L
n = {δx,b}x∈{0,1}n,b∈{0,1} and

δx,b(w) =

{
(x, b) if (x,w) ∈ RL

(x,⊥) otherwise
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Definition B.2 ([BGI+12, GK05]). A probabilistic algorithm O is a weak obfuscator for a class of circuits
C = {Cn}n∈N if the following three conditions are satisfied:

• (Functionality) For every n ∈ N and every C ∈ Cn, O(C) describes a circuit that computes the same
function as C.

• (Polynomial Blowup): There is a polynomial ℓ(·) such that for every n ∈ N and C ∈ Cn, |O(C)| ≤
ℓ(|C|).

• (Weak “Virtual Black-box” Property with dependent auxiliary inputs): For every PPT adversary
A and every polynomial s(·), there exists a PPT simulator S such that for every n ∈ N, every C ∈ Cn,
every polynomial-time computable predicate π(·), every polynomial-size auxiliary input z (note that z
may depend on the circuit C), we have:∣∣∣∣Pr[A(O(C), z) = π(C, z)]− Pr[SC(1n, z) = π(C, z)]

∣∣∣∣ < 1/s(n)

Lemma B.3. For every language L, if there is an extractably secure witness encryption scheme for L, then
the class of functions ∆L is weakly obfuscatable with dependent auxiliary input.

Proof. Assume that there is a witness encryption scheme (WE.Enc,WE.Dec) for the language L. We
construct an obfuscator for the class ∆L = {∆L

n}n∈N.
On input a pair (x, b) ∈ {0, 1}n × {0, 1}, the obfuscator O for the circuit δx,b ∈ ∆L

n works as follows:

• Compute c←WE.Enc(x, b).

• Output (x, c) as the description of the obfuscated circuit O(δx,b).

The obfuscated circuit O(δx,b) works as follows: on input w ∈ {0, 1}∗, output b′ ←WE.Dec(c, w).
The functionality property of the obfuscator follows from the (perfect) correctness of the witness

encryption scheme. The polynomial blowup property follows from the fact that both the algorithms WE.Enc
and WE.Dec run in polynomial time.

Let A be an obfuscation adversary that obtains an obfuscated circuit (x, c) and an auxiliary input z. Let
s(n) be a polynomial function. For every x ∈ {0, 1}n, b ∈ {0, 1} and z ∈ {0, 1}∗, define the function

α(x, b, z) = αA(x, b, z) := Pr[c←WE.Enc(x, b) : A(x, c, z) = 1]

where the probability is over the coin-tosses of the encryption algorithm WE.Enc and the adversary A. In the
sequel, we omit the subscript A when it is clear from the context.

We first show that there is an efficient way to test whether α(x, 0, z) and α(x, 1, z) are sufficiently far
apart:

Claim B.4. For every polynomial function s, there is a PPT algorithm TestA that, on input x and z, outputs:

• far if |α(x, 0, z)− α(x, 1, z)| ≥ 2/s(n); and

• close if |α(x, 0, z)− α(x, 1, z)| < 1/s(n).

with probability 1− negl(n).

Proof. The algorithm TestA repeats the following procedure 4n · (s(n))2 times using independent
randomness.

1. Expt0: Generate a ciphertext c←WE.Enc(x, 0) and run A on input (x, c, z).
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2. Expt1: Generate a ciphertext c←WE.Enc(x, 1) and run A on input (x, c, z).

Let β0(n) be the number of times A outputs 1 in Expt0 and β1(n) be the number of times A outputs 1 in
Expt1. If |β0 − β1| ≥ 6n · s(n), output far, otherwise output close.

The expected number of times A outputs 1 in Exptb is 4n · s(n)2 · α(x, b, z) (for b ∈ {0, 1}). By an
application of the Chernoff-Hoeffding bound, we get

Pr[|β0(n)− 4n · s(n)2 · α(x, 0, z)| ≥ n · s(n)] ≤ 2 · e−2·4n·(s(n))2·(1/4s(n))2 = 2e−n/2

Pr[|β1(n)− 4n · s(n)2 · α(x, 1, z)| ≥ n · s(n)] ≤ 2 · e−2·8n·(s(n))2·(1/8s(n))2 = 2e−n/2

Suppose |α(x, 0, z)− α(x, 1, z)| ≥ 2/s(n). Then,

|β1(n)− β0(n)| ≥ 4n · s(n)2 · |α(x, 1, z)− α(x, 0, z)| − 2n · s(n) ≥ 6n · s(n)

with probability 1− 2 · e−n/2 = 1− negl(n). Thus, the test outputs far.

Suppose |α(x, 0, z)− α(x, 1, z)| < 1/s(n). Then,

|β1(n)− β0(n)| ≤ 4n · s(n)2 · |α(x, 1, z)− α(x, 0, z)|+ 2n · s(n) < 6n · s(n)

with probability 1− 2 · e−n = 1− negl(n). Thus, the test outputs close.
This finishes the proof of the claim.

The next claim shows that if α(x, 0, z) and α(x, 1, z) are sufficiently different, then there is an extractor
algorithm that outputs the witness for x.

