
PoWER Never Corrupts: Tool-Agnostic Verification of Crash Consistency
and Corruption Detection

Hayley LeBlanc
University of Texas at Austin

Jacob R. Lorch
Microsoft Research

Chris Hawblitzel
Microsoft Research

Cheng Huang
Microsoft

Yiheng Tao
Microsoft

Nickolai Zeldovich
MIT CSAIL and Microsoft Research

Vijay Chidambaram
University of Texas at Austin

Abstract
Storage systems must maintain integrity even after rare and
difficult-to-test-for conditions like power losses and media
errors. Formal verification presents a promising avenue to
ensure storage systems are resilient, but current approaches
involve significant complexity and rely on verification con-
structs or forms of logic beyond what most verifiers natively
support. In this paper, we present two new verification tech-
niques that rely only on standard constructs provided by most
verification tools such as Hoare logic, ghost variables, and
quantifiers. First, we introduce PoWER (Preconditions on
Writes Enforcing Recoverability), a novel approach to veri-
fying crash consistency that encodes its requirements in the
preconditions of storage API methods. Second, we present a
new model of media corruption for provable corruption detec-
tion on any type of storage device. To demonstrate the power
of these new techniques, we use them to build two verified
storage systems using two different verification frameworks.
We build and verify the key-value (KV) store CAPYBARAKV
using Verus and the notary server CAPYBARANS using Dafny.
Both systems are built for persistent memory (PM), which we
target due to new challenges it presents to building resilient
storage systems. We develop new techniques to address these
challenges, including the corruption-detecting Boolean, a new
primitive for atomic checksum updates. Both systems verify
in under a minute, and CAPYBARAKV achieves performance
competitive with similar unverified PM KV stores.

1 Introduction

Storage systems must preserve the integrity of stored data
even if rare events like power losses or media errors occur.
However, ensuring that systems are crash consistent and can
detect corruption is difficult. There has been extensive prior
work on testing storage systems for these properties, but test-
ing cannot guarantee the absence of bugs [14, 18–20, 35, 36,
44,46–48,50,52,69]. Program verification offers a promising
alternative: use machine-checked proofs to ensure resiliency
and correctness properties [1, 7, 9, 21, 22, 38, 57].

However, verifying that storage systems are crash-
consistent and corruption-resistant is challenging for three
reasons. First, verifying crash consistency requires special-
ized tools that exacerbate the learning curve for verification.

Second, prior work on provably detecting corruption makes
strong assumptions about data layouts that are not compat-
ible with all systems [21]. Third, verified storage systems
have not been able to achieve state-of-the-art performance
thus far [7–9, 21, 57]. As a result, mainstream adoption of
verification for storage systems has been low.

In this paper, we present a novel approach for verifying that
storage systems (1) are crash-consistent and (2) can provably
detect corruption. Our approach is tool-agnostic: it only relies
on Hoare logic [17, 25], ghost variables, and quantifiers, fea-
tures supported by most verification tools. This enables us to
implement our approach in existing verification tools, such as
Dafny [45] and Verus [43], without changing the tools them-
selves. Our model of corruption enables provable corruption
detection without imposing restrictions on data placement.

To demonstrate our approach, we build two verified stor-
age systems, a key-value store and a notary service, using
two different verification frameworks. We show that the key-
value store achieves performance competitive with similar
unverified systems.

Verifying crash consistency. A key challenge when verify-
ing crash consistency is reasoning about intermediate system
states that may occur when an operation is interrupted by a
crash [9]. This is difficult because Hoare logic [17, 25], the
basis of most verification tools, trades the ability to describe
these intermediate states for efficient modular verification.
In Hoare logic, a function is specified by preconditions that
must hold when it is invoked and postconditions that must
hold when it completes. Its internal behavior is otherwise
unconstrained.

Prior verified storage systems have introduced new frame-
works and features, beyond what standard verifiers support,
to facilitate reasoning about intermediate states. For exam-
ple, the FSCQ file system extends Hoare logic with crash
conditions, predicates about intermediate disk states of a func-
tion [9], in the Rocq proof assistant [11]. The VeriBetrKV
key-value store adds TLA-style [41] reasoning to Dafny [45]
to support state machine refinement proofs about crash behav-
iors [21]. These approaches, while powerful, all have a steep
learning curve and are tied to certain verification tools.

We introduce PoWER (Preconditions on Writes Enforcing
Recoverability), a new approach to reasoning about storage
system crashes that, unlike prior work, relies only on standard

1



constructs provided by most verification tools. The key in-
sight behind PoWER is that new forms of logic or TLA-style
reasoning are not required to reason about crashes; we can
instead add a precondition to methods that perform durable
updates stating that all resulting crash states must be legal.
This can be done with Hoare logic and quantifiers, which
are supported by most verification tools. In PoWER, when
developers call the write API, they are required to supply a
proof that satisfies the precondition that the write will always
leave the storage system in a crash-consistent state.

The need to write such proofs may seem daunting, but we
show how it can be greatly simplified by turning common
intuitions used by storage systems developers into a set of
proof strategies based on system domain knowledge. These
strategies are based on the insight that most crash-consistency
proofs can be discharged only by reasoning about the loca-
tion of the write, not its contents or specific crash states. For
example, if a write only modifies bytes that are logically un-
reachable, it is clear that the write will not cause inconsistency.

PoWER does not sacrifice soundness for flexibility. We
prove that its guarantees correspond to crash conditions in
Crash Hoare logic [9] and to crash invariants in Perennial [6]
using machine-checked proofs.

Verifying corruption detection. Many storage systems use
cyclic redundancy checks (CRCs) to detect bit corruption
due to media errors [4, 16, 21, 66, 67]. As with crash con-
sistency, developers of verified systems must determine the
expected model of corruption and CRC properties upon which
to base their proofs. The only verified storage system support-
ing corruption detection, VeriBetrKV [21], assumes that the
checksum is embedded with the data, and that both are up-
dated atomically. This is not true of many real-world storage
systems [58] (especially on byte-addressable memories), thus
limiting its adoption.

We present a new model of data corruption based on the
theoretical properties of CRCs and provide libraries and func-
tions for developers writing verified corruption-detecting sys-
tems. Our model imposes no restrictions on where data and
its checksum are stored and does not require them to be atom-
ically updated together.

Verified systems. To demonstrate PoWER and our corrup-
tion model, we build two verified persistent memory (PM)
storage systems: CAPYBARAKV, a key-value store written in
Verus [43], and CAPYBARANS, a notary service written in
Dafny [45]. PoWER and our CRC model are not restricted to
PM; we target PM because it presents novel crash-consistency
and corruption-detection challenges not encountered with tra-
ditional storage.

One such challenge is that PM’s fine-grained atomic write
size (8 bytes) [64] makes it impossible to atomically update
CRCs with data using standard techniques, which were devel-
oped for storage devices with much larger access granularity.
We develop a new primitive, the corruption-detecting Boolean

(CDB), to support provably crash-atomic CRC updates. We
use CDBs in both CAPYBARAKV and CAPYBARANS and
find that they simplify many crash-consistency proofs.

To illustrate that PoWER is compatible with coarse-grained
concurrency (if used with a tool like Verus or Perennial that
supports concurrency), we extend CAPYBARAKV to support
two forms of concurrency. One extension uses a reader-writer
lock to permit concurrent readers or a single writer at a time,
and another extension uses sharding to permit concurrent
writers to keys falling in different shards.

We focus our evaluation on CAPYBARAKV and find that it
achieves competitive performance with state-of-the-art unveri-
fied PM KV stores, outperforming them on many benchmarks.
CAPYBARAKV is designed for an Azure Storage system that
uses battery-backed DRAM, and has been integrated with a
prototype Rust version of that system.

Our proposed approaches and systems have several lim-
itations. First, PoWER relies on features that are present
in most, but not all, verifiers. Highly-automated tools like
Yggdrasil [57] and TPot [5] have limited support for quan-
tifiers, which makes them incompatible with PoWER. Sec-
ond, while PoWER can be used to verify concurrent systems
like those discussed above, it does not support arbitrary fine-
grained concurrency involving concurrent writes to the same
storage region. Finally, as with all verified systems, the cor-
rectness of CAPYBARAKV and CAPYBARANS depends on
the correctness of their specifications and of the verifiers and
compilers themselves.

In summary, this work makes the following contributions:

1. PoWER, a tool-agnostic way to verify crash consistency
(§3.1);

2. A set of proof strategies and library functions to simplify
crash-consistency proofs based on domain knowledge
and natural intuitions about storage systems (§3.3);

3. A flexible and sound model of data corruption that facil-
itates proofs about the absence of corruption (§4.1);

4. The corruption-detecting Boolean, a useful new primitive
for reasoning about CRC updates on persistent memory
(§4.2); and

5. CAPYBARAKV and CAPYBARANS, two new verified
storage systems in different languages that demonstrate
our new methods (§5).

2 Background and related work

In this section, we discuss how existing approaches establish
crash consistency and corruption detection to motivate the
need for our improved approaches.

2



2.1 Identification of storage system bugs
Crash-consistency and corruption-detection bugs impact even
the most mature storage systems. Prior work on crash-
consistency testing tools [36, 48, 52, 69] has found many pre-
viously undiscovered bugs in these systems.

