
Intrusion Recovery Using Selective Re-execution

Taesoo Kim, Xi Wang, Nickolai Zeldovich, and M. Frans Kaashoek
MIT CSAIL

ABSTRACT

RETRO repairs a desktop or server after an adversary com-
promises it, by undoing the adversary’s changes while
preserving legitimate user actions, with minimal user in-
volvement. During normal operation, RETRO records
an action history graph, which is a detailed dependency
graph describing the system’s execution. RETRO uses re-
finement to describe graph objects and actions at multiple
levels of abstraction, which allows for precise dependen-
cies. During repair, RETRO uses the action history graph
to undo an unwanted action and its indirect effects by
first rolling back its direct effects, and then re-executing
legitimate actions that were influenced by that change.
To minimize user involvement and re-execution, RETRO
uses predicates to selectively re-execute only actions that
were semantically affected by the adversary’s changes,
and uses compensating actions to handle external effects.

An evaluation of a prototype of RETRO for Linux with
2 real-world attacks, 2 synthesized challenge attacks, and
6 attacks from previous work, shows that RETRO can
often repair the system without user involvement, and
avoids false positives and negatives from previous so-
lutions. These benefits come at the cost of 35–127% in
execution time overhead and of 4–150 GB of log space per
day, depending on the workload. For example, a HotCRP
paper submission web site incurs 35% slowdown and gen-
erates 4 GB of logs per day under the workload from 30
minutes prior to the SOSP 2007 deadline.

1 INTRODUCTION

Despite our best efforts to build secure computer systems,
intrusions are nearly unavoidable in practice. When faced
with an intrusion, a user is typically forced to reinstall
their system from scratch, and to manually recover any
documents and settings they might have had. Even if the
user diligently makes a complete backup of their system
every day, recovering from the attack requires rolling back
to the most recent backup before the attack, thereby losing
any changes made since then. Since many adversaries go
to great lengths to prevent the compromise from being
discovered, it can take days or weeks for a user to discover
that their machine has been broken into, resulting in a loss
of all user work from that period of time.

This paper presents RETRO, a system for retroactively
undoing past attacks and their indirect effects on a single
machine. With RETRO, an administrator specifies offend-

ing actions from the past, such as a TCP connection or
an HTTP request from an adversary, that they want to
undo. RETRO then repairs the system’s state (the file sys-
tem) by selectively undoing the offending actions—that
is, constructing a new system state, as if the offending
actions never took place, but all legitimate actions re-
mained. Thus, by selectively undoing the adversary’s
changes while preserving user data, RETRO makes intru-
sion recovery more practical.

To illustrate the challenges facing RETRO, consider the
following attack, which we will use as a running example
in this paper. Eve, an evil adversary, compromises a Linux
machine, and obtains a root shell. To mask her trail, she
removes the last hour’s entries from the system log. She
then creates several backdoors into the system, including
a new account for eve, and a PHP script that allows her to
execute arbitrary commands via HTTP. Eve then uses one
of these backdoors to download and install a botnet client.
To ensure continued control of the machine, Eve adds a
line to the /usr/bin/texi2pdf shell script (a wrapper
for LATEX) to restart her bot. In the meantime, legitimate
users log in, invoke their own PHP scripts, use texi2pdf,
and root adds new legitimate users.

To undo attacks, RETRO provides a system-wide ar-
chitecture for recording actions, causes, and effects in
order to identify all the downstream effects of a compro-
mise. The key challenge is that a compromise in the past
may have effects on subsequent legitimate actions, espe-
cially if the administrator discovers an attack long after it
occurred. RETRO must sort out this entanglement auto-
matically and efficiently. In our running example, Eve’s
changes to the password file and to texi2pdf are entan-
gled with legitimate actions that modified or accessed the
password file, or used texi2pdf. If legitimate users ran
texi2pdf, their output depended on Eve’s actions, and
so did any programs that used that output in turn.

As described in §2, most previous systems require user
input to disentangle such actions. Typical previous solu-
tions are good at detecting a compromise and allow a user
to roll the system back to a check point before the com-
promise, but then ask the user to incorporate legitimate
changes from after the compromise manually; this can
be quite onerous if the attack has happened a long time
ago. Some solutions reduce the amount of manual work
for special cases (e.g., known viruses). The most recent
general solution for reducing user assistance (Taser [17])
incurs many false positives (undoing legitimate actions),

1

or, after white-listing some actions to minimize false posi-
tives, it incurs false negatives (missing parts of the attack).

How can RETRO disentangle unwanted actions from le-
gitimate operations, and undo all effects of the adversary’s
actions that happened in the past, while preserving every
legitimate action? RETRO addresses these challenges with
four ideas:

First, RETRO models the entire system using a new
form of a dependency graph, which we call an action his-
tory graph. Like any dependency graph, the action history
graph represents objects in the system (such as files and
processes), and the dependencies between those objects
(corresponding to actions such as a process reading a file).
To record precise dependencies, the action history graph
supports refinement, that is, representing the same object
or action at multiple levels of abstraction. For example,
a directory inode can be refined to expose individual file
names in that directory, and a process can be refined into
function calls and system calls. The action history graph
also captures the semantics of each dependency (e.g., the
arguments and return values of an action).

Second, RETRO re-executes actions in the graph, such
as system calls or process invocations, that were influ-
enced by the offending changes. For example, undoing
undesirable actions may indirectly change the inputs of
later actions, and thus these actions must be re-executed
with their repaired inputs.

Third, RETRO uses predicates to do selective re-
execution of just the actions whose dependencies are
semantically different after repair, thereby minimizing
cascading re-execution. For example, if Eve modified
some file, and that file was later read by process P , we
may be able to avoid re-executing P if the part of the file
accessed by P is the same before and after repair.

Finally, to selectively re-execute existing applications,
RETRO uses shepherded re-execution to monitor the re-
execution of processes (§5.2.3), and stops re-execution
when the process state converges to the original execution
(such as when a process issues an identical exec call).

Using a prototype of RETRO for Linux, we show that
RETRO can recover from both real-world and synthetic
attacks, including our running example, while preserving
legitimate user changes. Out of ten experiment scenarios,
six required no user input to repair, two required user
confirmation that a conflicting login session belonged to
the attacker, and two required the user to manually redo
affected operations. We also show that RETRO’s ideas of
refinement, shepherded re-execution, and predicates are
key to repairing precisely the files affected by the attack,
and to minimizing user involvement. A performance eval-
uation shows that, for extreme workloads that issue many
system calls (such as continuously recompiling the Linux
kernel), RETRO imposes a 89–127% runtime overhead
and requires 100–150 GB of log space per day. For a

more realistic application, such as a HotCRP [23] confer-
ence submission site, these costs are 35% and 4 GB per
day, respectively. RETRO’s runtime cost can be reduced
by using additional cores, amounting to 0% for HotCRP
when one core is dedicated to RETRO.

The rest of the paper is organized as follows. The next
section compares RETRO with related work. §3 presents
an overview of RETRO’s architecture and workflow. §4
discusses RETRO’s action history graph in detail, and
§5 describes RETRO’s repair managers. Our prototype
implementation is described in §6, and §7 evaluates the
effectiveness and performance of RETRO. Finally, §8 dis-
cusses the limitations and future work, and §9 concludes.

2 RELATED WORK

This section relates RETRO to industrial and academic
solutions for recovery after a compromise, and prior tech-
niques that RETRO builds on.

2.1 Repair solutions
One line of industrial solutions is anti-virus tools, which
can revert changes made by common malware, such as
Windows registry keys and files comprising a known virus.
For example, tools such as [34] can generate remediation
procedures for a given piece of malware. While such
techniques work for known malware that behaves in pre-
dictable ways, they incur both false positives and false
negatives, especially for new or unpredictable malware,
and may not be able to recover from attacks where some
information is lost, such as file deletions or overwrites.
They also cannot repair changes that were a side-effect of
the attack, such as changes made by a trojaned program,
or changes made by an interactive adversary, whereas
RETRO can undo such changes.

Another line of industrial solutions is systems that help
users roll back unwanted changes to system state. These
solutions include Windows System Restore [18], Win-
dows Driver Rollback [30], Time Machine [4], and numer-
ous backup tools. These tools perform coarse-grained re-
covery, and require the user to identify what files were af-
fected. RETRO uses the action history graph to track down
all effects of an attack, repairs precisely those changes,
and repairs all side-effects of the attack, without requiring
the user to guess what files were affected.

A final line of popular solutions is using virtual ma-
chines as a form of whole-system backup. Using Re-
Virt [14] or Moka5 [11, 31], an administrator can roll
back to a checkpoint before an attack, losing both the
attacker’s changes and any legitimate changes since that
point. One could imagine a system that replays recorded
legitimate network packets to the virtual machine to re-
apply legitimate changes. However, if there are even
subtle dependencies between omitted and replayed pack-
ets, the replayed packets will result in conflicts or external

2

Figure 1: Overview of RETRO’s architecture, including major components and their interactions. Shading indicates components introduced by
RETRO. Striped shading of checkpoints indicates that RETRO reuses existing file system snapshots when available.

dependencies, requiring user input to proceed. By record-
ing dependencies and re-executing actions at many levels
of abstraction using refinement, RETRO avoids such con-
flicts and can preserve legitimate changes without user
input.