Claim B.5. For every polynomial function s, there is a PPT algorithm E and a negligible function µ such
that if |α(x, 0, z)− α(x, 1, z)| ≥ 2/s(n), then,

Pr[E(x, z) = w : (x,w) ∈ RL] ≥ 1− µ(n)

Proof. If |α(x, 0, z)− α(x, 1, z)| ≥ 2/s(n), by definition∣∣Pr[c←WE.Enc(x, 0) : A(x, c, z) = 1]− Pr[c←WE.Enc(x, 1) : A(x, c, z) = 1]
∣∣ ≥ 2/s(n)

Then, there is an algorithm B that predicts the bit b given x, the ciphertext c ← WE.Enc(x, b) and the
auxiliary input z. Namely,

Pr[c←WE.Enc(x, b) : B(x, c, z) = b] ≥ 1/2 + 1/s(n)

By the definition of extractable security for witness encryption and Remark 2.2, there is an extractor E and a
negligible function µ such that

Pr[E(x, z) = w : (x,w) ∈ RL] ≥ 1− µ(n)

This finishes the proof of the claim.

We are now ready to construct the obfuscation simulator S for the adversary A. The simulator, on input z
and access to an oracle for the function δx,b, works as follows.

• Query the oracle for δx,b on input 0n to get (x,⊥).6

6If 0n happens to be a witness for x, the simulator gets (x, b) which makes her life even easier.
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• Run the algorithm TestA (from Claim B.4) on inputs x and z to get an answer which is either ‘far’ or
‘close’.

• If TestA returns close, then run A(O(δx,0), z)) and output whatever A outputs.

• If TestA returns far, then do the following:

– Run E(x, z) to obtain a witness w. If (x,w) /∈ RL, output a uniformly random bit. Otherwise,
proceed as below.

– Query the oracle δx,b on input w and obtain an answer (x, b).

– Run A(O(δx,b), z) and output whatever A outputs.

We now show that this simulator satisfies the weak virtual black-box property for obfuscation. Consider two
cases.

Case 1. TestA returns close: Then, we have:∣∣Pr[c←WE.Enc(x, b) : A(x, c, z) = π(x, b, z)]− Pr[c←WE.Enc(x, b) : SC(1n, z) = π(x, b, z)]
∣∣

=
∣∣Pr[c←WE.Enc(x, b) : A(x, c, z) = π(x, b, z)]− Pr[c←WE.Enc(x, 0) : A(x, c, z) = π(x, b, z)]

∣∣
=
1

2
·
∣∣Pr[c←WE.Enc(x, 1) : A(x, c, z) = π(x, 1, z)]− Pr[c←WE.Enc(x, 0) : A(x, c, z) = π(x, 1, z)]

∣∣
=
1

2
· |α(x, 1, z)− α(x, 0, z)| < 1/s(n) (1)

where the last inequality is because whenever TestA returns close, |α(x, 1, z)− α(x, 0, z)| < 2/s(n).

Case 2. TestA returns far: Since TestA returns far, |α(x, 1, z)−α(x, 0, z)| ≥ 1/s(n). By Claim B.5, this
means that there is a polynomial function p, a PPT algorithm E and a negligible function µ such that

Pr[E(x, z) = w : (x,w) ∈ RL] ≥ 1− µ(n)

The extractor runs in time p(s(n)).
Note that as long as the extractor E returns a valid witness for x, the simulator S has all the information

necessary to run a perfect simulation. Denote the event that E(x, z) returns a valid witness for x as good.
Now,

Pr[c←WE.Enc(x, b) : SC(1n, z) = π(x, b, z)]

=Pr[c←WE.Enc(x, b) : SC(1n, z) = π(x, b, z) | good] · Pr[good]
+ Pr[c←WE.Enc(x, b) : SC(1n, z) = π(x, b, z) | good] · Pr[good]

=Pr[c←WE.Enc(x, b) : A(x, c, z) = π(x, b, z)] · Pr[good] + 1

2
· Pr[good]

Thus,∣∣Pr[c←WE.Enc(x, b) : A(x, c, z) = π(x, b, z)]− Pr[c←WE.Enc(x, b) : SC(1n, z) = π(x, b, z)]
∣∣

=Pr[good] · (1/2− Pr[c←WE.Enc(x, b) : A(x, c, z) = π(x, b, z)])

≤Pr[good] ≤ µ(n) (2)
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Combining Equations 1 and 2, we get∣∣Pr[c←WE.Enc(x, b) : A(x, c, z) = π(x, b, z)] −Pr[c←WE.Enc(x, b) : SC(1n, z) = π(x, b, z)]
∣∣

≤ max(1/s(n), µ(n)) = 1/s(n)

Note that since the simulator runs the extractor for the witness encryption scheme, it runs in time that
depends polynomially on s(n). This is essentially the reason that we are only able to show a weak obfuscator
for ∆L.

Further Remarks. We note that a weaker variant of extractable security for witness encryption is sufficient
for our obfuscator construction. In particular, the following notion of weak extractable security is sufficient
for our proof:

Definition B.6 (Weak Extractable security). A witness encryption scheme for a language L ∈ NP is weakly
extractable if for all p.p.t. adversaries A, for all poly q, there exists a p.p.t. extractor E and a negligible
function µ such that for all auxiliary inputs z, such that for all x ∈ {0, 1}∗, the following holds:

Pr[b← {0, 1}; ct←WE.Enc(x, b) : A(x, ct, z) = b] ≥ 1/2 + 1/q(|x|)

⇒ Pr[E(x, z) = w] ≥ 1− µ(|x|).

Here, the running time of the extractor can depend polynomially on q(|x|).

The key point in the proof where this distinction appears is in Claim B.5 which only uses the weak
extractability property above.