Persistent memory (PM). Persistent memory devices pro-
vide byte-addressable durable storage at near-DRAM laten-
cies [31, 68]. PM is generally mapped into an application
or storage system’s address space and accessed via memory
load and store instructions [54,64]. Unlike block devices, PM
uses fine-grained atomic writes (8 aligned bytes [64]), and
updates must be explicitly flushed from volatile CPU caches
to ensure persistence. Recent research on PM storage systems
has shown that they are prone to subtle crash-consistency
bugs [14, 18–20, 35, 44, 46, 47, 50]. These bugs arise due to
both PM’s complex low-level interface and higher-level issues
in new PM-specific design patterns.

Although PM is not yet widely deployed, cloud services
like Azure Storage already use PM in production [40]. A vari-
ety of PM-related hardware offerings are currently in develop-
ment [15, 24, 37, 63] and the CXL.mem protocol is expected
to support PM [2].

2.2 Formal verification of crash consistency
Software verification tools are best suited for verifying proper-
ties encodable with Hoare logic [17,25], and crash consistency
does not seem to fit this mold. In Hoare logic, one writes spec-
ifications for functions in the form of preconditions, which
must be true when the functions are invoked, and postcon-
ditions, which must be true when the functions complete.
However, crashes may occur partway through function execu-
tion, and Hoare logic does not let a developer directly specify
conditions that must hold throughout the body of each func-
tion. For this reason, there has been much research proposing
specialized methodologies for proving crash consistency.

Crash Hoare logic. Crash Hoare logic (CHL) is used by
FSCQ [9], an xv6-like file system implemented and verified
in Rocq [11]. CHL extends traditional Hoare reasoning with
crash conditions that describe system state in the event of a
crash. CHL’s support for crash conditions is based on separa-
tion logic [53], which enables describing disjoint resources
(e.g., different parts of a disk) with separate predicates. CHL
is currently only supported by Rocq-based verification tools,
which have a steep learning curve. Furthermore, Rocq pro-
grams can only be run by first extracting them to Haskell or
OCaml, which limits their run-time performance.

CHL requires built-in language support or the ability to
perform meta-level reasoning about the language’s own se-
mantics. Languages like Verus and Dafny would require a
substantial overhaul, including changes to the core language,
to support CHL. Indeed, some of us are part of the Verus de-
velopment team, which has no plans to support CHL because

it would require significant effort and would only be used by
a small subset of users.

In contrast, PoWER can be used with any verifier that sup-
ports standard Hoare logic, ghost variables, and quantifiers,
including verifiers like Verus [43] that produce fast code. Fur-
thermore, we believe that PoWER would remain a valuable
contribution even in the unlikely event that CHL support were
added to Verus, because it could be used with any verification
tool.

Crash invariants. GoJournal [7] and other systems built on
top of Perennial [6] reason about crash safety as a form of
concurrency, where a crash causes existing threads to stop
executing and a new recovery thread to start executing. In
particular, Perennial formalizes crash reasoning using crash
invariants [6, §5.1], which are built on top of atomic invari-
ants. Atomic invariants are properties that are verified to
hold at the end of every atomic execution step. Many frame-
works for verifying concurrent software (including Iris [33]
and Verus) support such atomic invariants, but tools that do
not handle concurrency (such as Dafny [45], Prusti [65], and
Creusot [13]) lack this support. PoWER can thus be used even
with tools that lack support for atomic invariants.

PoWER is also useful with tools that do support atomic
invariants, but which make it cumbersome to directly state
Perennial’s logically atomic crash specifications [7, §6.2],
such as Verus. Parts of the code requiring concurrency rea-
soning must use atomic invariants, but other code only needs
to reason about PoWER specifications and can thus avoid the
complexity of logically atomic crash specifications. (See §3.4
and §5.1.2.)

State machine refinement. State machine refinement was
originally developed for verification of distributed systems in
the IronFleet project [22]. VeriBetrKV [21] applies the tech-
nique to verify a key-value store based on the intuition that
storage software interacting with a disk is similar to unreliable
nodes interacting in a distributed system. Anvil [59] uses it to
verify liveness properties of cluster management controllers.
In these systems, each component (e.g., a single node, or a
storage system journal) is modeled as a state machine and
proven correct in isolation using Hoare logic assuming a syn-
chronous and crash-free environment. Components are then
proven correct via a series of state machine refinement proofs
using TLA-style reasoning, which can also prove properties
related to asynchrony, crash consistency, and liveness. Iron-
Fleet and VeriBetrKV are implemented and verified in Dafny
with custom-built libraries for TLA-style reasoning.

These proofs require additional infrastructure on top of a
TLA library. They are also labor intensive, since developers
need to reason about low-level sequences of steps and write
refinement proofs. In contrast, our techniques do not require
additional infrastructure or separate refinement proofs, and
let developers reason about their systems at a higher level.

Push-button verification. Push-button verification [51]

3



trades expressivity for the ability to verify code without writ-
ing any proofs. Crash refinement [57] is a technique for push-
button crash-consistency verification in which the developer
specifies a (finite) set of all possible crash schedules and
requires that all executions obey the specification. This sig-
nificantly reduces annotation and proof burden but is limited
to simple, bounded systems. Other highly-automated verifica-
tion techniques, such as the approach taken in TPot [5], have
not been applied to storage verification.

Summary of comparisons. In contrast to the above, PoWER
relies only on standard verification constructs, letting devel-
opers use whatever verification tool they feel is best suited for
their project. Indeed, based on the recent influx of Rust-based
verification tools, we expect that future improvements in veri-
fication tooling may come in the form of new languages and
verifiers. Techniques that require developers to build complex
frameworks or rely on specific language features will be less
useful than approaches like PoWER.

2.3 Formal verification of corruption detection
VeriBetrKV [21] formally reasons about the use of checksums
for corruption detection. However, its corruption-detection
axiom strongly dictates how data must be checksummed and
where the checksum must be stored. VeriBetrKV does not
allow checksumming data across blocks, and precludes stor-
ing the checksum separately from the data. As we discuss in
§4.1, this is overly restrictive for the systems we target. In
contrast, our proposed model imposes no limitations on what
data is checksummed or on where the checksum and data
are stored. Moreover, it is difficult to determine what actual
constraints VeriBetrKV’s axiom implies for the underlying
storage device, and whether it is sound, in contrast to our ax-
ioms that reason about the number of corrupted bits that CRC
algorithms are designed to detect.

3 Verifying crash consistency using PoWER

This section discusses our novel, tool-agnostic technique
PoWER for verifying crash consistency in storage systems.
Unlike prior work, it can be used to concisely verify crash
consistency with only basic verifier features.

3.1 PoWER
Our main contribution is Preconditions on Writes Enforcing
Recoverability (PoWER), a way to verify crash consistency
based on standard Hoare logic. This is challenging because
while most verification tools let one specify what a method
must satisfy upon completion (postconditions), one cannot
generally specify what must be true throughout a method’s
execution, and crashes can happen at any point.

Overall idea. The idea behind PoWER is to give a method
that performs durable updates a storage handle with a special

1 pub exec fn write(&mut self, addr: u64,
2 bytes: &[u8], perm: Tracked<&Perm>)
3 requires
4 addr + bytes@.len() <= old(self)@.len(),
5 forall |s| can_result_from_partial_write(
6 s, old(self).durable_state,
7 addr as int, bytes@)
8 ==> perm@.permits(s),
9 ensures

10 self@.can_result_from_write(old(self)@,
11 addr as int, bytes@)

Listing 1: A simplified signature of an asynchronous write
method used with PoWER in Verus

API that ensures storage is always in a consistent, recoverable
state. To do this, we add a single precondition to the API’s
write method, which requires all new crash states introduced
by the write to be crash consistent.

This is possible because one can describe all new crash
states introduced by a write before it is invoked, even though
asynchronous partial completion of those writes can occur
at any time. By adding a precondition to the write method
that forces the developer to reason about all such resulting
crash states, we can ensure the developer cannot introduce
crash-consistency bugs.

Modifying the API this way ensures correctness with no
performance cost because all annotations involved in ensur-
ing preconditions on writes are erased at compile time. The
compiler generates an executable equivalent to what would
exist with the standard, non-PoWER API.

The PoWER API. A standard storage API includes three
main methods: read, which returns the most recently written
bytes at a given address; write, which starts an asynchronous
write but does not necessarily make it immediately durable;
and flush, which ensures prior writes are durable. Their stan-
dard preconditions check properties like in-bounds addresses.

Listing 1 shows a simplified specification of a write
method in the PoWER API in Verus. The requires clause
specifies preconditions and the ensures clause specifies post-
conditions. old(x) is the contents of mutable reference x
upon method invocation. x@ is shorthand for x.view() and
represents an abstraction of x (e.g., the current state of a
storage device including outstanding writes). The new pre-
condition introduced by PoWER is on lines 5–8; it requires
that all newly introduced potential crash states are permit-
ted. In Verus, we express the set of permitted states with an
unforgeable ghost (i.e., erased by the compiler) permission
token perm. The set of newly introduced potential crash states
is defined by the storage model, which accounts for device
properties like atomic write granularity and alignment; we
now discuss that model.