Academic research has tried to improve over the in-
dustrial solutions by attempting to make solutions more
automatic. Brown’s undoable email store [10] shows how
an email server can recover from operator mistakes, by
turning all operations into verbs, such as SMTP or IMAP
commands. Unlike RETRO, Brown’s approach is limited
to recovering from accidental operator mistakes. As a
result, it cannot deal with an adversary that goes outside
of the verb model and takes advantage of a vulnerability
in the IMAP server software, or guesses root’s password
to log in via ssh. Moreover, it cannot recover from actions
that had system-wide effects spanning multiple applica-
tions, files, and processes.

The closest related work to RETRO is Taser [17], which
uses taint tracking to find files affected by a past attack.
Taser suffers from false positives, erroneously rolling back
hundreds or thousands of files. To prevent false positives,
Taser uses a white-list to ignore taint for some nodes or
edges. This causes false negatives, so an attacker can
bypass Taser altogether. While extensions of Taser catch
some classes of attacks missed due to false negatives [40],
RETRO has no need for white-listing. RETRO recovers
from all attacks presented in the Taser paper with no
false positives or false negatives. RETRO avoids Taser’s
limitations by using a design based on the action history
graph, and techniques such as predicates and re-execution,
as opposed to Taser’s taint propagation.

Polygraph [29] uses taint tracking to recover from com-
promised devices in a data replication system, and incurs
false positives like Taser. Unlike RETRO, Polygraph can
recover from compromises in a distributed system.

2.2 Related techniques
The use of dependency information for security has been
widely explored in many contexts, including informa-

tion flow control [25, 45], taint tracking [44], data prove-
nance [9], forensics [21], system integrity [8], and so
on. A key difference in RETRO’s action history graph
is the use of exact dependency data to decide whether a
dependency has semantically changed at repair time.

RETRO assumes that intrusion detection and analysis
tools, such as [7, 12, 14, 15, 19–22, 24, 40, 43], detect
attacks and pinpoint attack edges. RETRO’s intrusion de-
tection is based on BackTracker [21]. A difference is that
RETRO’s action history graph records more information
than BackTracker, which RETRO needs for repair (but
doesn’t use yet for detection).

Transactions [33, 36] help revert unwanted changes
before commit, whereas RETRO can selectively undo
“committed” actions. Database systems use compensating
transactions to revert committed transactions, including
malicious transactions [3, 27]; RETRO similarly uses com-
pensating actions to deal with externally-visible changes.

3 OVERVIEW

RETRO consists of several components, as shown in Fig-
ure 1. During normal execution, RETRO’s kernel module
records a log of system execution, and creates periodic
checkpoints of file system state. When the system ad-
ministrator notices a problem, he or she uses RETRO to
track down the initial intrusion point. Given an intrusion
point, RETRO reverts the intrusion, and repairs the rest
of the system state, relying on the system administrator
to resolve any conflicts (e.g., both the adversary and a
legitimate user modified the same line of the password
file). The rest of this section describes these phases of
operation in more detail, and outlines the assumptions
made by RETRO about the system and the adversary.

Normal execution. As the computer executes, RETRO
must record sufficient information to be able to revert
the effects of an attack. To this end, RETRO records
periodic checkpoints of persistent state (the file system),
so that it can later roll back to a checkpoint. RETRO
does not require any specialized format for its file system

3

checkpoints; if the file system already creates periodic
snapshots, such as [26, 32, 37, 38], RETRO can simply
use these snapshots, and requires no checkpointing of its
own. In addition to rollback, RETRO must be able to re-
execute affected computations. To this end, RETRO logs
actions executed over time, along with their dependencies.
The resulting checkpoints and actions comprise RETRO’s
action history graph, such as the one shown in Figure 2.

The action history graph consists of two kinds of ob-
jects: data objects, such as files, and actor objects, such
as processes. Each object has a set of checkpoints, rep-
resenting a copy of its state at different points in time.
Each actor object additionally consists of a set of actions,
representing the execution of that actor over some period
of time. Each action has dependencies from and to other
objects in the graph, representing the objects accessed
and modified by that action. Actions and checkpoints of
adjacent objects are ordered with respect to each other, in
the order in which they occurred.1

RETRO stores the action history graph in a series of log
files over time. When RETRO needs more space for new
log files, it garbage-collects older log files (by deleting
them). Log files are only useful to RETRO in conjunction
with a checkpoint that precedes the log files, so log files
with no preceding checkpoint can be garbage-collected.
In practice, this means that RETRO keeps checkpoints
for at least as long as the log files. By design, RETRO
cannot recover from an intrusion whose log files have
been garbage collected; thus, the amount of log space
allocated to logs and checkpoints controls RETRO’s re-
covery “horizon”. For example, a web server running the
HotCRP paper review software [23] logs 4 GB of data per
day, so if the administrator dedicates a 2 TB disk ($100)
to RETRO, he or she can recover from attacks within the
past year, although these numbers strongly depend on the
application.

Intrusion detection. At some point after an adversary
compromises the system, the system administrator learns
of the intrusion, perhaps with the help of an intrusion
detection system. To repair from the intrusion, the system
administrator must first track down the initial intrusion
point, such as the adversary’s network connection, or
a user accidentally running a malware binary. RETRO
provides a tool similar to BackTracker [21] that helps
the administrator find the intrusion point, starting from
the observed symptoms, by leveraging RETRO’s action
history graph. In the rest of this paper, we assume that an
intrusion detection system exists, and we do not describe
our BackTracker-like tool in any more detail.

Repair. Once the administrator finds the intrusion point,
he or she reboots the system, to discard non-persistent

1For simplicity, our prototype globally orders all checkpoints and
actions for all objects.

state, and invokes RETRO’s repair controller, specifying
the name of the intrusion point determined in the previous
step.2 The repair controller undoes the offending action,
A, by rolling back objects modified by A to a previous
checkpoint, and replacing A with a no-op in the action
history graph. Then, using the action history graph, the
controller determines which other actions were poten-
tially influenced by A (e.g., the values of their arguments
changed), rolls back the objects they depend on (e.g.,
their arguments) to a previous checkpoint, re-executes
those actions in their corrected environment (e.g., with
the rolled-back arguments), and then repeats the process
for actions that the re-executed actions may have influ-
enced. This process will also undo subsequent actions
by the adversary, since the action that initially caused
them, A, has been reverted. Thus, after repair, the system
will contain the effects of all legitimate actions since the
compromise, but none of the effects of the attack.

To minimize re-execution and to avoid potential con-
flicts, the repair controller checks whether the inputs to
each action are semantically equivalent to the inputs dur-
ing original execution, and skips re-execution in that case.
In our running example, if Alice’s sshd process reads a
password file that Eve modified, it might not be necessary
to re-execute sshd if its execution only depended on Al-
ice’s password entry, and Eve did not change that entry. If
Alice’s sshd later changed her password entry, then this
change will not result in a conflict during repair because
the repair controller will determine that her change to the
password file could not have been influenced by Eve.

RETRO’s repair controller must manipulate many kinds
of objects (e.g., files, directories, processes, etc.) and
re-execute many types of actions (e.g., system calls and
function calls) during repair. To ensure that RETRO’s de-
sign is extensible, RETRO’s action history graph provides
a well-defined API between the repair controller and in-
dividual graph objects and actions. Using this API, the
repair controller implements a generic repair algorithm,
and interacts with the graph through individual repair
managers associated with each object and action in the
action history graph. Each repair manager, in turn, tracks
the state associated with their respective object or action,
implements object/action-specific operations during re-
pair, and efficiently stores and accesses the on-disk state,
logs, and checkpoints.

External dependencies. During repair, RETRO may
discover that changes made by the adversary were ex-
ternally visible. RETRO relies on compensating actions to
deal with external dependencies where possible. For ex-
ample, if a user’s terminal output changes, RETRO sends

2Each object and action in the action history graph has a unique
name, as described in §5.

4

a diff between the old and new terminal sessions to the
user in question.

In some cases, RETRO does not have a compensat-
ing action to apply. If Eve, from our running example,
connected to her botnet client over the network, RETRO
would not be able to re-execute the connection during
repair (the connection will be refused since the botnet
will no longer be running). When such a situation arises,
RETRO’s repair controller pauses re-execution and asks
the administrator to manually re-execute the appropriate
action. In the case of Eve’s connection, the administra-
tor can safely do nothing and tell the repair controller to
resume.

Assumptions. RETRO makes three significant assump-
tions. First, RETRO assumes that the system administrator
detects intrusions in a timely manner, that is, before the
relevant logs are garbage-collected. An adversary that is
aware of RETRO could compromise the system and then
try to avoid detection, by minimizing any activity until
RETRO garbage-collects the logs from the initial intru-
sion. If the initial intrusion is not detected in time, the
administrator will not be able to revert it directly, but this
strategy would greatly slow down attackers. Moreover,
the administrator may be able to revert subsequent actions
by the adversary that leveraged the initial intrusion to
cause subsequent notable activity.

Second, RETRO assumes that the administrator
promptly detects any intrusions with wide-ranging effects
on the execution of the entire system. If such intrusions
persist for a long time, RETRO will require re-execution
of large parts of the system, potentially incurring many
conflicts and requiring significant user input. However,
we believe this assumption is often reasonable, since the
goal of many adversaries is to remain undetected for as
long as possible (e.g., to send more spam, or to build up a
large botnet), and making pervasive changes to the system
increases the risk of detection.