More interestingly, we are also able to show how to use a weak obfuscator for a class of point-filter
functions ∆L to construct a witness encryption scheme for L. This shows the equivalence between the two
notions. We postpone the proof to the full version.
Implications to the Impossibility of Obfuscation. Goldwasser and Kalai [GK05] show that if there are
weak obfuscators for the class ∆L for any NP-complete language L, then there are no weak obfuscators for
a wide variety of cryptographic tasks including pseudorandom function generators, digital signature schemes,
public-key decryption algorithms, and more generally any class of functions with sufficient pseudo-entropy.
More formally:

Lemma B.7 ([GK05]). Assume that for some NP-complete language L, the class ∆L is weakly obfuscatable
with dependent auxiliary input. Then, no class of circuits C with super-polynomial pseudo-entropy is even
weakly obfuscatable with dependent auxiliary input.

As an immediate corollary of Lemma B.3 and Lemma B.7, we obtain the following theorem:

Theorem B.8. Assume that there is an extractably secure witness encryption scheme for some NP-complete
language L. Then, no class of circuits C with super-polynomial pseudo-entropy is even weakly obfuscatable
with dependent auxiliary input. In particular, under this assumption, no class of circuits implementing a
pseudorandom function is weakly obfuscatable with dependent auxiliary input.

C Definitions for Turing machines

C.1 Attribute-based encryption (ABE) for Turing machines

We define the syntax and security of ABE for Turing machines.
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Definition C.1 (ABE for Turing machines). An attribute-based encryption scheme ABE for a class of Turing
machines T is a tuple of four algorithms (ABE.Setup, ABE.KeyGen, ABE.Enc, ABE.Dec), the first three of
which are p.p.t., such that:

• ABE.Setup(1κ) takes as input the security parameter 1κ and outputs a master public key mpk and a
master secret key msk.

• ABE.KeyGen(msk,M) takes as input the master secret key msk, a Turing machine M ∈ T , and
outputs a key skM .

• ABE.Enc(mpk, x, b) takes as input the master public key mpk, an attribute x ∈ {0, 1}∗, and a bit b
and outputs a ciphertext ct.

• ABE.Dec(skM , ct) takes as input a key skM and a ciphertext c and outputs a bit.

Correctness. For all Turing machines M ∈ T , for all attributes x ∈ {0, 1}∗, for all bits b, for κ sufficiently
large,

Pr

[
(mpk,msk)← ABE.Setup(1κ); skM ← ABE.KeyGen(msk,M); ct← ABE.Enc(fmpk, x, b) :

ABE.Dec(skM , ct) =

{
b, if M(x) = 1

⊥, otherwise.

]
= 1− negl(κ).

Efficiency. There exists a polynomial p such that the running time of ABE.Dec(skM , ct) is at most
p(κ, runtime(M,x)).

The efficiency property states that the work of the decryption depends on the run time of a Turing machine
on the attribute. Since ABE.Setup, ABE.KeyGen and ABE.Enc are p.p.t.-s, their running time depends only
on the security parameter and not on the running time of the Turing machines (except for a logarithmic
dependency on it).

The literature considers two notions of security: full and selective security, depending on whether the
adversary can choose the challenge attribute based on the public key or not, respectively. We only consider
the full security definition here because it is the stronger one and we can achieve it.

The literature also considers adaptive versus non-adaptive notions of security indicating whether the
adversary can choose the Turing machines M based on the challenge ciphertext or not, respectively. Our
construction only provides non-adaptive security, so we only define the non-adaptive case here. Non-adaptive
ABE suffices for our applications.

Definition C.2 (Attribute-based encryption security). Let ABE be an attribute-based encryption scheme for
a class of Turing machines T and let A = (A1, A2) be an adversary. Consider the following experiment.

ExpABE(1
κ):

1: (mpk,msk)← ABE.Setup(1κ)

2: (x, state)← A
ABE.KeyGen(msk,·)
1 (mpk)

3: Choose a bit b at random and let ct← ABE.Enc(mpk, x, b).
4: b′ ← A2(state, ct).
5: If, b = b′ and for all Turing machines M that A requests to oracle ABE.KeyGen(msk, ·), we have
M(x) = 0, output 1, else output 0.
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We say that the scheme is a secure attribute-based encryption for Turing machines if for all p.p.t.
adversaries A, and for all sufficiently large κ:

AdvABE,A := |Pr[ExpABE,A(1κ) = 1]− 1/2| = negl(κ).

C.2 Functional Encryption for Turing machines

We define functional encryption for Turing machines, by adapting the definition of FE for circuits from
the literature [KSW08, BSW11, GVW12] to Turing machines. We also define a second type of functional
encryption, denoted FE∗, which avoids worst case running time during decryption, but necessarily also leaks
the running time to the evaluator.

Definition C.3 (Functional Encryption (FE)). A functional encryption scheme FE for a class of Turing
machines T is a tuple of four algorithms (FE.Setup, FE.KeyGen, FE.Enc, FE.Dec), the first three of which
are p.p.t.:

• FE.Setup(1κ) takes as input the security parameter 1κ and outputs a master public key fmpk and a
master secret key fmsk.

• FE.KeyGen(fmsk,M, t) takes as input the master secret key fmsk, a Turing machine M ∈ T , a time
bound t and outputs a key fskM .

• FE.Enc(fmpk, x) takes as input the master public key fmpk and an input x ∈ {0, 1}∗ and outputs a
ciphertext c.

• FE.Dec(fskM , c) takes as input a key fskM and a ciphertext c and outputs a value y.