Storage model. The storage model we use is based on the
prophecy-based asynchronous disk model [62] used in Peren-
nial [6,7]. This model eases reasoning about crashes by letting

4



1 pub struct PersistentMemoryRegionView { pub read_state: Seq<u8>, pub durable_state: Seq<u8> }
2

3 pub open spec fn chunk_corresponds(s1: Seq<u8>, s2: Seq<u8>, chunk: int) -> bool {
4 forall |i: int| 0 <= i < s1.len() && i / chunk_size() == chunk ==> s1[i] == s2[i]
5 }
6 pub open spec fn can_result_from_partial_write(
7 post: Seq<u8>, pre: Seq<u8>, addr: int, bytes: Seq<u8>) -> bool
8 {
9 post.len() == pre.len() && forall |chunk| {

10 ||| chunk_corresponds(post, pre, chunk)
11 ||| chunk_corresponds(post, update_bytes(pre, addr, bytes), chunk)
12 }}
13 impl PersistentMemoryRegionView {
14 pub open spec fn can_result_from_write(self, pre: Self, addr: int, bytes: Seq<u8>) -> bool {
15 &&& self.read_state == update_bytes(pre.read_state, addr, bytes)
16 &&& can_result_from_partial_write(self.durable_state, pre.durable_state, addr, bytes)
17 }}

Listing 2: Part of the specification used by the prophecy-based asynchronous storage model in Verus

proof code reason about possible future system states, akin to
prophecy variables used in some refinement proofs [34, 42].
The Perennial authors have proven, in Rocq, that any system
proven correct using the prophecy model is also correct using
a natural model that cannot see the future [61]. We have also
formally proven the soundness of our prophecy-based model
by building it as a library atop a similar natural non-prophecy
model, leveraging support for prophecy variables in Verus.

To explain the prophecy model, we first describe the natural
model. Storage is divided into chunks with size equal to the
atomic persistence granularity of the device. For instance, per-
sistent memory uses a granularity of 8 bytes, while hard drives
generally use 512 B or 4 KiB sectors. A read returns the last-
written contents, even if the asynchronous writes that wrote
them are still outstanding and may never become durable.
A flush completes all outstanding writes. On a crash, each
outstanding write operation is divided into chunk-granularity
subwrites and some of the subwrites are durably performed.
This model is tricky to reason about because the state includes
both a current readable state and a set of outstanding writes.

The prophecy model, given in Verus in Listing 2, is simpler
in that the state consists of only two byte sequences: the read
state and the durable state (line 1). The read state reflects all
writes performed so far, including outstanding updates that
may be lost in a crash. The durable state reflects all subwrites
performed so far that will eventually become durable, due to
either a subsequent flush or a crash that will nondeterministi-
cally choose to render them durable.

A write operation applies the entire write to the read state
and a nondeterministically chosen subset of chunk-granularity
subwrites to the durable state. This is shown in Listing 2,
with can_result_from_write (lines 13–15) specifying the
possible prophesized results of a given write operation.

The flush operation’s postcondition says that the read state
matches the durable state, and that neither of these is changed

by the flush. That is, the durable state does not become the
read state as a result of the flush; rather, the flush confirms that
the prophesized durable state matches the read state. The intu-
ition for why this is valid is that when reasoning about instruc-
tions past a flush, one need not consider possible branching
timelines in which some subwrites were lost.

We switched from the natural model to the prophecy model
partway through development of CAPYBARAKV and found
that it made proving crash consistency much simpler. One
must still reason, when calling a PoWER write, about all the
possible new crash states the write can introduce. But after
the write, thanks to the prophecy model, one need only reason
about the single prophesized resulting durable state.

Specifying prophecy variables in a storage model requires
the use of ghost variables, which are a feature of most ver-
ification tools including Dafny and Verus. Ghost variables
can contain information known at verification time even if it
cannot necessarily be known during execution, which is what
makes them a standard tool for prophecy variables.

Specifying crash-consistent states. PoWER, like all crash-
consistency specifications [7,9], requires that the specification
writer formally specify the set of crash-consistent states. In
theory, the developer may define this set however they like.
We suggest the following approach, exemplified by Listing 3
which shows a simplified signature for a synchronous, crash-
atomic append operation in an append-only log. Have the
code define a recovery function rec that maps a sequence
of bytes to an abstract state. Then, make the set of crash-
consistent states be the union of two sets: (1) the set of states
abstractly equivalent to the initial state, and (2) the set of states
permitted by the postcondition. In other words, when crashing
mid-operation, the code may either atomically execute that
operation or do nothing.

Specifying crash-consistent transitions. Another way to
specify crash-consistency properties is to specify a set of

5



1 pub exec fn log_append(&mut self, ps: &mut PoWERStorage, bytes: &[u8], perm: Tracked<&Perm>)
2 requires forall |s| Self::rec(s) == Self::rec(old(ps)@) || Self::rec(s) == Self::rec(old(ps)@) + bytes@
3 ==> perm@.permits(s),
4 ensures Self::rec(ps@) == Self::rec(old(ps)@) + bytes@,

Listing 3: Signature for a log-append method that enforces crash consistency with PoWER

1 pub exec fn log_append(&mut self, ps: &mut PoWERStorage, bytes: &[u8], perm: Tracked<Perm>)
2 requires forall |s1, s2| Self::rec(s2) == Self::rec(s1) + bytes@ ==> perm@.permits_transition(s1, s2),
3 ensures Self::rec(ps@) == Self::rec(old(ps)@) + bytes@,

Listing 4: Signature for a log-append method that uses a single-use PoWER permission permitting a transition

legal transitions between crash states. That is, a permission
can express not a set of legal crash states but a set of legal
pairs of states (s1,s2). If the current durable state is s1 then it
permits introducing new crash state s2.

A useful case of this is a permission to transition from any
s1 to s2 if they both recover to the same abstract state. Another
case is that for a mutating operation, one can grant permission
to transition from s1 to s2 if s2 recovers to a state that matches
s1 except that the operation has been performed. Listing 4
shows an example of this use.

Blanket vs. single-use permissions. Some scenarios call for
a blanket permission, i.e., a permission that can be used repeat-
edly. A key case of this is permission to transition between
recovery-equivalent states. Such permission can be granted
to the system when it starts, so that it can make such transi-
tions throughout its lifetime. This simplifies the specification
by reducing the number of permissions that must be granted.
Other scenarios call for single-use permissions. A key case of
this is permission to perform a transition corresponding to a
state-mutating operation that should only happen once.

Single-use permissions are straightforward to implement,
by having a write operation consume or otherwise invalidate
any single-use permission passed to it. In such an implemen-
tation, a blanket permission is a factory that can generate an
arbitrary number of single-use permissions.

Statically partitioning into multiple PoWER regions. For
some systems, it is convenient to statically partition storage
into multiple parts, each with its own PoWER handle. We
call each such part a region. Such partitioning can be done by
using multiple physical or virtual devices, or by treating each
file in a file system as a separate region. This modularizes
reasoning about storage state since each region becomes a
separate object with its own crash constraints and permissions.

3.2 Correspondence to other approaches

To demonstrate the soundness of the PoWER approach for
specifying crash consistency, we use mechanically-checked
proofs to show correspondence to two other approaches: CHL
and crash invariants. These are among the current state of the
art for verified storage systems, but require additional verifier
features beyond Hoare logic and are thus not tool-agnostic.

Correspondence to Crash Hoare logic. To validate the
soundness of our PoWER specification approach, we produce
a mechanically-checked Rocq proof of its correspondence to
CHL. We prove that any code satisfying a PoWER specifi-
cation satisfies a corresponding CHL specification, encoded
as a crash weakest precondition (WPC) in Perennial, whose
crash condition states that, if the system crashes, the storage
will satisfy the recoverability predicate. The details of this
theorem statement, along with the proof, are available as part
of this paper’s artifact, described in §A.

Since we have not implemented PoWER in Rocq, this proof
is metalogical and depends on a trusted translation of PoWER
semantics into Rocq. This translation is fairly natural, so we
feel confident in the correctness of this proof.

Correspondence to crash invariants. Crash consistency can
also be specified using crash invariants, as in Perennial [6].
We prove that satisfying a PoWER specification implies the
satisfaction of a crash invariant, in two steps. First, we imple-
ment the PoWER interface in Verus as a verified library on top
of a lower-level interface that reasons about crash consistency
using crash invariants. Second, we prove that, if an applica-
tion adheres to the PoWER API, it implies that the PoWER
library maintains a corresponding crash invariant on behalf
of the application. We can do this because crash invariants
can be built on top of atomic invariants, an advanced fea-
ture of some verification tools including Verus but not Dafny,
Prusti [65], or Creusot [13]. Since both the PoWER interface
and the invariant-based specification are in Verus, this proof is
entirely machine-checked (unlike the CHL proof mentioned
above). The details of this correspondence are available as
part of this paper’s artifact, described in §A.