Third, for this paper, we assume that the adversary com-
promises a computer system through user-level services.
The adversary may install new programs, add backdoors
to existing programs, modify persistent state and con-
figuration files, and so on, but we assume the adversary
doesn’t tamper with the kernel, file system, checkpoints,
or logs. RETRO’s techniques rely on a detailed under-
standing of operating system objects, and our assumptions
allow RETRO to trust the kernel state of these objects. We
rely on existing techniques for hardening the kernel, such
as [16, 28, 39, 41], to achieve this goal in practice.

4 ACTION HISTORY GRAPH

RETRO’s design centers around the action history graph,
which represents the execution of the entire system over

Eve
's p

roc
ess

/e
tc
/p
as
sw
d

us
er
ad
d
al
ic
e

pro
ces

s

Alic
e's

 ss
hd

Legend:

object checkpoint

Ti
m

e

dependency

action

actor object

data object

write

write

read

read
example intrusion point

Figure 2: A simplified view of the action history graph depicting Eve’s
attack in our running example. In this graph, attacker Eve adds an
account for herself to /etc/passwd, after which root adds an account
for Alice, and Alice logs in via ssh. As an example, we consider Eve’s
write to the password file to be the attack action, although in reality,
the attack action would likely be the network connection that spawned
Eve’s process in the first place. Not shown are intermediate data objects,
and system call actors, described in §4.3 and Figure 4.

time. The action history graph must address four require-
ments in order to disentangle attacker actions from le-
gitimate operations. First, it must operate system-wide,
capturing all dependencies and actions, to ensure that
RETRO can detect and repair all effects of an intrusion.
Second, the graph must support fine-grained re-execution
of just the actions affected by the intrusion, without hav-
ing to re-execute unaffected actions. Third, the graph
must be able to disambiguate attack actions from legiti-
mate operations whenever possible, without introducing
false dependencies. Finally, recording and accessing the
action history graph must be efficient, to reduce both run-
time overheads and repair time. The rest of this section
describes the design of RETRO’s action history graph.

4.1 Repair using the action history graph
RETRO represents an attack as a set of attack actions. For
example, an attack action can be a process reading data
from the attacker’s TCP connection, a user inadvertently
running malware, or an offending file write. Given a set
of attack actions, RETRO repairs the system in two steps,
as follows.

First, RETRO replaces the attack actions with benign
actions in the action history graph. For example, if the
attack action was a process reading a malicious request
from the attacker’s TCP connection, RETRO removes the
request data, as if the attacker never sent any data on that
connection. If the attack action was a user accidentally
running malware, RETRO changes the user’s exec system
call to run /bin/true instead of the malware binary.
Finally, if the attack action was an unwanted write to a

5

Function or variable Semantics
set〈checkpt〉 object.checkpts Set of available checkpoints for this object.

void object.rollback(c) Roll back this object to checkpoint c.
set〈action〉 actor object.actions Set of actions that comprise this actor object.
set〈action〉 data object.readers Set of actions that have a dependency from this data object.
set〈action〉 data object.writers Set of actions that have a dependency to this data object.

set〈data object〉 data object.parts Set of data objects whose state is part of this data object.
actor object action.actor Actor containing this action.

set〈data object〉 action.inputs Set of data objects that this action depends on.
set〈data object〉 action.outputs Set of data objects that depend on this action.

bool action.equiv() Check whether any inputs of this action have changed.
bool action.connect() Add dependencies for new inputs and outputs, based on new inputs.
void action.redo() Re-execute this action, updating output objects.

Figure 3: Object (top) and action (bottom) repair manager API.

file, as in Figure 2, RETRO replaces the action with a zero-
byte write. RETRO includes a handful of such benign
actions used to neutralize intrusion points found by the
administrator.

Second, RETRO repairs the system state to reflect the
above changes, by iteratively re-executing affected ac-
tions, starting with the benign replacements of the at-
tack actions themselves. Prior to re-executing an action,
RETRO must roll back all input and output objects of that
action, as well as the actor itself, to an earlier checkpoint.
For example, in Figure 2, RETRO rolls back the output of
the attack action—namely, the password file object—to
its earlier checkpoint.

RETRO then considers all actions with dependencies to
or from the objects in question, according to their time
order. Actions with dependencies to the object in question
are re-executed, to reconstruct the object. For actions
with dependencies from the object in question, RETRO
checks whether their inputs are semantically equivalent
to their inputs during original execution. If the inputs
are different, such as the useradd command reading the
modified password file in Figure 2, the action will be
re-executed, following the same process as above. On
the other hand, if the inputs are semantically equivalent,
RETRO skips re-execution, avoiding the repair cascade.
For example, re-executing sshd may be unnecessary, if
the password file entry accessed by sshd is the same
before and after repair. We will describe shortly how
RETRO determines this (in §4.4 and Figure 5).

4.2 Graph API

As described above, repairing the system requires three
functions: rolling back objects to a checkpoint, re-
executing actions, and checking an action’s input depen-
dencies for semantic equivalence. To support different
types of objects and actions in a system-wide action his-
tory graph, RETRO delegates these tasks, as well as track-
ing the graph structure itself, to repair managers associ-
ated with each object and action in the graph.

A manager consists of two halves: a runtime half, re-
sponsible for recording logs and checkpoints during nor-
mal execution, and a repair-time half, responsible for
repairing the system state once the system administrator
invokes RETRO to repair an intrusion. The runtime half
has no pre-defined API, and needs to only synchronize
its log and checkpoint format with the repair-time half.
On the other hand, the repair-time half has a well-defined
API, shown in Figure 3.

Object manager. During normal execution, object
managers are responsible for making periodic checkpoints
of objects. For example, the file system manager takes
snapshots of files, such as a copy of /etc/passwd in Fig-
ure 2. Process objects also have checkpoints in the graph,
although in our prototype, the only supported process
checkpoint is the initial state of a process immediately
prior to exec.

During repair, an object manager is responsible for
maintaining the state represented by its object. For per-
sistent objects, the manager uses the on-disk state, such
as the actual file for a file object. For ephemeral objects,
such as processes or pipes, the manager keeps a temporary
in-memory representation to help action managers redo
actions and check predicates, as we describe in §5.

An object manager provides one main procedure in-
voked during repair, o.rollback(v), which rolls back ob-
ject o’s state to checkpoint v. For a file object, this means
restoring the on-disk file from snapshot v. For a pro-
cess, this means constructing an initial, paused process in
preparation for redoing exec, as we will discuss in §5.2.3;
since there is only one kind of process checkpoint, v is
not used. If the object was last checkpointed long ago,
RETRO will need to re-execute all subsequent actions that
modified the data object, or that comprise the actor object.

Action manager. During normal execution, action man-
agers are responsible for recording all actions executed
by actors in the system. For each action, the manager
records enough information to re-execute the same action
at repair time, as well as to check whether the inputs are

6

semantically equivalent (e.g., by recording the data read
from a file).

At repair time, an action manager provides three proce-
dures. First, a.redo() re-executes action a, reading new
data from a’s input objects and modifying the state of
a’s output objects. For example, redoing a file write ac-
tion modifies the corresponding file in the file system; if
the action was not otherwise modified, this would write
the same data to the same offset as during original ex-
ecution. Second, a.equiv() checks whether a’s inputs
have semantically changed since the original execution.
For instance, equiv on a file read action checks whether
the file contains the same data at the same offset (and,
therefore, whether the read call would return the same
data). Finally, a.connect() updates action a’s input and
output dependencies, in case that changed inputs result in
the action reading or modifying new objects. To ensure
that past dependencies are not lost, connect only adds,
and never removes, dependencies (even if the action in
question does not use that dependency).

4.3 Refining actor objects:
Finer-grained re-execution

An important goal of RETRO’s design is minimizing re-
execution, so as to avoid the need for user input to handle
potential conflicts and external dependencies. It is of-
ten necessary to re-execute a subset of an actor’s actions,
but not necessarily the entire actor. For example, after
rolling back a file like /etc/passwd to a checkpoint that
was taken long ago, RETRO needs to replay all writes
to that file, but should not need to re-execute the pro-
cesses that issued those writes. Similarly, in Figure 2,
RETRO would ideally re-execute only a part of sshd that
checks whether Alice’s password entry is the same, and
if so, avoid re-executing the rest of sshd, which would
lead to an external dependency because cryptographic
keys would need to be re-negotiated. Unfortunately, re-
executing a process from an intermediate state is difficult
without process checkpointing.

To address this challenge, RETRO refines actors in the
action history graph to explicitly denote parts of a pro-
cess that can be independently re-executed. For example,
RETRO models every system call issued by a process by a
separate system call actor, comprising a single system call
action, as shown in Figure 4. The system call arguments,
and the result of the system call, are explicitly represented
by system call argument and return value objects. This
allows RETRO to re-execute individual system calls when
necessary (e.g., to re-construct a file during repair), while
avoiding re-execution of entire processes if the return
values of system calls remain the same.

The same technique is also applied to re-execute spe-
cific functions instead of an entire process. Figure 5 shows
a part of the action history graph for our running example,

Figure 4: An illustration of the system call actor object and arguments
and return value data objects, for Eve’s write to the password file from
Figure 2. Legend is the same as in Figure 2.

Figure 5: An illustration of refinement in an action history graph, de-
picting the use of additional actors to represent a re-executable call to
getpwnam from sshd. Legend is the same as in Figure 2.

in which sshd creates a separate actor to represent its call
to getpwnam("alice"). While getpwnam’s execution
depends on the entire password file, and thus must be
re-executed if the password file changes, its return value
contains only Alice’s password entry. If re-execution
of getpwnam produces the same result, the rest of sshd
need not be re-executed. §5 describes such higher-level
managers in more detail.