Correctness. For every Turing machine M ∈ T , for any time bound t, for all inputs x ∈ {0, 1}poly(κ), for
every sufficiently large security parameter κ,

Pr

[
(fmpk, fmsk)← FE.Setup(1κ); fskM ← FE.KeyGen(fmsk,M, t); c← FE.Enc(fmpk, x) :

FE.Dec(fskM , c) =

{
M(x), if M halts on x in t steps
⊥, otherwise.

]
= 1− negl(κ).

Efficiency. There exists a polynomial p such that the running time of FE.Dec on a key for (M, t) is at most
p(κ, t).

Note that t is usually the worst-case running time of M on inputs of a certain length. The efficiency
property says that FE.Dec runs polynomial in the worst-case running time. Since FE.Setup, FE.Enc, and
FE.Dec are p.p.t.-s, they only depend on the security parameter and not on the worst-case running time
(except for a logarithmic dependency on this time).

C.2.1 Security of functional encryption

Intuitively, the security of functional encryption requires that an adversary should not learn anything about
the input x other than the computation result M(x), for some TM M for which a key was issued.

We adapt the simulation-based definition of FE from [GKP+13] to Turing machines:
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Definition C.4 (FE Security). Let FE be a functional encryption scheme for the family of Turing machines T .
For every p.p.t. adversary A = (A1, A2) and p.p.t. simulator S, consider the following two experiments:

ExprealFE,A(1
κ): ExpidealFE,A,S(1

κ):

1: (fmpk, fmsk)← FE.Setup(1κ)
2: (M, 1t, stateA)← A1(fmpk)
3: fskM ← FE.KeyGen(fmsk,M, t)
4: (x, state′A)← A2(stateA, fskM )

5: c← FE.Enc(fmpk, x)
6: Output (state′A, c)

5: c̃← S(fmpk, fskM ,M,M(x), 1|x|)
6: Output (state′A, c̃)

The scheme is said to be (single-key) secure if there exists a p.p.t. simulator S such that for all pairs of
p.p.t. adversaries (A1, A2), the outcomes of the two experiments are computationally indistinguishable:{

ExprealFE,A(1
κ)

}
κ∈N

c
≈

{
ExpidealFE,A,S(1

κ)

}
κ∈N

.

C.2.2 Input-specific runtime functional encryption

The syntax of an input-specific runtime FE scheme, denoted FE∗, is the same as the syntax of FE, except that
FE∗.KeyGen(msk,M) does not take a time t as input, and FE∗.Dec(skM , ct) runs in time at most polynomial
in runtime(M,x), and does not depend on the worst-case running time (except logarithmically):

Definition C.5 (Efficiency of FE∗ for a class of polynomial time Turing machines T ). There exists a
polynomial p such that for all Turing machines M ∈ T , for all x ∈ {0, 1}poly(κ), for every sufficiently large
κ:

Pr

[
(fmpk, fmsk)← FE∗.Setup(1κ); fskM ← FE∗.KeyGen(fmsk,M); ct← FE∗.Enc(fmpk, x) :

runtime(FE∗.Dec, (fskM , ct)) < p
(
κ, |M |, runtime(M,x)

)]
= 1.

To enable the decryption function to run in input-specific time, one has to inherently reveal the running
time. Therefore, the goal is for the functional encryption scheme to not reveal anything beyond the function
result and the running time. The security definition now gives the simulator the running time as well. Let
runtime(M,x) denote the running time of M on x.

Definition C.6 (Security of FE∗). Let FE∗ be a functional encryption scheme for the family of Turing
machines T . For every p.p.t. adversary A = (A1, A2) and p.p.t. simulator S∗, consider the following two
experiments:

ExprealFE∗,A(1
κ): ExpidealFE∗,A,S∗(1κ):

1: (fmpk, fmsk)← FE∗.Setup(1κ)
2: (M, stateA)← A1(fmpk)
3: fskM ← FE∗.KeyGen(fmsk,M)
4: (x, state′A)← A2(stateA, fskM )

5: c← FE∗.Enc(fmpk, x)
6: Output (state′A, c)

5: c̃← S∗(fmpk, fskM ,M,M(x), 1|x|, runtime(M,x))
6: Output (state′A, c̃)

25



The scheme is said to be (single-key) secure if there exists a p.p.t. simulator S∗ such that for all pairs of
p.p.t. adversaries (A1, A2), the outcomes of the two experiments are computationally indistinguishable:{

ExprealFE∗,A(1
κ)

}
κ∈N

c
≈

{
ExpidealFE∗,A,S∗(1κ)

}
κ∈N

.

D Proof of Theorem 3.1

We prove Th. 3.1 with two lemmas showing that the construction above satisfies the desired properties for an
ABE scheme for Turing machines (as defined in Sec. C.1).

Lemma D.1. The ABE construction above satisfies the correctness and efficiency property Def. C.1.

Proof. We first prove correctness. Let ct = ((x, crs,VK), ctWE) be a ciphertext obtained by running
ABE.Enc(mpk, x, b), and let (M,σ) be a secret key obtained by running ABE.KeyGen(msk,M). We have
two cases:

1. Case: M(x) = 1.

• Since M on input x accepts in t steps, we know w = (M,σ) is a correct witness for (VK, x, t) ∈
L; namely,

(
VK, x, t), (M,σ)

)
∈ RL.

• By SNARK’s completeness, there is an accepting proof π← SNARK.Prover(crs, (VK, x, t), w),
namely SNARK.Verify(crs, (VK, x, t), π) = 1. Since x∗ := (x, crs,VK) and w∗ := (π, t) , we
have (x∗, w∗) ∈ RL∗ .