3.3 Strategies for satisfying preconditions

We next discuss how a developer can prove their code matches
a PoWER specification. The challenge is proving, immedi-
ately before each write, that all new crash states that can
result from partial application of the write are permitted. In
this subsection, we describe four design patterns that simplify
this reasoning, and libraries we provide that make it easy to
apply them. We classify durable updates into four categories—
tentative, committing, recovery, and in-place—and provide

6



strategies to prove the crash consistency of each category.

Tentative writes. We call a write tentative if it has no effect
on the abstract system state until some subsequent write hap-
pens. Tentative writes generally modify data at addresses that
are unreachable during recovery (e.g., inodes unreachable
from a file system’s root), and do not change system state
regardless of which subwrites become durable. Their contents
only become relevant after a subsequent, non-tentative write
(e.g., storing a reachable pointer to the address).

The developer need not prove anything about the specific
bytes in a tentative write to prove crash consistency. They
must only prove that the addresses modified by the write
are unreachable during recovery. We provide lemmas in our
Verus and Dafny libraries (see Listing 5 for the Dafny version)
that the developer can call to satisfy the precondition of the
PoWER API.

Committing writes. We call a write committing if it changes
the abstract state of the system using a single crash-atomic
write. For example, such a write might update a pointer that
causes a tree of objects on storage to become reachable by
the recovery function. A committing write is typically done
after a flush to ensure that a crash does not cause the state to
be invalid due to lost tentative writes.

For committing writes, the developer only needs to reason
about two possible crash states: the states that result from the
committing write being dropped or applied. We provide, in
our library, a lemma that ensures that for a committing write
there are only these two possible crash states.

Recovery writes. Recovery writes are writes done as part of a
recovery procedure (e.g., replaying a journal). Such writes are
not tentative, as they can change the abstract view, and they
are not committing, as they may not match the atomic write
granularity. To prove that such writes are crash consistent, a
developer must prove that they only modify bytes that will
be written to by a completed recovery procedure, and that
recovery is idempotent. If the system crashes while recovering
from an earlier crash, all modifications made during the first
recovery will be overwritten by the second recovery, ensuring
that any torn writes are fixed when recovery completes.

We have written a generic redo journal component in Verus.
Internally, this journal must reason about intermediate crash
states, but the user of the journal component (e.g., CAPY-
BARAKV) does not have to. The user just logs updates and
eventually atomically commits (or aborts) the updates gath-
ered in the log. The journal takes care of installing journaled
operations on commit or when replaying its log after a crash.

In-place writes. In-place writes non-atomically modify user-
visible state and can change the abstract state of the system.
They thus leave the system in a nondeterministic abstract state.
This may be reasonable for systems that provide weak crash-
consistency guarantees, e.g., a file system that lets a read see
a write that is then lost by a crash. Such a specification would
permit a large set of possible crash states, so in-place writes

could more easily be proven to produce states in that set.
We have not yet had experience verifying storage systems

with weakly crash-consistent semantics, so we currently have
no support in our libraries for reasoning about in-place writes.
A developer of such a system would have to directly prove
the PoWER preconditions.

3.4 Extending PoWER to concurrent contexts
So far, we have described how PoWER can verify non-
concurrent storage systems, building on Hoare logic. Some
verification tools have additional features for concurrency rea-
soning, and while PoWER does not require such features, it
can leverage them to reason about some forms of concurrency.

PoWER can easily support systems that issue concurrent
reads to storage, such as an implementation that uses a reader-
writer lock to protect access. PoWER supports this pattern
because it only adds a precondition for write operations and
does not change how reads are done.

PoWER can also support systems that concurrently issue
reads and writes to multiple statically allocated storage re-
gions, as long as there is never read-write or write-write con-
currency on a single such region. An example of this is a KV
store sharded over multiple storage regions. To enable proving
a linearizable specification for such a system, we introduce
mechanisms to formally reason about the linearization order
of operations across multiple storage regions. To do this, we
extend PoWER to support Perennial-style reasoning about
crash safety using atomic invariants, which are also supported
in Verus. Specifically, we make the following two extensions
to PoWER, which together we call atomic PoWER.

First, we introduce ghost state representing the durable
state of persistent storage, based on Perennial’s notion of
durable resources. These durable resources can be owned by
an atomic invariant, which enforces that some application-
level recovery predicate always holds on the durable state
(and in particular, this invariant can refer to the durable state
of multiple storage regions), and therefore this invariant will
be true when the system crashes and initiates recovery.

Second, we introduce the notion of a completion object
returned when a write consumes a single-use permission.
Logically, this captures the fact that a write matching the
permission’s permits_transition() was issued, and lets
an application prove that its operation was applied to durable
storage. For example, when an application invokes a KV store
with a permission to create a new key, the KV store can return
a completion proving that it wrote the key to storage, even if
some concurrent thread has since deleted that key.

In atomic PoWER, permissions are no longer a trusted ob-
ject but rather a verified wrapper around a Perennial-style
proof (in Verus, a proof-mode callback) that opens the atomic
invariant holding the durable resource and updates it when
the write is applied. With this change, PoWER’s API takes
on the form of a logically atomic crash specification from

7



1 ghost predicate AddressesUnused<T>(s: seq<byte>, addrs: set<int>, rec: seq<byte> -> T) {
2 forall s2: seq<byte> :: |s2| == |s| &&
3 (forall i: int :: 0 <= i < |s| && i !in addrs ==> s[i] == s2[i]) ==> rec(s2) == rec(s)
4 }
5 lemma Lemma_TentativeWritePermitted<T>(ps: PoWERStorage, addrs: set<int>, rec: seq<byte> -> T,
6 bytes: seq<byte>, start: int)
7 requires forall s :: rec(s) == rec(ps.View().durableState) ==> s in ps.StatesPermitted()
8 requires AddressesUnused(ps.View().durableState, addrs, rec)
9 requires forall addr: int :: start <= addr < start + |bytes| ==> addr in addrs

10 ensures forall s :: CanResultFromPartialWrite(s, ps.View().durableState, start, bytes) ==>
11 s in ps.StatesPermitted()

Listing 5: Dafny library lemma for proving that a tentative write satisfies the PoWER write API

Perennial [7, §6.2]. As a result, the application developer’s
job becomes to first state an atomic invariant about the durable
ghost state, then to implement (perhaps using the library dis-
cussed in §3.2) permissions for any write operations they
want to issue via a PoWER API. Intermediate layers between
the top-level application atomic invariant and the low-level
storage device are unaffected by these changes. For instance,
we can reuse nearly all of CAPYBARAKV’s single-threaded
code for its concurrent variants because that reusable code sat-
isfies a PoWER API and thus does not care how permissions
it receives are implemented (see §5.1.2).

Limitations. The key limitation of PoWER’s design, in
terms of concurrency, is that it cannot reason about writes
executing concurrently with other reads or writes to the same
storage region. The constraint comes from the fact that the
PoWER API requires the caller to logically know the current
state of the region (old(self)@ in Listing 1) at the time a
read or write operation is issued. However, due to concur-
rent writes, the caller may not fully know that state.

4 Provably detecting corruption

Stored data may become corrupted over time due to me-
dia errors, so checking the integrity of data using cyclic re-
dundancy checks (CRCs) is standard in many storage sys-
tems [4, 16, 66, 67]. A verified storage system should require
that data read from the storage device is checked for corrup-
tion before it is used or returned to the user. In this section,
we introduce a new model of media corruption, and a new
corruption-resistant atomic primitive for persistent memory.

4.1 Modeling media corruption

To model possible data corruption, the postcondition of our
read method specifies that the returned bytes may not match
the last-written bytes, but rather are related to them via a
maybe_corrupted predicate shown in Listing 6. The devel-
oper must perform a CRC check to prove that the returned
bytes are uncorrupted before using them.

Our model of device corruption is as follows. The device
has a corruption bitmask with one bit per storage bit. Where
the bitmask is 0, reads return correct data. Where it is 1, reads
return arbitrary bits, not necessarily the same on each read.
The population count of the bitmask, i.e., the number of 1s,
is bounded by a constant c that is opaque to the code to be
verified. However, that code has access to a trusted fast CRC
library [12] and an axiom stating that any two byte sequences
with Hamming distance in [1,c] have different CRCs. (For
the ECMA variant of CRC-64 that we use, c = 1 for arbitrary-
length data, i.e., it guarantees to catch any single-bit errors,
but c can be higher for shorter lengths, such as c = 3 for data
shorter than ∼1 GiB [39]. Our implementation currently does
not take advantage of the higher c values for shorter lengths.)
This means that, assuming c or fewer device bits are corrupted,
the result of a CRC check on a given buffer definitively proves
whether or not the buffer has been corrupted.

This model differs from VeriBetrKV’s “corruption cannot
produce a block with a valid checksum” [21]. Our model is
more fundamental, describing the behavior of the media at
a lower level. It is also more flexible, allowing the contents
protected by a checksum to be noncontiguous and to not
be in the same block as the checksum. This flexibility is
required when building PM systems like CAPYBARAKV and
CAPYBARANS, as we discuss next.

4.2 Checking for PM corruption

Persistent memory presents new challenges for maintaining
CRCs for corruption detection. Traditional storage systems
often store a CRC of each block’s contents within the block
itself [58]. However, PM’s finer write granularity (8 aligned
bytes [64]) makes this technique crash-unsafe, as the hardware
does not guarantee that the CRC will be written atomically
with any non-trivial amount of data.