The same mechanism helps RETRO create benign re-
placements for attack actions. For example, in order
to undo a user accidentally executing malware, RETRO
changes the exec system call’s arguments to invoke
/bin/true instead of the malware binary. To do this,
RETRO synthesizes a new checkpoint for the object repre-
senting exec’s arguments, replacing the original malware
binary path with /bin/true, and rolls back that object to
the newly-created “checkpoint”, as illustrated in Figure 6
and §4.5.

7

4.4 Refining data objects:
Finer-grained data dependencies

While OS-level dependencies ensure completeness, they
can be too coarse-grained, leading to false dependencies,
such as every process depending on the /tmp directory.
RETRO’s design addresses this problem by refining the
same state at different levels of abstraction in the graph
when necessary. For instance, a directory manager creates
individual objects for each file name in a directory, and
helps disambiguate directory lookups and modifications
by recording dependencies on specific file names.

The challenge in supporting refinement in the action
history graph lies in dealing with multiple objects repre-
senting the same state. For example, the state of a single
directory entry is a part of both the directory manager’s
object for that specific file name, as well as the file man-
ager’s node for that directory’s inode. On one hand, we
would like to avoid creating dependencies to and from the
underlying directory inode, to prevent false dependencies.
On the other hand, if some process does directly read the
underlying directory inode’s contents, it should depend
on all of the directory entries in that directory.

To address this challenge, each object in RETRO keeps
track of other objects that represent parts of its state. For
example, the manager of each directory inode keeps track
of all the directory entry objects for that directory. The ob-
ject manager exposes this set of parts through the o.parts
property, as shown in Figure 3. In most cases, the man-
ager tracks its parts through hierarchical names, as we
discuss in §5.

RETRO’s OS manager records all dependencies, even
if the same dependency is also recorded by a higher-level
manager. This means that RETRO can determine trust
in higher-level dependencies at repair time. If the appro-
priate manager mediated all modifications to the larger
object (such as a directory inode), and the manager was
not compromised, RETRO can safely use finer-grained
objects (such as individual directory entry objects). Oth-
erwise, RETRO uses coarse-grained but safe OS-level
dependencies.

4.5 Repair controller
RETRO uses a repair controller to repair system state with
the help of object and action managers. Figure 6 sum-
marizes the pseudo-code for the repair controller. The
controller, starting from the REPAIR function, creates a
parallel “repaired” timeline by re-executing actions in the
order that they were originally executed. To do so, the
controller maintains a set of objects that it is currently
repairing (the nodes hash table), along with the last action
that it performed on that object. REPAIRLOOP continu-
ously attempts to re-execute the next action, until it has
considered all actions, at which point the system state is
fully repaired.

function ROLLBACK(node, checkpt)
node.rollback(checkpt)
state[node] := checkpt

function PREPAREREDO(action)
if ¬action.connect() then return FALSE
if state[action.actor] > action then

cps := action.actor.checkpts
cp := max(c ∈ cps | c ≤ action)
ROLLBACK(action.actor, cp)
return FALSE

for all o ∈ (action.inputs ∪ action.outputs) do
if state[o] ≤ action then continue
ROLLBACK(o,max(c ∈ o.checkpts | c ≤ action))
return FALSE

return TRUE

function PICKACTION()
actions := ∅
for all o ∈ state | o is actor object do

actions += min(a ∈ o.actions | a > state[o])
for all o ∈ state | o is data object do

actions += min(a ∈ o.readers∪
o.writers | a > state[o])

return min(actions)

function REPAIRLOOP()
while a := PICKACTION() do

if a.equiv() and state[o] ≥ a,
∀o ∈ a.outputs ∪ a.actor then
for all i ∈ a.inputs ∩ keys(state) do

state[i] := a
continue . skip semantically-equivalent action

if PREPAREREDO(a) then
a.redo()
for all o ∈ a.inputs ∪ a.outputs ∪ a.actor do

state[o] := a

function REPAIR(repair obj , repair cp)
ROLLBACK(repair obj , repair cp)
REPAIRLOOP()

Figure 6: The repair algorithm.

To choose the next action for re-execution, REPAIR-
LOOP invokes PICKACTION, which chooses the earliest
action that hasn’t been re-executed yet, out of all the ob-
jects being repaired. If the action’s inputs are the same
(according to equiv), and none of the outputs of the ac-
tion need to be reconstructed, REPAIRLOOP does not
re-execute the action, and just advances the state of the
action’s input nodes. If the action needs to be re-executed,
REPAIRLOOP invokes PREPAREREDO, which ensures
that the action’s actor, input objects, and output objects
are all in the right state to re-execute the action (by rolling
back these objects when appropriate). Once PREPARE-
REDO indicates it is ready, REPAIRLOOP re-executes the
action and updates the state of the actor, input, and output

8

objects. Finally, REPAIR invokes REPAIRLOOP in the
first place, after rolling back repair obj to the (newly-
synthesized) checkpoint repair cp, as described in §4.3.

Not shown in the pseudo-code is handling of refined
objects. When the controller rolls back an object that has
a non-empty set of parts, it must consider re-executing
actions associated with those parts, in addition to actions
associated with the larger object. Also not shown is the
checking of integrity for higher-level dependencies, as
described in §4.4.

5 OBJECT AND ACTION MANAGERS

This section describes RETRO’s object and action man-
agers, starting with the file system and OS managers that
guarantee completeness of the graph, and followed by
higher-level managers that provide finer-grained depen-
dencies for application-specific parts of the graph.

5.1 File system manager
The file system manager is responsible for all file objects.
To uniquely identify files, the manager names file objects
by 〈device, part, inode〉. The device and part components
identify the disk and partition holding the file system.
Our current prototype disallows direct access to partition
block devices, so that file system dependencies are always
trusted. The inode number identifies a specific file by in-
ode, without regard to path name. To ensure that files can
be uniquely identified by inode number, the file system
manager prevents inode reuse until all checkpoints and
logs referring to the inode have been garbage-collected.

During normal operation, the file system manager must
periodically checkpoint its objects (including files and
directories), using any checkpointing strategy. Our im-
plementation relies on a snapshotting file system to make
periodic snapshots of the entire file system tree (e.g., once
per day). This works well for systems which already cre-
ate daily snapshots [26, 32, 37, 38], where the file system
manager can simply leverage existing snapshots. Upon
file deletion, the file system manager moves the deleted
inode into a special directory, so that it can reuse the same
exact inode number on rollback. The manager preserves
the inode’s data contents, so that RETRO can undo an
unlink operation by simply linking the inode back into a
directory (see §5.3).

During repair, the file system manager’s rollback
method uses a special kernel module to open the check-
pointed file as well as the current file by their inode num-
ber. Once the repair manager obtain a file descriptor for
both inodes, it overwrites the current file’s contents with
the checkpoint’s contents, or re-constructs an identical set
of directory entries, for directory inodes. On rollback to a
file system snapshot where the inode in question was not
allocated yet, the file system manager truncates the file to
zero bytes, as if it was freshly created. As a precaution,

the file system manager creates a new file system snapshot
before initiating any rollback.

5.2 OS manager
The OS manager is responsible for process and system
call actors, and their actions. The manager names each
process in the graph by 〈bootgen, pid, pidgen, execgen〉.
bootgen is a boot-up generation number to distinguish
process IDs across reboots. pid is the Unix process
ID, and pidgen is a generation number for the pro-
cess ID, used to distinguish recycled process IDs. Fi-
nally, execgen counts the number of times a process
called the exec system call; the OS manager logically
treats exec as creating a new process, albeit with the
same process ID. The manager names system calls by
〈bootgen, pid, pidgen, execgen, sysid〉, where sysid is a
per-process unique ID for that system call invocation.

5.2.1 Recording normal execution

During normal execution, the OS manager intercepts
and records all system calls that create dependencies to
or from other objects (i.e., not getpid, etc), recording
enough information about the system calls to both re-
execute them at repair time, and to check whether the
inputs to the system call are semantically equivalent. The
OS manager creates nominal checkpoints of process and
system call actors. Since checkpointing of processes mid-
execution is difficult [13, 35], our OS manager check-
points actors only in their “initial” state immediately prior
to exec, denoted by ⊥. The OS manager also keeps
track of objects representing ephemeral state, including
pipes and special devices such as /dev/null. Although
RETRO does not attempt to repair this state, having these
objects in the graph helps track and check dependen-
cies using equiv during repair, and to perform partial
re-execution.

5.2.2 Action history graph representation

In the action history graph, the OS manager represents
each system call by two actions in the process actor, two
intermediate data objects, and a system call actor and ac-
tion, as shown in Figure 4. The first process action, called
the syscall invocation action, represents the execution of
the process up until it invokes the system call. This action
conceptually places the system call arguments, and any
other relevant state, into the system call arguments object.
For example, the arguments for a file write include the
target inode, the offset, and the data. The arguments for
exec, on the other hand, include additional information
that allows re-executing the system call actor without hav-
ing to re-execute the process actor, such as the current
working directory, file descriptors not marked O CLOEXEC,
and so on.