• By the correctness of the Witness Encryption scheme, WE.Dec(w∗, ctWE) = b.

2. Case: M(x) = 0.

• The decryption algorithm determines that M(x) = 0 in Step 2 of ABE.Dec and outputs ⊥.

This shows the correctness of the ABE decryption algorithm.

Lemma D.2. The above ABE scheme satisfies the security property in Def. C.2.

Proof. Assume, for contradiction, that there is an adversary AABE = (AABE,1, AABE,2) for the ABE scheme.
Namely, there exists a polynomial α, such that for infinitely many κ:

AdvABE,AABE
> 1/α(κ). (3)

Let Dκ be a distribution over pairs (x∗, z∗) as follows.

Algorithm 2 (Sampling from Dκ).
1. (VK,SigSK)← SIG.KeyGen(1κ).
2. Run AABE,1 on input VK: answer queries to the ABE.KeyGen(msk, ·) oracle by simply computing

signatures using SigSK.
3. Obtain result (x, stateABE) from AABE,1.
4. Compute crs← SNARK.Gen(1κ).
5. Output (x∗ := (x, crs,VK), z∗ := stateABE).
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Let AWE be an adversary for the WE scheme as follows.

Algorithm 3 (AWE(x
∗ = (x, crs,VK), ct, z∗ = stateABE)).

1. Run b′ ← AABE,2(stateABE, ct).
2. Output b′.

We can see that the input distribution to AABE,2 in the construction of AWE is the same as in the ABE
game, so AABE,2 guesses b with advantage 1/α(κ) based on Eq. (3). Moreover, by construction, when AABE,2

guesses b correctly, so does AWE; therefore,

Pr[(x∗, z)← Dκ; b← {0, 1}; ct←WE.Enc(1κ, x∗, b) : AWE(x
∗, ct, z) = b] > 1/2 + 1/α(κ). (4)

By the security definition of the WE scheme, Def. 2.1, for AWE, there exists a p.p.t. EWE such that for all
poly q, there exists a polynomial p, such that for all inputs x∗ and auxiliary inputs z∗:

Pr[b← {0, 1}; ct←WE.Enc(1κ, x∗, b) : AWE(x
∗, ct, z∗) = b] ≥ 1/2 + 1/q(|x∗|)

⇒ Pr[EWE(x
∗, z∗) = w∗] ≥ 1/p(|x∗|).

This statement and Eq. (4) imply that there exists a polynomial β such that, for infinitely many κ,

Pr[(x∗, z∗)← Dκ : EWE(x
∗, z∗) = w∗ such that (x∗, w∗) ∈ L∗] > 1/β(κ). (5)

This implication follows from a straightforward computation, included for completeness in Lemma E.1
of the appendix.

We now have an extractor EWE that obtains a correct witness with non-negligible probability. Recall that
the witness w∗ for x∗ = (x, crs,VK) is a SNARK proof w∗ = (π, t).

We would like to use the extractability property of the SNARK to extract a SNARK witness w = (M,σ)
for y = (VK, x, t). Let us now define a prover strategy P ∗ for which we will use the corresponding extractor
ESNARK.

Algorithm 4 (P ∗(crs, z = (stateABE, x,VK))).
1. Let x∗ = (x, crs,VK).
2. Run EWE(x

∗, stateABE) and obtain w∗ = (π, t).
3. Let y = (VK, x, t).
4. Output (y, π).

The input distribution to EWE in the construction of P ∗ is the same as Eq. (4) so EWE outputs
a correct witness w∗ with chance ≥ 1/β(κ). Whenever, EWE outputs a correct witness, we have
SNARK.Verify(crs, y, π) = 1; therefore,

Pr[(x, crs,VK, stateABE)← Dκ; z := (stateABE, x,VK); (y, π)← P ∗(crs, z) :

SNARK.Verify(crs, y, π) = 1] > 1/β(κ). (6)

The proof of knowledge property of the SNARK says that, for P ∗ there exists an extractor ESNARK such
that
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Pr[crs← SNARK.Gen(1κ); (y, π)← P ∗(crs, z);w ← EP ∗(crs, z) :

SNARK.Verify(crs, y, π) = 1 and (y, w) /∈ RU,c] = negl(κ).

Combining this with Eq. (6), we obtain that there exists a polynomial γ such that, for infinitely many κ

Pr[(x, crs,VK, stateABE)← Dκ; z := (stateABE, x,VK); (y, π)← P ∗(crs, z);w ← ESNARK(crs, z) :

(y, w) ∈ RL] > 1/γ(κ). (7)

This implication follows from a simple probability computation, included for completeness in Lemma E.3
in the appendix. We now know that the SNARK prover P ∗ and the SNARK extractor ESNARK can produce
together a x and (M,σ) such that σ is a correct signature on M and M(x) = 1, all with non-negligible
probability. We now construct a signature adversary:

Algorithm 5 (ASIG(VK)).
1. Run AABE,1 on input VK by implementing the ABE.KeyGen(msk, ·) oracle as follows. Consider
AABE,1 makes t queries.

(a) on query Mi, send Mi to the signature challenger which responds with σMi .

(b) Return σMi to AABE,1.

2. Let (x, stateABE) be the outcome of AABE,1.
3. Let crs← SNARK.Gen(1κ) and z := (stateABE, x,VK).
4. Run P ∗(crs, z) and obtain (y, π).
5. Run ESNARK(crs, z) and obtain w = (M,σ).
6. Output (M,σ).