Prior work [44] on testing NOVA-Fortis [67], a corruption-
resistant PM file system, shows that CRC management on PM
is prone to crash consistency bugs. Furthermore, when trying
to use and verify NOVA-Fortis’s Tick-Tock algorithm for up-
dating CRCs, we find it is not correct in either our model of
corruption or VeriBetrKV’s [21]. Tick-Tock maintains two

8



1 pub open spec fn maybe_corrupted(self, bytes: Seq<u8>, true_bytes: Seq<u8>, addrs: Seq<int>) -> bool {
2 &&& bytes.len() == true_bytes.len() == addrs.len()
3 &&& forall |i: int| 0 <= i < bytes.len()
4 ==> exists |mask: u8| bytes[i] == (true_bytes[i] ^ (mask & self.corruption[addrs[i]]))
5 }
6 pub exec fn read(&self, addr: u64, num_bytes: u64) -> (bytes: Vec<u8>)
7 requires self.inv(), addr + num_bytes <= self@.len(),
8 ensures ({
9 let true_bytes = self@.read_state.subrange(addr as int, addr + num_bytes);

10 let addrs = Seq::<int>::new(true_bytes.len(), |i: int| i+addr);
11 self.constants().maybe_corrupted(bytes@, true_bytes, addrs) })

Listing 6: Read method specification describing possible corruption of returned bytes

CRC(0)

D0 ???

CDB

CRC(D0) ???

1

CRC(0)

D0 D1

CDB

CRC(D0) CRC(D1)

2

CRC(1)

D0 D1

CDB

CRC(D0) CRC(D1)

3

Figure 1: One way to use a CDB to atomically update a data
structure and its CRC

copies (a primary and a replica) of each persistent data struc-
ture, each with its own CRC. To update the data structure, it
updates the primary, then flushes, then updates the replica. On
recovery, it uses whichever copy has a matching CRC, prefer-
ring the primary. However, CRC algorithms are designed to
defend against media corruption in the form of a positive and
bounded number of bit flips, not to distinguish between dif-
ferent user-level values. CRC collisions between such values,
which can differ arbitrarily, are plausible (and indeed likely
in scenarios where adversaries can manipulate values).

For example, suppose we begin updating a data structure
with value D0 to D1. Tick-Tock writes D1 and CRC(D1) to
the primary; suppose a crash occurs after D1 becomes durable
but before CRC(D1) becomes durable, so the primary CRC
remains CRC(D0). Also suppose that the stored version of
D1 is corrupted into D′

1 and that, by chance, CRC(D0) =
CRC(D′

1). Tick-Tock’s primary CRC check will pass and it
will not detect the corruption. This is plausible in both our and
VeriBetrKV’s models, since D′

1 and D0 may have an arbitrary
number of bit differences.

To address this challenge, we propose the following new
primitive that enables atomic updates on PM. The corruption-
detecting Boolean (CDB) is an 8-byte integer that can only
take on two specific values, one representing false and one
representing true. These two values should be chosen care-
fully such that neither is likely to be corrupted into the other;
we use CRC(0) and CRC(1). Since a CDB is 8 bytes, it can
be written to PM atomically with respect to crashes. Since
its valid values are statically known, it can be checked for
corruption without needing to maintain a separate CRC.

Here is one way to use a CDB to implement an atomically

mutable data structure D. Reserve space for an 8-byte CDB
and two versions of D plus their CRCs. The CDB indicates
which version is considered valid at recovery time. To update,
tentatively write a new version and its CRC to the invalid
location, then flush, then use a committing write to flip the
CDB, then flush. Figure 1 illustrates this for the case where
we start in step 1 with D0 as the valid version. In step 2
we write the new version to D1 and its CRC to CRC(D1),
then flush. In step 3 we update the CDB to CRC(1) then
flush. For the next update (not shown in the figure), we will
go the other way: store the new version and CRC in D0 and
CRC(D0), then flush, then update the CDB to CRC(0).

We find the CDB to be a useful primitive, and use it in sev-
eral places in CAPYBARAKV and CAPYBARANS to facilitate
atomic updates. For instance, we use it in CAPYBARANS to
atomically update the counter and last hash, using the steps in
Figure 1. To our knowledge, ours is the first proven-correct al-
gorithm for atomic updates on PM with corruption detection.

5 Verified systems

To demonstrate our support for multiple verification tools, we
implement CAPYBARAKV, the first verified PM key-value
(KV) store, in Verus and CAPYBARANS, the first verified
persistent notary service, in Dafny.

5.1 CAPYBARAKV

CAPYBARAKV is an embedded PM key-value store with ver-
ified functional correctness, crash consistency, and corruption
detection. It maps keys to values, where each value consists
of an item and a list of elements. It is parameterized by key,
item, and list-element types, with each of these types having a
fixed size. It supports standard create, read, update, and delete
operations on key-item pairs, as well as operations that up-
date the list associated with a key. These list operations can
append an element, trim a given number of elements from the
front, or update the element at a given index. CAPYBARAKV
supports crash-atomic transactions in which operations are
visible immediately but not durable until committed.

9



Trait Description Generated code

PmSafe Ensures safety of copying to storage No methods; trivial PmSafe trait bounds on field types
PmSized Ensures size known at verification time Spec and exec size_of and align_of methods, and static asser-

tions that their output matches compiler-generated type layout
Clone Implements explicit copy method Specification that copy equals original
PartialEq Implements equality operator Specification that operator is consistent with Verus equality

Table 1: Traits implemented by the #[derive(PmCopy)] macro in the pmcopy crate

Specification. Its abstract state is two maps from keys to val-
ues: the on-abort map and the on-commit map. The on-abort
map represents what should result if an abort is requested
or the system crashes. The on-commit map represents what
should result if a commit completes. The abstract state’s op-
erations include abort, commit, create, read, update, delete,
and various list-updating operations. The abort operation sets
the on-commit state to the on-abort state, representing both
the expected behavior if a transaction aborts or if the system
crashes. The commit operation sets the on-abort state to the
on-commit state, and every other operation affects only the
on-commit state. In the event of a crash, the commit operation
may either abort or commit the current transaction; all other
pending operations must abort.

Implementation. CAPYBARAKV has four main durable com-
ponents: a main table, an item table, a list-element table, and a
journal. Each row in the main table contains a key, the address
of the corresponding row in the item table, the address of the
row in the list-element table containing the first list element,
a CRC of the key, a CRC of the address fields, and a CDB
(§4.2) indicating if the row is valid. Each row in the item table
contains an item and its CRC. Each row in the list-element
table contains a list element, the address of the next item in
the list if any, and a CRC of each of these fields. An item row
is considered valid if it is pointed to by a valid main table row.
A list-element row is considered valid if it is pointed to by a
valid main table row or list-element row.

CAPYBARAKV uses a physical redo journal. When a trans-
action is committed, we tentatively append a single CRC for
all pending entries, then commit by updating a CDB. Log en-
tries are replayed using recovery writes. Once all entries have
been installed, we clear the journal. The journal is designed
to be of general use beyond CAPYBARAKV.

New records are created in CAPYBARAKV by tentatively
writing new main and item table entries to free rows, then
journaling an update to the main table entry’s CDB. Deletions
only require journaling the invalidation of the target’s CDB.
CAPYBARAKV uses copy-on-write to update an existing item
or list element, i.e., it allocates a new row in the appropriate
table and journals an update to the row that points to it.

CAPYBARAKV also has a volatile index, implemented as a
Rust HashMap, that maps all keys to their main table addresses.
Each table also maintains a volatile free list used for allocation.

These volatile structures are rebuilt at startup after log replay.

5.1.1 Safe reads and writes

In PM systems like CAPYBARAKV, PM’s low access la-
tency makes minimizing overhead essential. In particular,
I/O latency can easily be eclipsed by software overheads, so
many systems memcpy data structures between DRAM and
PM with no serialization. However, such low-level operations
risk crash safety and can lead to undefined behavior. For ex-
ample, structures that contain references (e.g., file handles or
virtual addresses) cannot safely be stored on PM, as a refer-
ence may be invalid after a crash. And, when reading stored
data, we must ensure that data is placed in a properly laid-out
buffer and checked for corruption before casting to a more
useful data structure to avoid undefined behavior.

Unfortunately, these properties are difficult to verify be-
cause compiler-generated type and layout information is not
available to verifiers. We tackle this issue by using the power-
ful Rust compiler to check properties that Verus cannot. We
are inspired by Corundum [26], a Rust crate that uses various
Rust language features to enforce safety properties in PM
storage systems, and SquirrelFS [44], a PM file system with
crash-consistency properties checked by the Rust compiler.

We have developed pmcopy, a trusted Rust crate that pro-
vides a macro to help developers check these crucial safety
properties. It generates Verus ghost code to facilitate proofs
that rely on type layout information and provides executable
functions specified by this ghost code. It also adds compile-
time assertions that are checked by the Rust compiler, not
Verus, to check that axioms it synthesizes match compiler-
generated information. CAPYBARAKV uses pmcopy to en-
force safety properties about all durable data structures. We
expect pmcopy will also be valuable in the development of
other PM storage systems in Verus.