9

The system call action, in a separate actor, conceptually
reads the arguments from this object, performs the system
call (incurring dependencies to corresponding objects),
and writes the return value and any returned data into
the return value object. For example, a write system
call action, shown in Figure 4, creates a dependency to
the modified file, and stores the number of bytes written
into the return value object. Finally, the second process
action, called the syscall return action, reads the returned
data from that object, and resumes process execution. In
case of fork or exec, the OS manager creates two return
objects and two syscall return actions, representing return
values to both the old and new process actors. Thus, every
process actor starts with a syscall return action, with a
dependency from the return object for fork or exec.

In addition to system calls, Unix processes interact
with memory-mapped files. RETRO cannot re-execute
memory-mapped file accesses without re-executing the
process. Thus, the OS manager associates dependencies
to and from memory-mapped files with the process’s own
actions, as opposed to actions in a system call actor. In par-
ticular, every process action (either syscall invocation or
return) has a dependency from every file memory-mapped
by the process at that time, and a dependency to every file
memory-mapped as writable at that time.

5.2.3 Shepherded re-execution

During repair, the OS manager must re-execute two types
of actors: process actors and system call actors. For sys-
tem call actors, when the repair controller invokes redo,
the OS manager reads the (possibly changed) values from
the system call arguments object, executes the system call
in question, and places return data into the return object.
equiv on a system call action checks whether the input
objects have the same values as during the original ex-
ecution. Finally, connect reads the (possibly changed)
inputs, and creates any new dependencies that result. For
example, if a stat system call could not find the named
file during original execution, but RETRO restores the file
during repair, connect would create a new dependency
from the newly-restored file.

For process actors, the OS manager represents the
state of a process during repair with an actual process
being shepherded via the ptrace debug interface. On
p.rollback(⊥), the OS manager creates a fresh process
for process object p under ptrace. When the repair
controller invokes redo on a syscall return action, the
OS manager reads the return data from the correspond-
ing system call return object, updates the process state
using PTRACE POKEDATA and PTRACE SETREGS, and al-
lows the process to execute until it’s about to invoke the
next system call. equiv on a system call return action
checks if the data in the system call return object is the
same as during the original execution. When the repair

controller invokes redo on the subsequent syscall invo-
cation action, the OS manager simply marshals the argu-
ments for the system call invocation into the correspond-
ing system call arguments object. This allows the repair
controller to separately schedule the re-execution of the
system call, or to re-use previously recorded return data.
Finally, connect does nothing for process actions.

One challenge for the OS manager is to deal with pro-
cesses that issue different system calls during re-execution.
The challenge lies in matching up system calls recorded
during original execution with system calls actually is-
sued by the process during re-execution. The OS manager
employs greedy heuristics to match up the two system
call streams. If a new syscall does not match a previously-
recorded syscall in order, the OS manager creates new
system call actions, actors, and objects (as shown in Fig-
ure 4). Similarly, if a previously-recorded syscall does not
match the re-executed system calls in order, the OS man-
ager replaces the previously-recorded syscall’s actions
with no-ops. In the worst case, the only matches will be
the initial return from fork or exec, and the final syscall
invocation that terminates the process, potentially leading
to more re-execution, but not a loss of correctness.

In our running example, Eve trojans the texi2pdf
shell script by adding an extra line to start her botnet
worker. After repairing the texi2pdf file, RETRO re-
executes every process that ran the trojaned texi2pdf.
During shepherded re-execution of texi2pdf, exec sys-
tem calls to legitimate LATEX programs are identical to
those during the original execution; in other words, the
system call argument objects are equivalent, and equiv on
the system call action returns true. As a result, there is no
need to re-execute these child processes. However, exec
system calls to Eve’s bot are missing, so the manager
replaces them with no-ops, which recursively undoes any
changes made by Eve’s bot.

5.3 Directory manager
The directory manager is responsible for exposing finer-
grained dependency information about directory entries.
Although the file system manager tracks changes to di-
rectories, it treats the entire directory as one inode, caus-
ing false dependencies in shared directories like /tmp.
The directory manager names each directory entry by
〈device, part, inode, name〉. The first three components
of the name are the file system manager’s name for the
directory inode. The name part represents the file name
of the directory entry.

During normal operation, the directory manager must
record checkpoints of its objects, conceptually consist-
ing of the inode number for the directory entry (or ⊥ to
represent non-existent directory entries). However, since
the file system manager already records checkpoints of
all directories, the directory manager relies on the file

10

system manager’s checkpoints, and does not perform any
checkpointing of its own. The directory manager simi-
larly relies on the OS manager to record dependencies
between system call actions and directory entries accessed
by those system calls, such as name lookups in namei
(which incur a dependency from every directory entry
traversed), or directory modifications by rename (which
incur a dependency to the modified directory entries).

During repair, the directory manager’s sole responsibil-
ity is rolling back directory entries to a checkpoint; the
OS manager handles redo of all system calls. To roll back
a directory entry to an earlier checkpoint, the directory
manager finds the inode number contained in that direc-
tory entry (using the file system manager’s checkpoint),
and changes the directory entry in question to point to
that inode, with the help of RETRO’s kernel module. If
the directory entry did not exist in the checkpoint, the
directory manager similarly unlinks the directory entry.

5.4 System library managers
Every user login on a typical Unix system accesses sev-
eral system-wide files. For example, each login attempt
accesses the entire password file, and successful logins
update both the utmp file (tracking currently logged in
users) and the lastlog file (tracking each user’s last
login). In a naı̈ve system, these shared files can lead to
false dependencies, making it difficult to disambiguate
attacker actions from legitimate changes. To address this
problem, RETRO uses a libc system library manager to
expose the semantic independence between these actions.

One strawman approach would be to represent such
shared files much as directories (i.e., creating a separate
object for each user’s password file entry). However, un-
like the directory manager, which mediates all accesses to
a directory, a manager for a function in libc cannot guar-
antee that an attacker will not bypass it—the manager,
libc, and the attacker can be in the same address space.
Thus, the libc manager does not change the representa-
tion of data objects, and instead simplifies re-execution,
by creating actors to represent the execution of individual
libc functions. For example, Figure 5 shows an actor for
the getpwnam function call as part of sshd.

During normal operation, the library manager cre-
ates a fresh actor for each function call to one of the
managed functions, such as getpwnam, getspnam, and
getgrouplist. The library manager names function
call actors by 〈bootgen, pid, pidgen, execgen, callgen〉;
the first four parts name the process, and callgen is a
unique ID for each function call. Much as with system
call actors, the arguments object contains the function
name and arguments, and the return object contains the
return value. Like processes, function call actors have
only one checkpoint, ⊥, representing their initial state
prior to the call.

The library manager requires the OS manager’s help to
associate system calls issued from inside library functions
with the function call actor, instead of the process actor.
To do this, the OS manager maintains a “call stack” of
function call actors that are currently executing. On every
function call, the library manager pushes the new function
call actor onto the call stack, and on return, it pops the
call stack. The OS manager associates syscall invocation
and return actions with the last actor on the call stack, if
any, instead of the process actor.

During repair, the library manager’s rollback and redo
methods allow the repair controller to re-execute individ-
ual functions. For example, in Figure 5, the controller
will re-execute getpwnam, because its dependency on
/etc/passwd changed due to repair. However, if equiv
indicates the return value from getpwnam did not change,
the controller need not re-execute the rest of sshd.

RETRO’s trust assumption about the library manager
is that the function does not semantically affect the rest
of the program’s execution other than through its return
value. If an attacker process compromises its own libc
manager, this does not pose a problem, because the pro-
cess already depended on the attacker in other ways, and
RETRO will repair it. However, if an attacker exploits a
vulnerability in the function’s input parsing code (such as
a buffer overflow in getpwnam parsing /etc/passwd),
it can take control of getpwnam, and influence the ex-
ecution of the process in ways other than getpwnam’s
return value. Thus, RETRO trusts libc functions wrapped
by the library manager to safely parse files and faithfully
represent their return values.

5.5 Terminal manager
Undoing attacker’s actions during repair can result in
legitimate applications sending different output to a user’s
terminal. For example, if the user ran ls /tmp, the output
may have included temporary files created by the attacker,
or the ls binary was trojaned by the attacker to hide
certain files. While RETRO cannot undo what the user
already saw, the terminal manager helps RETRO generate
compensating actions.

The terminal manager is responsible for objects repre-
senting pseudo-terminal, or pty, devices (/dev/pts/N in
Linux). During normal operation, the manager records
the user associated with each pty (with help from sshd),
and all output sent to the pty. During repair, if the output
sent to the pty differs from the output recorded during
normal operation, the terminal manager computes a text
diff between the two outputs, and emails it to the user.

5.6 Network manager
The network manager is responsible for compensating
for externally-visible changes. To this end, the network
manager maintains objects representing the outside world
(one object for each TCP connection, and one object for

11

each IP address/UDP port pair). During normal operation,
the network manager records all traffic, similar to the
terminal manager.

During repair, the network manager compares repaired
outgoing data with the original execution. When the
network manager detects a change in outgoing traffic, it
flags an external dependency, and presents the user or
administrator with three choices. The first choice is to
ignore the dependency, which is appropriate for network
connections associated with the adversary (such as Eve’s
login session in our running example, which will generate
different network traffic during repair). The second choice
is to re-send the network traffic, and wait for a response
from the outside world. This is appropriate for outgoing
network connections and idempotent protocols, such as
DNS. Finally, the third choice is to require the user to
manually resolve the external dependency, such as by
manually re-playing the traffic for incoming connections.
This is necessary if, say, the response to an incoming
SMTP connection has changed, the application did not
provide its own compensating action, and the user does
not want to ignore this dependency.