We can see that the input distributions to P ∗ and ESNARK in ASIG are the same as in Eq. (7). Therefore,
there exists a polynomial γ such that

(
(VK, x, t), (M,σ)

)
∈ RL, which means that M(x) = 1 and

SIG.Verify(VK,M, σ) = 1. But all the previous Turing machines Mi for which ASIG asked for signatures
had the property that Mi(x) = 0. This means that M /∈ {M1, . . . ,Mt}, which means that ASIG forges a
signature for a new Turing machine with an advantage of 1/β(κ).

Based on the unforgeability of the signature scheme, we reach a contradiction and thus complete the
proof of the theorem.

E Lemmas for proof of Theorem D.2

We used the following lemma in the security proof above. The lemma states that if for all inputs y, an extractor
has a polynomial advantage is an adversary has a polynomial advantage on that y, then even for a given
distribution of y-s, if the adversary has a polynomial advantage, so does the extractor on that distribution.

Lemma E.1. Let XA and XE be functions mapping an input y to an indicator random variable. Assume
that for all poly q, there exists a poly p such that for all y, if Pr[XA(y)] ≥ 1/2 + 1/q(|y|), then Pr[E(y)] ≥
1/p(|y|).

Then, we have that for all poly q′, there exists a poly p′ such that for all distributions D of inputs y, if
Pr[y ← D : XA(y)] ≥ 1/2 + 1/q′(|y|), then Pr[y ← D : XE(y)] ≥ 1/2 + 1/p′(|y|), for |y| sufficiently
large.
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Proof. Let S := {y ∈ D : Pr[XA(y)] ≥ 1/2 + 1/q′2(|y|)}; namely, S is the subset of the support of D
consisting of values y such that XA(y) is true with an advantage of 1/q′2(|y|).

Let’s prove that the probability of a sample from D is in S is at least 1/q′(|y|). Intuitively, the average
advantage over samples from D is 1/q′(|y|) so there has to be a non-negligible fraction of samples that have
at least advantage 1/q′2(|y|).

Claim E.2. Pr[y ← D : y ∈ S] ≥ 1/q′(|y|).

Proof. Assume for contradiction that p := Pr[y ← D : y ∈ S] < 1/q′(|y|). Note that for y /∈ S,
Pr[XA(y)] < 1/2 + 1/q′2(|y|), by definition of S.

Pr[y ← D : XA(y)] = pPr[y ← D : XA(y) given y ∈ S] + (1− p) Pr[y ← D : XA(y) given y /∈ S]
< p+ (1− p)(1/2 + 1/q′2(|y|))
= 1/2 + p/2 + 1/q′2(|y|)− p/q′2(|y|)
< 1/2 + 1/q′2(|y|) + p/2

< 1/2 + 1/q′2(|y|) + 1/2q′(|y|)
< 1/2 + 1/q′(|y|) for |y| sufficiently large,

thus reaching a contradiction.

By the lemma’s hypothesis, there exists a poly p2 such that for all y, if Pr[XA(y)] ≥ 1/2 + 1/q′2(|y|),
then Pr[E(y)] ≥ 1/p2(|y|). Now, we are ready to compute a lower bound on Pr[y ← D : XE(y)]:

Pr[y ← D : XE(y)] ≥ Pr[y ← D : y ∈ S] Pr[y ← D : XE(y) given y ∈ S]
≥ 1/q′(|y|)1/p2(|y|).

Letting p′ := q′ · p2, we concluded the lemma’s proof.
The following can be applied to the proof of Lemma D.2, after a change of variables. We need to define

z, r, Z , G, E1 and E2 from Lemma E.3:

• z is the same and r := (crs, y, π).

• Zκ is the same as Dκ without the generation of crs.

• Define G as follows. On input z, run crs← SNARK.Gen(1κ, B|x|) and ∗y, π)← P ∗(crs, z).

• E1(z, r) is the following experiment: w ← ESNARK(crs, z) : (y, w) ∈ RL, and E2(z, r) is the
deterministic event SNARK.Verify(crs, y, π).

Lemma E.3. Let Zκ be a set of strings of length poly(κ), let Z(κ) be any distribution over Zκ, and let G be
a p.p.t.. Given two strings z and r, let E1(z, r) and E2(z, r) be two random variables with values in {true,
false}. Assume that the following holds:

∀ z ∈ Zκ,Pr[r ← G(z);E1(z, r) and E2(z, r)] = negl(κ)

and there exists a polynomial p1 such that

Pr[z ← Zκ; r ← G(z);E2(z, r)] > 1/p1(κ),
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then there exists a polynomial p2 such that

Pr[z ← Zκ; r ← G(z);E1(z, r)] > 1/p2(κ).

Proof. We know that for all z ∈ Zκ

Pr[r ← G(z);E1(z, r) and E2(z, r)] < 1/p21(κ) (8)

Pr[z ← Zκ; r ← G(z);E1(z, r) and E2(z, r)]

= 1− Pr[z ← Zκ; r ← G(z);E1(z, r)]− Pr[z ← Zκ; r ← G(z);E1(z, r) and E2(z, r)]

= Pr[z ← Zκ; r ← G(z);E1(z, r)]− Pr[z ← Zκ; r ← G(z);E1(z, r) and E2(z, r)]

> 1/p1(κ)− 1/p21(κ),

by the lemma’s hypothesis and Eq. (8). Moreover, Pr[z ← Zκ; r ← G(z);E1(z, r)] ≥ Pr[z ← Zκ; r ←
G(z);E1(z, r) and E2(z, r)]; thus, there exists a polynomial p2 as desired.