To use pmcopy, a developer need only include two annota-
tions on the definitions of durable data structures. The first is
the directive to use the C representation (#[repr(C)]), as the
default Rust representation is intentionally under-specified
and is not safe for operations that rely on a known type lay-
out [56]. The second is #[derive(PmCopy)], which causes
pmcopy to generate an implementation of the PmCopy trait
and several supertraits. Routines that copy to and from PM
require that their parameters implement this trait. Table 1 de-

10



scribes four supertraits of PmCopy implemented by pmcopy.
We assume that all Rust numeric types, bool, and char are
safe to store on PM and mark them PmSafe. PmCopy can only
be derived on structs and enums made up of PmSafe types.

Partway through development of CAPYBARAKV, an up-
date to the Rust compiler changed the layout of u128 and
i128, which caused an inconsistency between compiler- and
pmcopy-generated layouts. Thanks to the static assertions
pmcopy generated, this discrepancy was immediately flagged.

5.1.2 Concurrent variants

In addition to the single-threaded CAPYBARAKV, we build
two concurrent variants, one that uses a reader-writer lock to
enable concurrent reads and one that uses sharding to also
enable concurrent writes, representing the two forms of con-
currency described in §3.4. The API shared by the two vari-
ants is a linearizable specification that is formalized using
logical atomicity [32, 60] and encoded using proof callbacks
in Verus. This shared API is non-transactional, consisting of
single atomic operations that create, read, update, etc.

All three implementations use a single component,
UntrustedKvStoreImpl, to implement the main KV-store
functionality. This includes nearly all of the code, includ-
ing setup, recovery, transactions, and individual operations.
That component exports a transactional API that uses atomic
PoWER. That is, it only stores and recovers state via a
PoWERStorage object supplied by its wrapper, so it cannot
perform writes unless granted permission for all possible re-
sulting crash states. That wrapper, either the single-threaded
CAPYBARAKV or one of its two concurrent variants, creates
permissions and passes them to the UntrustedKvStoreImpl
as needed. The sharded variant uses multiple instances of
UntrustedKvStoreImpl, one per shard, each using a sepa-
rate PM file as a storage region.

At startup time, each wrapper provides a blanket permis-
sion allowing any number of writes that do not change the ab-
stract post-recovery state. The UntrustedKvStoreImpl saves
this for repeated use throughout its lifetime, for recovery and
for all operations except commit. For commit operations, the
wrapper supplies a one-shot permission permitting transition-
ing from the on-abort state to the on-commit state.

The reuse of UntrustedKvStoreImpl demonstrates a de-
velopment advantage of using PoWER for systems with
coarse-grained concurrency like the two we describe here.
Nearly all the code, including all the complex mechanisms for
recovery and transactions, can be written within components
implementing a PoWER specification. As a result, most of the
time, developers only need to think about how to satisfy that
simple specification. They only have to devise atomic invari-
ants and reason about crash-consistent concurrency outside
of the component, in the relatively small wrappers.

5.1.3 Discussion

CAPYBARAKV is designed for a particular use case, storing
small keys, items, and list elements on a small amount (tens of
GiB) of dedicated PM, in a production cloud storage service.
In targeting this use case, we make several simplifying design
decisions that streamline both implementation and verification
but impose limitations on functionality.

CAPYBARAKV requires users to statically allocate storage
space and specify at initialization the maximum number and
size of keys, items, and list elements. It does not currently
support dynamic resizing and will waste space if the number
of records is smaller than initially specified. CAPYBARAKV
uses a volatile index that keeps all keys in memory, which
grows its memory footprint (especially if large keys are used)
and must be rebuilt each time the system is started.

5.2 CAPYBARANS
CAPYBARANS is a notary service similar to the verified
notary in Ironclad Apps [23]. It securely assigns logical time-
stamps to hashes so they can be conclusively ordered, and
stores its state on persistent storage. We build and verify it
in Dafny, with a trusted C# wrapper that provides external
methods for CRCs, cryptography, and serialization.

Its abstract state consists of a current logical timestamp (a
64-bit unsigned integer) and a last hash. Its interface has two
main operations: (1) Advance increments the timestamp and
updates the last hash. (2) Sign uses the service’s private key
to sign a binding between the last hash and the timestamp.
CAPYBARANS uses the CDB algorithm from §4.2 to atomi-
cally update its storage state during an Advance operation.

5.3 Persistent memory model
We have written a model of PM in Verus and Dafny and use
it to reason about potential crash states in CAPYBARAKV
and CAPYBARANS. This model uses the prophecy approach
described in §3.1 and represents a PM resource using two
sequences of bytes, a read state and a durable state. Our model
is consistent with a storage API implementation that provides
write and flush methods such that 8-byte chunks of a buffer
written with write may be reordered until the next flush call.
In our implementation, write calls a PMDK [30] function
that uses non-temporal stores or mov followed by clflushopt
or clwb, and flush performs an sfence.

There are two situations in which this model may overap-
proximate crash states. First, our model considers reorderings
that are impossible if the implementation uses the strongly-
ordered clflush instruction to flush cache lines. clflush
is less performant than the weakly-ordered instructions de-
scribed above, so typically PMDK will not use it. Even if
it does, the instructions PMDK uses for each write are not
known at verification time, so our model considers these re-
orderings to ensure it does not underapproximate crash states.

11



Trusted Spec+Proof Impl

CAPYBARAKV
PoWER framework 1698 1079 138
pmcopy crate 964 0 0
Journal 0 2234 611
Concurrency layer 1142 473 620
Sharding layer 395 265 332
KV store 1045 10204 3830
Total 5244 14255 5531

CAPYBARANS
PoWER framework 266 118 4
Notary server 148 555 274
Total 414 673 278

Table 2: Lines of code in each verified system

Second, our model considers states including those that
are only reachable by reordering 8-byte chunks on the same
cache line. Current Intel systems guarantee that such updates
will not be reordered by hardware, making some of these
crash states impossible in practice [55]. We choose the cur-
rent model because it is simpler and more portable than a
model that is tied to specific instructions or low-level hard-
ware guarantees. It also accounts for the possibility that the
compiler may reorder independent mov instructions.

We note that PoWER is not tied to any particular storage
model, so these overapproximations are not fundamental to
the technique. A developer could use a different model for
a system that always uses clflush and/or that never causes
reorderings on the same cache line.

6 Evaluation

This section addresses the following questions: How much ef-
fort does it take to build and verify a new system with PoWER
(§6.1)? How does CAPYBARAKV compare to similar, but
unverified, PM key-value stores (§6.2)?

6.1 Verification effort

Table 2 gives the number of lines of code in major components
of CAPYBARAKV and CAPYBARANS, organized into trusted
(i.e., unverified), specification/proof, and executable code. We
count the unverified pmcopy crate towards CAPYBARAKV’s
trusted code, but we do not count the lines of code it generates.
The CAPYBARAKV PoWER trusted line count also includes
a mock PM region using a byte vector and PM backends for
Windows and Linux. Both systems have a low proof-to-code
ratio (2.6 for CAPYBARAKV and 2.4 for CAPYBARANS).

Designing, implementing, and verifying CAPYBARAKV
took approximately 1.5 years of work by a team consisting

of both verification experts and newcomers. We built CAPY-
BARANS when CAPYBARAKV was mostly complete, so its
development benefitted from lessons learned when building
CAPYBARAKV. It took less than one person-hour to port the
PM specification to Dafny, about one hour to port the library
supporting reasoning about tentative and committing writes,
and about nine hours to implement and verify CAPYBARANS
in Dafny after writing its specification and C# wrapper.

Verification time. On one of our development machines
(Linux v6.9.3, Intel Core i7-11850H CPU, 8 physical cores,
32 GB memory), it takes 54 seconds to verify CAPYBARAKV
with 1 thread and 23 seconds with 8 threads. It takes 12 sec-
onds to verify CAPYBARANS with 1 thread; Dafny does not
support multi-threaded verification.

6.2 CAPYBARAKV performance

We evaluate CAPYBARAKV against three unverified PM key-
value stores: pmem-Redis [28], pmem-RocksDB [29], and
Viper [3]. CAPYBARAKV is the first verified PM KV store, so
we cannot compare to prior verified systems. VeriBetrKV [21],
the most similar verified system, is designed for block devices.

Experimental setup. We run experiments on a two-socket
machine with 32 physical cores, 128 GB memory, and one
128 GB Intel Optane DC PMM. The evaluation machine runs
Debian Trixie and Linux 6.12.10. We run the pmem-Redis
server and client on the same machine, enable its pointer-
based append-only file, and configure it to store the AOF and
all values on PM. We configure pmem-RocksDB to memory-
map files for reading and writing and to use non-temporal
stores when appending to its log. We set Viper to preallocate
enough space for each experiment that dynamic resizing does
not impact its performance. We use the sharded variant of
CAPYBARAKV for all experiments, with one shard per thread.

Microbenchmarks. Figure 2(a) gives the average latency of
various operations on items in the four evaluated KV stores
with both sequential and random access patterns. Figure 2(b)
gives the average latency of operations on lists in pmem-Redis
and CAPYBARAKV; the other systems do not support lists.