6 IMPLEMENTATION

We implemented a prototype of RETRO for Linux,3 com-
ponents of which are summarized in Figure 7. During
normal execution, a kernel module intercepts and records
all system calls to a log file, implementing the runtime
half of the OS, file system, directory, terminal, and net-
work managers. To allow incremental loading of log
records, RETRO records an index alongside the log file
that allows efficient lookup of records for a given process
ID or inode number. The file system manager implements
checkpoints using subvolume snapshots in btrfs [37]. The
libc manager logs function calls using a new RETRO sys-
tem call to add ordered records to the system-wide log.
The repair controller, and the repair-time half of each
manager, are implemented as Python modules.

RETRO implements three optimizations to reduce log-
ging costs. First, it records SHA-1 hashes of data read
from files, instead of the actual data. This allows checking
for equivalence at repair time, but avoids storing the data
twice. Second, it does not record data read or written
by white-listed deterministic processes (in our prototype,
this includes gcc and ld). This means that, if any of the
read or write dependencies to or from these processes are
suspected during repair, the entire process will have to
be re-executed, because individual read and write system
calls cannot be checked for equivalence or re-executed.
Since all of the dependency relationships are preserved,
this optimization trades off repair time for recording time,

3While our prototype is Linux-specific, we believe that RETRO’s
approach is equally applicable to other operating systems.

Component Lines of code
Logging kernel module 3,300 lines of C
Repair controller, manager modules 5,000 lines of Python
System library managers 700 lines of C
Backtracking GUI tool 500 lines of Python

Figure 7: Components of our RETRO prototype, and an estimate of
their complexity, in terms of lines of code.

Attack
Objects repaired Objects repaired User
with predicates without predicates input

Proc Func File Proc Func File
Password change 1 2 4 430 20 274 1
Log cleaning 59 0 40 60 0 40 0
Running example 58 57 75 513 61 300 1
sshd trojan 530 47 303 530 47 303 3

Figure 8: Repair statistics for the two honeypot attacks (top) and two
synthetic attacks (bottom). The repaired objects are broken down into
processes, functions (from libc), and files. Intermediate objects such as
syscall arguments are not shown. The concurrent workload consisted of
1,261 process, function, and file objects (both actor and data objects),
and 16,239 system call actions. RETRO was able to fully repair all
attacks, with no false positives or false negatives. User input indicate the
number of times RETRO asked for user assistance in repair; the nature
of the conflict is reported in §7.

but does not compromise completeness. Third, RETRO
compresses the resulting log files to save space.

7 EVALUATION

This section answers three questions about RETRO, in
turn. First, what kinds of attacks can RETRO recover
from, and how much user input does it require? Second,
are all of RETRO’s mechanisms necessary in practice?
And finally, what are the performance costs of RETRO,
both during normal execution and during repair?

7.1 Recovery from attack
To evaluate how RETRO recovers from different attacks,
we used three classes of attack scenarios. First, to make
sure we can repair real-world attacks, we used attacks
recorded by a honeypot. Second, to make sure RETRO
can repair worst-case attacks, we used synthetic attacks
designed to be particularly challenging for RETRO, in-
cluding the attack from our running example. For both
real-world and synthetic attacks, we perform user activity
described in the running example after the attack takes
place—namely, root logs in via ssh and adds an account
for Alice, who then also logs in via ssh to edit and build a
LATEX file. Finally, we compare RETRO to Taser, the state-
of-the-art attack recovery system, using attack scenarios
from the Taser paper [17].

Honeypot attacks. To collect real-world attacks, we
ran a honeypot [1] for three weeks, with a modified sshd
that accepted any password for login as root. Out of
many root logins, we chose two attacks that corrupted
our honeypot’s state in the most interesting ways.4 In the
first attack, the attacker changed the root password. In the
second attack, the attacker downloaded and ran a Linux

4Most of the attackers simply ran a botnet binary or a port scanner.

12

Scenario Taser RETRO User input requiredSnapshot NoI NoIAN NoIANC
Illegal storage FP FP FN FN � None.
Content destruction FP � � FN � None. (Generates terminal diff compensating action.)
Unhappy student FP FP � FN � None. (Generates terminal diff compensating action.)
Compromised database FP FP FP FN � None.
Software installation FP FP � � � Re-execute browser (or ignore browser state changes).
Inexperienced admin FP FP FP � � Skip re-execution of attacker’s login session.

Figure 9: A comparison of Taser’s four policies and RETRO against a set of scenarios used to evaluate Taser [17]. Taser’s snapshot policy tracks all
dependencies, NoI ignores IPC and signals, NoIAN also ignores file name and attributes, and NoIANC further ignores file content. FP indicates a
false positive (undoing legitimate actions), FN indicates a false negative (missing parts of the attack), and � indicates no false positives or negatives.

binary that scrubbed system log files of any mention of
the attacker’s login attempt.

For both of these attacks, RETRO was able to repair
the system while preserving all legitimate user actions, as
summarized in Figure 8. In the password change attack,
root was unable to log in after the attack, immediately
exposing the compromise, although we still logged in
as Alice and ran texi2pdf. In the second attack, all 59
repaired processes were from the attacker’s log cleaning
program, whose effects were undone.

For these real-world attacks, RETRO required minimal
user input. RETRO required one piece of user input to
repair the password change attack, because root’s login
attempt truly depended on root’s entry in /etc/passwd,
which was modified by the attacker. In our experiment,
the user told the network manager to ignore the conflict.
RETRO required no user input for the log cleaning attack.

Synthetic attacks. To check if RETRO can recover
from more insidious attacks, we constructed two synthetic
attacks involving trojans; results for both are summarized
in Figure 8. For the first synthetic attack, we used the
running example, where the attacker adds an account for
eve, installs a botnet and a backdoor PHP script, and tro-
jans the /usr/bin/texi2pdf shell script to restart the
botnet. Legitimate users were unaware of this attack, and
performed the same actions. Once the administrator de-
tected the attack, RETRO reverted Eve’s changes, includ-
ing the eve account, the bot, and the trojan. As described
in §5.2.3, RETRO used shepherded re-execution to undo
the effects of the trojan without re-running the bulk of the
trojaned application. As Figure 8 indicates, RETRO re-
executed several functions (getpwnam) to check if remov-
ing eve’s account affected any subsequent logins. One
login session was affected—Eve’s login—and RETRO’s
network manager required user input to confirm that Eve’s
login need not be re-executed.

One problem we discovered when repairing the running
example attack is that the UID chosen for Alice by root’s
useradd alice command depends on whether eve’s ac-
count is present. If RETRO simply re-executed useradd
alice, useradd would pick a different UID during re-
execution, requiring RETRO to re-execute Alice’s entire
session. Instead, we made the useradd command part of

the system library manager, so that during repair, it first
tries to re-execute the action of adding user alice under
the original UID, and only if that fails does it re-execute
the full useradd program. This ensures that Alice’s UID
remains the same even after RETRO removes the eve
account (as long as Alice’s UID is still available).

A second synthetic attack we tried was to trojan
/usr/sbin/sshd. In this case, users were able to log
in as usual, but undoing the attack required re-executing
their login sessions with a good sshd binary. Because
RETRO cannot rerun the remote ssh clients (and a new key
exchange, resulting in different keys, makes TCP-level
replay useless), RETRO’s network manager asks the ad-
ministrator to redo each ssh session manually. Of course,
this would not be practical on a real system, and the ad-
ministrator may instead resort to manually auditing the
files affected by those login sessions, to verify whether
they were affected by the attack in any way. However, we
believe it is valuable for RETRO to identify all connections
affected by the attack, so as to help the administrator lo-
cate potentially affected files. In practice, we hope that an
intrusion detection system can notice such wide-reaching
attacks; after a few user logins, the dependency graph
indicates that unrelated user logins are all dependent on a
previous login session, which an IDS may be able to flag.

Taser attacks. Finally, we compare RETRO to the state-
of-the-art intrusion recovery system, Taser, under the
attack scenarios that were used to originally evaluate
Taser [17]. Figure 9 summarizes the results.

In the first scenario, illegal storage, the attacker creates
a new account for herself, stores illegal content on the
system, and trojans the ls binary to mask the illegal
content. RETRO rolls back the account, illegal files, and
the trojaned ls binary, and uses the legitimate ls binary to
re-execute all ls processes from the past. Even though the
trojaned ls binary hid some files, the legitimate ls binary
produces the same output, because RETRO removes the
hidden files during repair. As a result, there is no need
to notify the user. If ls’s output did change, the terminal
manager would have sent a diff to the affected users.

In the content destruction scenario, an attacker deletes
a user’s files. Once the user notices the problem, he
uses RETRO to undo the attack. After recovering the

13

Workload Without RETRO With RETRO Log size Snapshot size # of objects # of actions1 core 1 core 2 cores
Kernel build 295 sec 557 sec 351 sec 761 MB 308 MB 87,405 5,698,750
Web server 7260 req/s 3195 req/s 5453 req/s 98 MB 272 KB 508 185,315
HotCRP 20.4 req/s 15.1 req/s 20.0 req/s 81 MB 27 MB 19,969 939,418

Figure 10: Performance and storage costs of RETRO for three workloads: building the Linux kernel, serving files as fast as possible using Apache [2]
for 1 minute, and simulating requests to HotCRP [23] from the 30 minutes before the SOSP 2007 deadline, which averaged 2.1 requests per
second [44] (running as fast as possible, this workload finished in 3–4 minutes). “# of objects” reflects the number of files, directory entries, and
processes; not included are intermediate objects such as system call arguments. “# of actions” reflects the number of system call actions.

files, RETRO generates a terminal output diff for the login
session during which the user noticed the missing files
(after repair, the user’s ls command displays those files).