F Functional encryption for Turing machines

F.1 Construction for FE for Turing machines

The construction uses a two-outcome ABE scheme, denoted ABE2, as opposed to a standard ABE scheme. In
ABE2, instead of encrypting a message m w.r.t. a public attribute x, one encrypts two messages L0 and L1

w.r.t. a public attribute x. Given a secret key skM and a ciphertext Enc(fmpk, x, (L0, L1)) one can compute
Lb where b =M(x) and L1−b remains hidden. It is straightforward to construct ABE2 from any secure ABE
scheme (see [GKP+13] for details). Moreover, if the original ABE was for Turing machines then the ABE2 is
also for Turing machines. In what follows, we further assume that ABE2 can encrypt an input of polynomial
size rather than one bit (which can be achieved by repetition).

Let λ = λ(κ) be the length of the ciphertexts in the FHE scheme; this refers to both the ciphertexts
produced by the FHE encryption algorithm and to the ciphertexts produced by the FHE evaluation algorithm.
The construction is mainly the one of [GKP+13], the main difference being in FE.KeyGen – generating a key
for a Turing machine.
Setup FE.Setup(1κ): Run the setup algorithm for the two-outcome ABE scheme:

(fmpk, fmsk)← ABE2.Setup(1
κ).

Output (fmpk, fmsk) as the master public and secret keys.
Key Generation FE.KeyGen(MSK,M, t):

1. Compute MFHE ← CompileFHE(M, t), the Turing machine that runs the homomorphic evaluation of
M for time t. Let M i

FHE be the Turing machine that runs MFHE and outputs the i-th bit of MFHE.

2. Run the key generation algorithm of ABE2 for the TMs M i
FHE to construct secret keys:

fski ← ABE2.KeyGen(fmsk,M i
FHE) for i ∈ [λ].

3. Output the tuple fskM := (fsk1, . . . , fskλ) as the secret key for the TM M .
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Note that if ABE2 is a scheme for Turing machines, then the secret keys fsk1, . . . , fskλ (and thus the secret
key fskM ) depend only on the size of the (non-uniform) Turing machines M i

FHE. This size does not depend
on the runtime (or on the unrolled circuit size) of M i

FHE or M .
Encryption FE.Enc(MPK, x): Let n be the number of bits of x, namely x = (x1 . . . xn). Encryption
proceeds in three steps.

1. Generate a fresh key pair (hpk, hsk)← FHE.KeyGen(1κ) for the FHE scheme. Encrypt each bit of x
by computing ψi ← FHE.Enc(hpk, xi). Let ψ := (ψ1, . . . , ψn) be the encryption of the input x.

2. Run the Yao garbled circuit generation algorithm to produce a garbled circuit for the FHE decryption
algorithm FHE.Dec(hsk, ·) : {0, 1}λ → {0, 1} together with 2λ labels Lb

i for i ∈ [λ] and b ∈ {0, 1}.
Namely, (

Γ, {L0
i , L

1
i }λi=1

)
← Gb.Garble(1κ,FHE.Dec(hsk, ·)),

where Γ is the garbled circuit and the Lb
i are the input labels.

3. Produce encryptions c1, . . . , cλ using the ABE2 scheme in the following way. Let

ci ← ABE2.Enc
(
fmpk, (hpk, ψ), (L0

i , L
1
i )
)

where (hpk, ψ) comes from the first step, and the labels (L0
i , L

1
i ) come from the second step.

The output of the encryption algorithm is c = (c1, . . . , cλ,Γ).
Decryption FE.Dec(fskM , c):

1. First, run the ABE2 decryption algorithm on the ciphertexts c1, . . . , cλ to recover the labels for the
garbled circuit. In particular, let

Ldi
i ← ABE2.Dec(fski, ci) for i ∈ [λ],

where di is a bit representing M i
FHE(hpk, ψ).

2. Now, armed with the garbled circuit Γ and the labels Ldi
i , run the garbled circuit evaluation algorithm

to compute

Gb.Eval(Γ, Ld1
1 , . . . , L

dλ
λ ) = FHE.Dec(hsk, d1d2 . . . dλ) = FHE.Dec(hsk,MFHE(hpk, ψ)) =M(x)

We note that even though the size of fskM is small (independent of the runtime of M ), given fskM and
FE.Enc(MPK, x), the time it takes to compute M(x) is proportional to the worst-case running time of M .
This is inherent since the security definition ensures that the only information that is leaked about x is M(x),
and in particular, does not allow to leak the running time of M on input x.

The proof of Theorem 4.1 is almost identical to the proof of the corresponding theorem in [GKP+13]
(where functions are modeled as circuits as opposed to Turing machines). We thus refer the reader
to [GKP+13] for the proof.
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F.2 Proof of Th. 4.2

Proof of Th. 4.2. We need to prove the correctness, efficiency and security of the scheme.

Correctness. The correctness of FE∗ follows from the correctness of the underlying scheme FE. LetM be any
Turing machine for which a key skM was generated and x be any input for which a ciphertext ct was generated.
Since M is a polynomial time TM, M must halt on x before time B|x|. Therefore, there exists at least one i
such that 2i ≥ runtime(M,x). Let i0 be the smallest such i. For all j < i0, we have FE.Dec(fskMj , ctj) = ⊥
so the loop in FE∗.Dec continues. When j = i0, we have FE.Dec(fskMi , cti) = M(x) ̸= ⊥, so FE∗.Dec
outputs the correct value.