Each experiment uses 25M records with 64-byte keys,
1 KiB values, and 8-byte list elements. The list “append” ex-
periment appends a total of 16 list elements to all records,
accessing the records in a random order. The “read list” op-
eration returns the entire contents of the list as a vector, and
“trim” removes all elements from the list. All operations ex-
cept for list append are run once on each record.

Pmem-Redis has the highest latency on all operations due
to communication overhead between its client and server.
CAPYBARAKV achieves similar or better latency to pmem-
RocksDB on all measured operations primarily due to its
tiny (< 64 B) journal entries and its fast hash-map index.
Pmem-RocksDB spends more time appending larger entries
to its write-ahead log and managing its smaller but more

12



Seq
put

Seq
get

Seq
update

Seq
delete

Rand
put

Rand
get

Rand
update

Rand
delete

(a) Item operations

100

101

102

La
te

nc
y 

(u
s)

Append Len Read list Trim
(b) List operations

10−1

101

pmem-Redis pmem-RocksDB Viper CapybaraKV

Figure 2: Average operation latency in microseconds. Note the log scale. Error bars show 95% confidence intervals.

LoadA RunA RunB RunC RunD LoadE RunF LoadX RunX
(a) 1 thread

1
5

10
15
20
25
30
35

th
ro

ug
hp

ut
 re

la
tiv

e
 to

 p
m

em
-R

ed
is

12 13 18 19 19 12 10 15 14
LoadA RunA RunB RunC RunD LoadE RunF LoadX RunX

(b) 16 threads

1
5

10
15
20
25
30
35

59 62 99 10
8

11
3

59 50 85 75

pmem-Redis pmem-RocksDB Viper CapybaraKV

Figure 3: YCSB throughput relative to pmem-Redis. Numbers above pmem-Redis bars show absolute throughput in kops/s.

complicated in-memory MemTable and cache structures. Key
lookups in pmem-RocksDB involve searching the MemTable
and potentially multiple durable files.

CAPYBARAKV’s random get latency is approximately 2×
its sequential get latency in this microbenchmark because
sequential loads are faster than random loads on Optane
PM [31]. The sequential get workload runs on records that
were inserted sequentially, whereas random get accesses keys
that were inserted in a different random order.

Battery-backed DRAM. We also evaluate CAPYBARAKV
in a testing environment in Azure Storage running Windows
with 20 GiB battery-backed DRAM. We run the microbench-
marks shown in Figure 2(a) on CAPYBARAKV in this en-
vironment and find that operations are up to 2× faster on
battery-backed DRAM and follow similar performance pat-
terns. We are unable to evaluate the other systems in this
environment as they do not support Windows.

Macrobenchmark: YCSB. We also measure each system’s
performance on several workloads from the widely-used
YCSB benchmark suite [10]. CAPYBARAKV and Viper do
not currently support range queries, so we skip the YCSB
workload that includes them (RunE). Several workloads
(RunA and RunB) involve partial value updates, which these
systems also do not support, so we modify the workloads
to always update full values. We also introduce workload X,
which is based on a trace of traffic to a production service sim-
ilar to CAPYBARAKV at Azure Storage and consists of 75%
updates, 5% read-modify-write operations, and 20% reads
with a uniform access distribution. All YCSB workloads use
15M keys and are executed 5 times on each system. The
CAPYBARAKV instances in these experiments use 24-byte
keys and 1140-byte values, both structured as byte arrays.

Single-threaded performance. Figure 3(a) gives the av-

1 2 4 8 16
Thread count

1
2
3

Th
ro

ug
pu

t (
M

op
s/

s)
LoadA
RunA

RunB
RunC

RunD
RunF

LoadX
RunX

RunY
RunZ

Figure 4: Sharded CAPYBARAKV YCSB throughput with
different thread counts

erage throughput of each system using one thread relative
to pmem-Redis. CAPYBARAKV significantly outperforms
pmem-Redis and pmem-RocksDB and achieves similar per-
formance to Viper on these workloads. Pmem-Redis is un-
able to achieve high throughput on these operations due to
its high per-operation latency. Multiple factors contribute to
pmem-RocksDB’s lower performance: background threads
performing LSM tree compaction slow down client threads;
lookups and updates in its in-memory MemTable index take
longer than in Viper and CAPYBARAKV’s hash maps; pmem-
RocksDB uses per-block CRCs that take longer to compute
than CAPYBARAKV’s smaller per-structure CRCs; and, un-
like Viper and CAPYBARAKV, it logs all keys and values.

Viper and CAPYBARAKV achieve similar performance on
these workloads because they have similar architectures. Both
use in-memory hash map indexes and use simple durable
data structures. Viper also includes optimizations for running
concurrent workloads on interleaved PM, but our experiments
use a single non-interleaved NVDIMM.

Sharded performance. Figure 3(b) gives average through-
put using 16 threads (the number of physical cores in each

13



Startup time Utilization (GiB)
Empty Full Memory Storage

pmem-Redis 142 ms - 12.3 22
pmem-RocksDB 9 ms 7 ms 2.0 17
Viper 9 s 75 s 1.1 23
CAPYBARAKV 7 s 53 s 2.8 18

Table 3: Startup times and memory and storage utilization on
YCSB LoadA on 128 GiB Optane PM

NUMA node on our test machine) and 16 CAPYBARAKV
shards. Each record is placed in a shard based on a hash of its
key, which results in a roughly uniform distribution. We do
not shard the other three systems in this experiment, as they al-
ready support multiple concurrent clients. Figure 3(b) shows
that with our simple sharding protocol, CAPYBARAKV out-
performs the other systems on concurrent workloads includ-
ing, suprisingly, Viper. CAPYBARAKV uses coarser-grained
concurrency control with lower overhead than Viper. We also
find that Viper’s performance in these workloads is impacted
by the use of semaphores in its in-memory hash map imple-
mentation, CCEH [49]. CCEH protects hash buckets using
per-bucket semaphores, and we observe via traces collected
using magic-trace [27] that using these semaphores becomes
slower with more workload threads (nearly doubling when
going from 1 to 16 threads). CAPYBARAKV uses Rust’s
standard library RwLock, which does not have this issue.

Figure 4 gives average throughput of CAPYBARAKV on
each YCSB workload with different thread counts. We omit
LoadE for readability and because it has the same perfor-
mance as LoadA. We introduce two new workloads, Y (50%
reads, 50% updates) and Z (5% reads, 95% updates), which
both use a hotspot access distribution where 90% of the op-
erations access 10% of the records. Read-heavy workloads
(Runs B, C, and D) scale well because the per-shard locks
allow concurrent reads. The more write-heavy workloads ex-
perience more lock contention and do not scale as well. Since
our sharding policy evenly distributes keys across shards, Y
and Z perform similarly to the non-hotspot workloads.

Startup times. Table 3 compares how long it takes for each
key-value store to start up on both an empty instance and a
completely full instance on a 128 GiB PM device. To measure
full startup times, we insert records with 64-byte keys and
1 KiB values into each system until it returns an out-of-space
error, then repeatedly start each system on those records. At-
tempting to start the pmem-Redis server on a full instance fails
with a memory allocation error. CAPYBARAKV and Viper
take much longer to start on both empty and full systems than
pmem-Redis or pmem-RocksDB because they need to initial-
ize or reconstruct their in-memory data structures. Viper takes
longer than CAPYBARAKV because it memory-maps more
files and hashes each key before inserting it into the index.

Memory and storage utilization. Table 3 also reports DRAM

and PM utilization in YCSB’s LoadA workload. We use the
same configurations as before for all systems but Viper, which
starts with a 1 GiB pool and grows as keys are added. CAPY-
BARAKV uses more memory than pmem-RocksDB because
it maintains all keys in DRAM. Viper only keeps hashes of
keys in DRAM, which reduces its memory footprint. Pmem-
Redis also keeps all keys in DRAM, but has high per-key
overhead (almost 700 bytes as reported by the server).

18 GiB is the minimum space required by CAPYBARAKV
to store these records; note that unlike the other systems,
this CAPYBARAKV instance cannot grow any further. In an
optimally-provisioned instance, CAPYBARAKV has low stor-
age space overheads due to its simple durable layout and
does not use much more storage than pmem-RocksDB. Viper
uses more storage space because it checkpoints some system
metadata for use in crash recovery. To achieve durability guar-
antees similar to the other systems, we configure pmem-Redis
to store mappings from keys to durable values as well as the
values themselves, which adds additional storage overhead.

7 Conclusion

This paper presents new techniques for proving crash con-
sistency and corruption detection in storage systems. We
introduce PoWER, a way to prove that a system is crash con-
sistent using only basic verifier features like Hoare logic,
and a new model of storage corruption that forces devel-
opers to properly perform corruption detection while giv-
ing them flexibility in how to do so. We develop a new
primitive, the corruption-detecting Boolean, and show how
to use it to implement a novel algorithm for atomic up-
dates to PM data structures. To demonstrate that our ap-
proach is useful and tool-agnostic, we build two verified
PM storage systems, CAPYBARAKV in Verus and CAPY-
BARANS in Dafny. We evaluate CAPYBARAKV and find
that its performance is competitive with unverified PM KV
stores. CAPYBARAKV and CAPYBARANS are available at
https://github.com/microsoft/verified-storage.