In the unhappy student scenario, a student exploits an
ftpd bug to change permissions on a professor’s grade
file, then modifies the grade file in another login session,
and finally a second accomplice user logs in and makes a
copy of the grade file. In repairing the attack, RETRO rolls
back the grade file and its permissions, re-executes the
copy command (which now fails), and uses the terminal
manager to generate a diff for the attackers’ sessions,
informing them that their copy command now failed.

In the compromised database scenario, an attacker
breaks into a server, modifies some database records (in
our case we used SQLite), and subsequently a legitimate
user logs in and runs a script that updates database records
of its own. RETRO rolls back the database file to a state
before the attack, and re-executes the database update
script to preserve subsequent changes, with no user input.

In the software installation scenario, the administrator
installs the wrong browser plugin, and only detects this
problem after running the browser and downloading some
files. During repair, RETRO rolls back the incorrect plu-
gin, and attempts to repair the browser using re-execution.
Since RETRO encounters external dependencies in re-
executing network applications, it requests the user to
manually redo any interactions with the browser. In our
experiment, the user ignored this external dependency,
because he knew the browser made no changes to local
state worth preserving.

In the inexperienced admin scenario, root selects a
weak password for a user account, and an attacker guesses
the password and logs in as the user. Undoing root’s pass-
word change affects the attacker’s login session, requiring
one user input to confirm to the network manager that it’s
safe to discard the attacker’s TCP connection.

In summary, RETRO correctly repairs all six attack
scenarios posed by Taser, requiring user input only in two
cases: to re-execute the browser, and to confirm that it’s
safe to drop the attacker’s login session. Taser requires
application-specific policies to repair these attacks, and
some attacks cannot be fully repaired under any policy.
Taser’s policies also open up the system to false negatives,
allowing an adversary to bypass Taser altogether.

7.2 Technique effectiveness
In this subsection, we evaluate the effectiveness of
RETRO’s specific techniques, including re-execution,
predicate checking, and refinement.

Re-execution is key to preserving legitimate user ac-
tions. As described in §7.1 and quantified in Figure 8,
RETRO re-executes several processes and functions to pre-
serve and repair legitimate changes. Without re-execution,
RETRO would have to conservatively roll back any files
touched by the process in question, much like Taser’s
snapshot policy, which incurs false positives.

Without predicates, RETRO would have to perform
conservative dependency propagation in the dependency
graph. As in Taser, dependencies on attack actions
quickly propagate to most objects in the graph, requir-
ing re-execution of almost every process. This leads
to re-execution of sshd, which requires user assistance.
Figure 8 shows that many of the objects repaired with-
out predicates were not repaired with predicates enabled.
Taser would roll back all of these objects (false positives).
Thus, predicates are an important technique to minimize
user input due to re-execution.

Without refinement of actor and data objects,
RETRO would incur false dependencies via /tmp and
/etc/passwd. As Figure 8 shows, several functions
(such as getpwnam) were re-executed in repairing from
attacks. If RETRO was unable to re-execute just those
functions, it would have re-executed processes like sshd,
forcing the network manager to request user input. Thus,
refinement is important to minimizing user input due to
false dependencies.

7.3 Performance
We evaluate RETRO’s performance costs in two ways.
First, we consider costs of RETRO’s logging during nor-
mal execution. To this end, we measure the CPU overhead
and log size for several workloads. Figure 10 summarizes
the results. We ran our experiments on a 2.8GHz Intel
Core i7 system with 8 GB RAM running a 64-bit Linux
2.6.35 kernel, with either one or two cores enabled.

The worst-case workload for RETRO is a system that
uses 100% of CPU time and spends most of its time com-
municating between small processes. One such extreme
workload is a system that continuously re-builds the Linux
kernel; another example is an Apache server continuously

14

serving small static files. For such systems, RETRO in-
curs a 89–127% CPU overhead using a single core, and
generates about 100–150 GB of logs per day. A 2 TB
disk ($100) can store two weeks of logs at this rate before
having to garbage-collect older log entries. If a spare
second core is available, and the application cannot take
advantage of it, it can be used for logging, resulting in
only 18–33% CPU overhead.

For a more realistic application, such as a HotCRP [23]
paper submission web site, RETRO incurs much less
overhead, since HotCRP’s PHP code is relatively CPU-
intensive. If we extrapolate the workload from the 30
minutes before the SOSP 2007 deadline [44] to an entire
day, HotCRP would incur 35% CPU overhead on a single
core (and almost no overhead if an additional unused core
were available), and use about 4 GB of log space per day.
We believe that these are reasonable costs to pay to be
able to recover integrity after a compromise of a paper
submission web site.

Second, we consider the time cost of repairing a sys-
tem using RETRO after an attack. As Figure 8 illustrated,
RETRO is often effective at repairing only a small subset
of objects and actions in the action history graph, and for
attacks that affect the entire system state, such as the sshd
trojan, user input dominates repair costs. To illustrate the
costs of repairing a subset of the action history graph,
we measure the time taken by RETRO to repair from a
micro-benchmark attack, where the adversary adds an
extraneous line to a log file, which is subsequently mod-
ified by a legitimate process. When only this attack is
present in RETRO’s log (consisting of 10 process objects,
126 file objects, and 399 system call actions), repair takes
0.3 seconds. When this attack runs concurrently with a
kernel build (as shown in Figure 10), repair of the attack
takes 4.7 seconds (10× longer), despite the fact that the
log is 10,000× larger. This shows that RETRO’s log in-
dexing makes repair time depend largely on the number
of affected objects, rather than the overall log size.

8 DISCUSSION AND FUTURE WORK

An important assumption of RETRO is that the attacker
does not compromise the kernel. Unfortunately, security
vulnerabilities are periodically discovered in the Linux
kernel [5, 6], making this assumption potentially danger-
ous. One solution may be to use virtual machine based
techniques [14, 21], although it is difficult to distinguish
kernel objects after a kernel compromise. We plan to
explore ways of reducing trust in future work.

In our current prototype, if attackers compromise the
kernel and obtain access to RETRO’s log files, they may
be able to extract sensitive information, such as user pass-
words or keys, that would not have been persistently
stored on a system without RETRO. One possible so-
lution may be to encrypt the log files and checkpoints,

so that the administrator must reboot the system from a
trusted CD and enter the password to initiate recovery.

Our current prototype can only repair the effects of an
attack on a single machine, and relies on compensating
actions to repair external state. In future work, we plan
to explore ways to extend automated repair to distributed
systems, perhaps based on the ideas from [29, 42].

RETRO requires the system administrator to specify
the initial intrusion point in order to undo the effects
of the attack, and finding the initial intrusion point can
be difficult. In future work, we hope to leverage the
extensive data available in RETRO’s dependency graph
to build intrusion detection tools that can better pin-point
intrusions. Alternatively, instead of trying to pinpoint
the attack, we may be able to use RETRO to retroactively
apply security patches into the past, and re-execute any
affected computations, thus eliminating any attacks that
exploited the vulnerability in question.

We did not have space to address several practical as-
pects of using RETRO, such as performing multiple re-
pairs or undoing a repair. These operations translate into
making additional checkpoints, and updating the graph
accordingly after repair. Also, as hinted at in §5, we plan
to explore the use of more specialized repair managers,
such as managers for a language runtime, a database, or
an application like a web server or web browser. Finally,
while RETRO’s performance and storage overheads are
already acceptable for some workloads, we plan to further
reduce them by not logging intermediate dependencies
that can be reconstructed at repair time.

9 CONCLUSION

RETRO repairs system integrity from past attacks by using
an action history graph to track system-wide dependen-
cies, roll back affected objects, and re-execute legitimate
actions affected by the attack. RETRO minimizes user
input by avoiding re-execution whenever possible, and
by using compensating actions for external dependencies.
RETRO’s key techniques for minimizing re-execution in-
clude predicates, refinement, and shepherded re-execution.
A prototype of RETRO for Linux recovers from a mix of
ten real-world and synthetic attacks, repairing all side-
effects of the attack in all cases. Six attacks required no
user input to repair, and RETRO required significant user
input in only two cases involving trojaned network-facing
applications.

ACKNOWLEDGMENTS

We thank Victor Costan, Robert Morris, Jacob Strauss, the
anonymous reviewers, and our shepherd, Adrian Perrig,
for their feedback. Quanta Computer partially supported
this work. Taesoo Kim is partially supported by the Sam-
sung Scholarship Foundation, and Nickolai Zeldovich is
partially supported by a Sloan Fellowship.

15

REFERENCES
[1] The Honeynet Project. http://www.honeynet.org/.
[2] Apache web server, May 2010. http://httpd.apache.org/.
[3] P. Ammann, S. Jajodia, and P. Liu. Recovery from malicious trans-

actions. IEEE Transactions on Knowledge and Data Engineering,
14(5):1167–1185, 2002.

[4] Apple Inc. What is Mac OS X - Time Machine.
http://www.apple.com/macosx/what-is-macosx/

time-machine.html.
[5] J. Arnold and M. F. Kaashoek. Ksplice: Automatic rebootless ker-

nel updates. In Proc. of the ACM EuroSys Conference, Nuremberg,
Germany, Mar 2009.