Efficiency (as per Def. C.5) . Let M be any Turing machine for which a key skM was generated and x be
any input for which a ciphertext ct was generated. Let i be the smallest index such that runtime(M,x) ≤ 2i.
2i is at most twice the value of runtime(M,x). At each step j ≤ i, the runtime of FE.Dec(fskMi , cti) is
a polynomial in tj and κ; tj is proportional to 2j ≤ 2i ≤ 2 · runtime(M,x). Therefore, each step takes
poly(runtime(M,x), κ). There are at most logBκ = log2 κ such steps, thus efficiency is achieved.

Security (as per Def. C.6). Let us construct a simulator S∗ for FE∗ as in Def. C.6 based on a simulator S
for FE as in Def. C.4.

Algorithm 6 (S∗(MPK, fskM ,M,M(x), 1|x|, t = runtime(M,x))).
Recall that MPK = (mpk1 . . .mpkτ ) and fskM = (fskM1 . . . fskMτ )

1. For each i = 1, . . . , τ , generate cti as follows:

(a) If t > 2i: cti ← S(mpki, fskMi ,Mi,⊥, 1|x|).
(b) Else (t ≤ 2i): cti ← S(mpki, fskMi ,Mi,M(x), 1|x|).

2. Output (ct1, . . . , ctτ ).

We can see that S∗ is a correct simulation based on the security properties of S.

G Fully homomorphic encryption for Turing machines

In this section, we provide a construction for FHE∗, a fully homomorphic encryption scheme that avoids
worst-case running time. The idea is to use FE∗ to enable an evaluator to determine the running time of a TM
M on an input x and then to use a standard FHE scheme FHE to perform the FHE evaluation for that runtime.

Theorem G.1. Assuming there exists an input-specific runtime functional encryption scheme for the class
of all (uniform or non-uniform) polynomial time Turing machines, and assuming the existence of a fully
homomorphic encryption scheme (for circuits), there is an input-specific fully homomorphic encryption
scheme for the class of all (uniform or non-uniform) polynomial time Turing machines.

Corollary G.2. There exists an input-specific fully homomorphic encryption scheme for the class of all
(uniform or non-uniform) polynomial time Turing machines under the extractable DGE No-Exact-Cover
assumption (Sec. 2), “knowledge of exponent assumption” (Sec. 1.2), and the LWE assumption with circular
security.

As [GKP+13] already discussed, the FHE evaluator must no longer be able to compute TMs of its choice
on the encrypted inputs (in time that is input specific) because the running time of those TMs can leak the
input. Therefore, the evaluator must receive a token permitting it to run a certain TM M . Moreover, because
FE∗ is only secure for a single-key, we cannot generate a FE∗ key for an unbounded number of Turing
machines. Instead we generate a FE∗ key for the universal Turing machine U , that on input a TM M and x
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outputs the running time of M on x. We separately provide an FHE encryption of x to be used for a standard
FHE evaluation.
Key generation FHE∗.KeyGen(1κ):

1. (MPK,MSK)← FE∗.Setup(1κ).

2. (hpk, hsk)← FHE.KeyGen(1κ).

3. skU ← FE∗.KeyGen(MSK, U).

4. Output PK = (MPK, skU , hpk) and SK = hsk.

Encryption FHE∗.Enc(PK, x,M) :

1. Produce FE∗ encryption ctFE∗ = FE∗.Enc(MPK, (x,M)).

2. Produce FHE encryption x̂← FHE.Enc(hpk, x).

3. Output ct = (ctFE∗ , x̂).

Evaluation FHE∗.Eval(PK, ct) with PK = (MPK, skU , hpk) and ct = (ctFE∗ , x̂):

1. Compute t← FE∗.Dec(skU , ctFE∗).

2. Use the Pippenger-Fischer transformation [PF79] on M and time bound t to obtain a circuit CM that
runs M for t steps.

3. Compute and output ct = (ctFHE := FHE.Eval(hpk, CM , x̂)).

Decryption FHE∗.Dec(SK, ct) with SK = hsk:

1. If ct = (ctFE∗ , x̂), output FHE.Dec(hsk, x̂).

2. If ct = (ctFHE = FHE.Eval(hpk, CM , x̂), output FHE.Dec(hsk, ctFHE).

Remark G.3. Note that the run time for FHE∗.KeyGen is poly(κ, |U |) because all algorithms invoked are
p.p.t.-s. Therefore, the preprocessing phase for FHE∗ does not depend on the worst-case runtime of the TMs
in T .

We do not elaborate on correctness and security because they follow from the correctness and security of
the FE∗ and FHE schemes. Let’s prove that the running time is indeed input-specific:

Lemma G.4. FHE∗.Eval runs in time poly(κ, |M |, t).

Proof. From the proof of Theorem 4.2, we know that the runtime of FE∗.Dec is poly(κ, |U |, runtime(U, (M,x))).
Since the running time of U on (M,x) is proportional to the running time of M , the time for FE∗.Dec is
poly(κ, |M |, runtime(M,x)).

The time to compute the Pippenger Fischer transformation is pseudolinear in t and the time to perform
FHE evaluation of a circuit of size pseudolinear in t is polynomial in t.

Therefore, overall, the runtime of FHE∗.Eval is poly(κ, |M |, runtime(M,x)), as desired.
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