[6] J. Arnold, T. Abbott, W. Daher, G. Price, N. Elhage, G. Thomas,
and A. Kaseorg. Security impact ratings considered harmful. In
Proc. of the 12th Workshop on Hot Topics in Operating Systems,
Monte Verita, Switzerland, May 2009.

[7] AVG Technologies. Why traditional anti-malware solutions are no
longer enough. http://download.avg.com/filedir/other/
pf_wp-90_A4_us_z3162_20091112.pdf, Oct 2009.

[8] K. J. Biba. Integrity considerations for secure computer systems.
Technical Report MTR-3153, MITRE Corp., Bedford, MA, Apr
1977.

[9] U. Braun, A. Shinnar, and M. Seltzer. Securing provenance. In
Proc. of the 3rd Usenix Workshop on Hot Topics in Security, San
Jose, CA, Jul 2008.

[10] A. B. Brown and D. A. Patterson. Undo for operators: Building
an undoable e-mail store. In Proc. of the 2003 Usenix ATC, pages
1–14, San Antonio, TX, Jun 2003.

[11] R. Chandra, N. Zeldovich, C. Sapuntzakis, and M. Lam. The
Collective: A cache-based system management architecture. In
Proc. of the 2nd NSDI, pages 259–272, Boston, MA, May 2005.

[12] CheckPoint, Inc. IPS-1 intrusion detection and prevention system.
http://www.checkpoint.com/products/ips-1/.

[13] J. Corbet. A checkpoint/restart update. http://lwn.net/
Articles/375855/, Feb 2010.

[14] G. W. Dunlap, S. T. King, S. Cinar, M. Basrai, and P. M. Chen.
ReVirt: Enabling intrusion analysis through virtual-machine log-
ging and replay. In Proc. of the 5th OSDI, pages 211–224, Boston,
MA, Dec 2002.

[15] S. Forrest, S. Hofmeyr, and A. Somayaji. The evolution of system-
call monitoring. In Proc. of the 2008 Annual Computer Security
Applications Conference, pages 418–430, Dec 2008.

[16] FreeBSD. What is securelevel? http://www.freebsd.

org/doc/en_US.ISO8859-1/books/faq/security.html#

SECURELEVEL.
[17] A. Goel, K. Po, K. Farhadi, Z. Li, and E. D. Lara. The Taser

intrusion recovery system. In Proc. of the 20th ACM SOSP, pages
163–176, Brighton, UK, Oct 2005.

[18] B. Harder. Microsoft Windows XP system restore. http:

//msdn.microsoft.com/en-us/library/ms997627.aspx,
Apr 2001.

[19] A. Joshi, S. King, G. Dunlap, and P. Chen. Detecting past and
present intrusions through vulnerability-specific predicates. In
Proc. of the 20th ACM SOSP, pages 91–104, Brighton, UK, Oct
2005.

[20] G. H. Kim and E. H. Spafford. The design and implementation
of Tripwire: A file system integrity checker. In Proc. of the 2nd
ACM CCS, pages 18–29, Fairfax, VA, Nov 1994.

[21] S. T. King and P. M. Chen. Backtracking intrusions. ACM TOCS,
23(1):51–76, Feb 2005.

[22] S. T. King, Z. M. Mao, D. G. Lucchetti, and P. M. Chen. Enriching
intrusion alerts through multi-host causality. In Proc. of the 12th
NDSS, San Diego, CA, Feb 2005.

[23] E. Kohler. Hot crap! In Proc. of the Workshop on Organizing
Workshops, Conferences, and Symposia for Computer Systems,
San Francisco, CA, Apr 2008.

[24] C. Kolbitsch, P. M. Comparetti, C. Kruegel, E. Kirda, X. Zhou,
and X. Wang. Effective and efficient malware detection at the end
host. In Proc. of the 18th Usenix Security Symposium, Montreal,
Canada, Aug 2009.

[25] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek,
E. Kohler, and R. Morris. Information flow control for standard
OS abstractions. In Proc. of the 21st ACM SOSP, pages 321–334,
Stevenson, WA, Oct 2007.

[26] A. Lewis. LVM HOWTO: Snapshots. http://www.tldp.org/
HOWTO/LVM-HOWTO/snapshotintro.html.

[27] P. Liu, P. Ammann, and S. Jajodia. Rewriting histories: Recovering
from malicious transactions. Journal of Distributed and Parallel
Databases, 8(1):7–40, 2000.

[28] P. Loscocco and S. Smalley. Integrating flexible support for secu-
rity policies into the Linux operating system. In Proc. of the 2001
Usenix ATC, pages 29–40, Jun 2001. Freenix track.

[29] P. Mahajan, R. Kotla, C. C. Marshall, V. Ramasubramanian, T. L.
Rodeheffer, D. B. Terry, and T. Wobber. Effective and efficient
compromise recovery for weakly consistent replication. In Proc.
of the ACM EuroSys Conference, pages 131–144, Nuremberg,
Germany, Mar 2009.

[30] Microsoft. How to use the roll back driver feature in Windows XP.
http://support.microsoft.com/kb/283657, Aug 2007.

[31] MokaFive, Inc. Mokafive, virtual desktops for businesses and
personal use. http://www.mokafive.com/.

[32] NetApp. Snapshot. http://www.netapp.com/us/products/
platform-os/snapshot.html.

[33] E. B. Nightingale, P. M. Chen, and J. Flinn. Speculative execution
in a distributed file system. In Proc. of the 20th ACM SOSP,
Brighton, UK, Oct 2005.

[34] R. Paleari, L. Martignoni, E. Passerini, D. Davidson, M. Fredrik-
son, J. Giffin, and S. Jha. Automatic generation of remediation
procedures for malware infections. In Proc. of the 19th Usenix
Security Symposium, Washington, DC, Aug 2010.

[35] J. S. Plank, M. Beck, G. Kingsley, and K. Li. Libckpt: Transparent
checkpointing under Unix. In Proc. of the 1995 Usenix ATC, pages
213–223, New Orleans, LA, Jan. 1995.

[36] D. E. Porter, O. S. Hofmann, C. J. Rossbach, A. Benn, and
E. Witchel. Operating systems transactions. In Proc. of the 22nd
ACM SOSP, pages 161–176, Big Sky, MT, Oct 2009.

[37] O. Rodeh. B-trees, shadowing, and clones. ACM Transactions on
Storage, 3(4):1–27, 2008.

[38] M. Satyanarayanan. Scalable, secure and highly available file
access in a distributed workstation environment. IEEE Computer,
pages 9–21, May 1990.

[39] A. Seshadri, M. Luk, N. Qu, and A. Perrig. SecVisor: A tiny
hypervisor to provide lifetime kernel code integrity for commodity
OSes. In Proc. of the 21st ACM SOSP, Stevenson, WA, Oct 2007.

[40] F. Shafique, K. Po, and A. Goel. Correlating multi-session attacks
via replay. In Proc. of the Second Workshop on Hot Topics in
System Dependability, Seattle, WA, Nov 2006.

[41] B. Spengler. grsecurity. http://www.grsecurity.net/.
[42] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and

G. Vigna. Cross site scripting prevention with dynamic data
tainting and static analysis. In Proc. of the 14th NDSS, San Diego,
CA, Feb-Mar 2007.

[43] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda. Panorama:
capturing system-wide information flow for malware detection
and analysis. In Proc. of the 14th ACM CCS, Alexandria, VA,
Oct-Nov 2007.

[44] A. Yip, X. Wang, N. Zeldovich, and M. F. Kaashoek. Improving
application security with data flow assertions. In Proc. of the 22nd
ACM SOSP, pages 291–304, Big Sky, MT, Oct 2009.

[45] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières.
Making information flow explicit in HiStar. In Proc. of the 7th
OSDI, pages 263–278, Seattle, WA, Nov 2006.

16

http://www.honeynet.org/
http://www.apple.com/macosx/what-is-macosx/time-machine.html
http://www.apple.com/macosx/what-is-macosx/time-machine.html
http://download.avg.com/filedir/other/pf_wp-90_A4_us_z3162_20091112.pdf
http://download.avg.com/filedir/other/pf_wp-90_A4_us_z3162_20091112.pdf
http://www.checkpoint.com/products/ips-1/
http://lwn.net/Articles/375855/
http://lwn.net/Articles/375855/
http://www.freebsd.org/doc/en_US.ISO8859-1/books/faq/security.html#SECURELEVEL
http://www.freebsd.org/doc/en_US.ISO8859-1/books/faq/security.html#SECURELEVEL
http://www.freebsd.org/doc/en_US.ISO8859-1/books/faq/security.html#SECURELEVEL
http://msdn.microsoft.com/en-us/library/ms997627.aspx
http://msdn.microsoft.com/en-us/library/ms997627.aspx
http://support.microsoft.com/kb/283657
http://www.mokafive.com/
http://www.grsecurity.net/

	Introduction
	Related Work
	Repair solutions
	Related techniques

	Overview
	Action history graph
	Repair using the action history graph
	Graph API
	Refining actor objects: Finer-grained re-execution
	Refining data objects: Finer-grained data dependencies
	Repair controller

	Object and action managers
	File system manager
	OS manager
	Recording normal execution
	Action history graph representation
	Shepherded re-execution

	Directory manager
	System library managers
	Terminal manager
	Network manager

	Implementation
	Evaluation
	Recovery from attack
	Technique effectiveness
	Performance

	Discussion and future work
	Conclusion