Acknowledgments

We would like to express our great appreciation to our anony-
mous shepherd and reviewers for their helpful feedback on
the paper. Their disappointment with a lack of concurrency
support moved us to devise, implement, and verify concur-
rency mechanisms, which we feel have substantially improved
the work. We are also grateful to Tej Chajed, Travis Hance,
Jon Howell, Jialin Li, Bryan Parno, Upamanyu Sharma, and
Joseph Tassarotti, with whom we had useful conversations
about the work and its relation to Perennial and VeriBetrKV.
Hayley LeBlanc and Vijay Chidambaram were partially
funded by donations from Toyota.

14

https://github.com/microsoft/verified-storage


A Artifact Appendix

Abstract
The artifact for this paper includes the source code for CAPY-
BARAKV and CAPYBARANS and proofs of correspondence
between PoWER and other crash-consistency verification
techniques. It also includes instructions and code to run the
experiments described in §6 and generate the corresponding
tables and graphs.

Scope
The artifact can be used to validate all of the main claims of
the paper. Specifically, it validates the following claims:

1. CAPYBARAKV and CAPYBARANS are correct, crash
consistent, and corruption resistant, and can be verified
using Verus and Dafny, respectively;

2. CAPYBARAKV and CAPYBARANS have low proof-to-
code ratios and can be verified quickly;

3. CAPYBARAKV achieves competitive performance com-
pared to state-of-the-art unverified PM key-value stores.

Contents
The artifact has three main parts:

1. The source code for CAPYBARANS and instructions on
how to build, verify, and run it. This part also includes
information on how to manually audit CAPYBARANS’s
specification.

2. The source code for CAPYBARAKV and for the three
unverified systems we compare against, and scripts to
compile these systems and to verify CAPYBARAKV. It
also includes instructions and scripts to run the experi-
ments and produce the figures and tables in §6, as well
as information on how manually audit CAPYBARAKV’s
specification.

3. Soundness proofs in Verus and Perennial that establish
the correspondence between PoWER and CHL/crash
invariants, and information on how to understand the
proofs and verify that they hold. It does not include the
formalization of the soundness proof in Perennial, but
describes how to find that formalization in the Perennial
repository and how to check it.

Hosting
The artifact is hosted publicly on GitHub at
https://github.com/microsoft/verified-storage/
tree/osdi25-artifact/osdi25 and on Zenodo at
https://doi.org/10.5281/zenodo.15306499. The Zenodo

artifact and the osdi25 directory in the osdi25-artifact
branch on GitHub have the same contents and contain the
version of the artifact used during the artifact-evaluation
process.

Requirements

Verifying and compiling CAPYBARAKV, CAPYBARANS,
and the soundness proofs requires no special hardware and
should work on most platforms. The CAPYBARAKV perfor-
mance experiments are only compatible with Linux platforms,
as the unverified systems we compare against only support
Linux. The experiments are compatible with both real Intel
Optane DC PMM hardware and emulated PM on DRAM;
however, at least 128 GB of Intel Optane DC persistent mem-
ory is required to reproduce the results presented in the paper.
To reproduce the results in the paper, we also recommend at
least 128 GB of DRAM and at least 32 cores. The README
files included in each part of the artifact describe specific
requirements and recommendations in more detail.

A.1 Installation

To install the artifact, either clone the GitHub repository and
check out the osdi25-artifact branch, or download and
unzip the Zenodo artifact. Follow the setup instructions in
osdi25/capybaraNS/README.md to install dependencies for
CAPYBARANS. Follow the setup instructions in osdi25/
capybaraKV/README.md to run a script that will install depen-
dencies for CAPYBARAKV and build the systems used in per-
formance experiments. Checking the proof of correspondence
between PoWER and crash invariants is done automatically
when verifying CAPYBARAKV (see below). The proof of
correspondence between PoWER and Crash Hoare Logic is
part of Perennial’s source code and can be checked by build-
ing Perennial; see osdi25/soundness_proofs/README.md
for instructions.

We include several “mini” versions of the full performance
experiments described in §6 that take about 15 minutes to
run. We suggest running these experiments after setting up
CAPYBARAKV to check for issues before starting the longer-
running experiments.

A.2 Experiment workflow

The files osdi25/capybaraNS/README.md and osdi25/
capybaraKV/README.md describe the workflow to compile
and verify each system, obtain line counts, manually audit
their specifications, run performance experiments, and vali-
date the claims made in the paper.

15

https://github.com/microsoft/verified-storage/tree/osdi25-artifact/osdi25
https://github.com/microsoft/verified-storage/tree/osdi25-artifact/osdi25
https://doi.org/10.5281/zenodo.15306499


A.3 Expected results
CAPYBARAKV, CAPYBARANS, and the soundness proofs
are expected to verify successfully using their respective ver-
ification tools. The time it takes to verify each system can
vary significantly depending on the hardware being used; see
each system’s README file for more information on ex-
pected verification times. In general, we expect that verifying
CAPYBARANS will take under a minute, and verifying CAPY-
BARAKV will take one to two minutes with one thread and
between 15 and 40 seconds with 8 threads. We expect the
lines of code outputted by the provided line-counting tools to
exactly match those in Table 2.

When run in an environment similar to the experimental
setup described in §6, we expect the PDFs and tables gener-
ated by scripts described in osdi25/capybaraKV/README.md
to look similar to those presented in the paper. The default
experiments provided by the artifact are smaller than those
used in the paper, so we expect some variation in data col-
lected from the artifact. Using different hardware (e.g., em-
ulated PM or a smaller PM device) may result in notice-
ably different results. We describe expected differences in
osdi25/capybaraKV/README.md.

References

[1] Sidney Amani, Alex Hixon, Zilin Chen, Christine
Rizkallah, Peter Chubb, Liam O’Connor, Joel Beeren,
Yutaka Nagashima, Japheth Lim, Thomas Sewell,
Joseph Tuong, Gabriele Keller, Toby Murray, Gerwin
Klein, and Gernot Heiser. Cogent: Verifying high-
assurance file system implementations. In Proceedings
of the ACM International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), pages 175–188, April 2016.

[2] Piotr Balcer. Exploring the Software Ecosys-
tem for Compute Express Link (CXL) Memory.
https://pmem.io/blog/2023/05/exploring-the-
software-ecosystem-for-compute-express-
link-cxl-memory/, May 2023.

[3] Lawrence Benson, Hendrik Makait, and Tilmann Rabl.
Viper: An efficient hybrid PMem-DRAM key-value
store. Proceedings of the VLDB Endowment,
14(9):1544–1556, May 2021.

[4] BetrFS Developers. Checksumming.
https://btrfs.readthedocs.io/en/latest/
Checksumming.html, 2024.

[5] Can Cebeci, Yonghao Zou, Diyu Zhou, George Can-
dea, and Clément Pit-Claudel. Practical verification
of system-software components written in standard C.
In Proceedings of the ACM Symposium on Operating

Systems Principles (SOSP), pages 455–472, November
2024.

[6] Tej Chajed, Joseph Tassarotti, M. Frans Kaashoek, and
Nickolai Zeldovich. Verifying concurrent, crash-safe
systems with Perennial. In Proceedings of the ACM
Symposium on Operating Systems Principles (SOSP),
pages 243–258, 2019.

[7] Tej Chajed, Joseph Tassarotti, Mark Theng, Ralf Jung,
M. Frans Kaashoek, and Nickolai Zeldovich. GoJournal:
A verified, concurrent, crash-safe journaling system. In
Proceedings of the USENIX Symposium on Operating
Systems Design and Implementation (OSDI), pages 423–
439, July 2021.

[8] Tej Chajed, Joseph Tassarotti, Mark Theng, M. Frans
Kaashoek, and Nickolai Zeldovich. Verifying the
DaisyNFS concurrent and crash-safe file system with
sequential reasoning. In Proceedings of the USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI), pages 447–463, Carlsbad, CA, July
2022. USENIX Association.

[9] Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chli-
pala, M. Frans Kaashoek, and Nickolai Zeldovich. Using
Crash Hoare logic for certifying the FSCQ file system.
In Proceedings of the ACM Symposium on Operating
Systems Principles (SOSP), pages 18–37, October 2015.

[10] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking cloud
serving systems with YCSB. In Proceedings of the
ACM Symposium on Cloud Computing (SOCC), pages
143–154, June 2010.

[11] Coq Development Team. The Coq Proof Assis-
tant. https://doi.org/10.5281/zenodo.8161141,
June 2023.

[12] crc64fast Developers. crc64fast. https://crates.io/
crates/crc64fast, 2024.

[13] Xavier Denis, Jacques-Henri Jourdan, and Claude
Marché. Creusot: A foundry for the deductive veri-
fication of Rust programs. In Proceedings of the Inter-
national Conference on Formal Engineering Methods
(ICFEM), pages 90–105, October 2022.

[14] Bang Di, Jiawen Liu, Hao Chen, and Dong Li. Fast,
flexible, and comprehensive bug detection for persistent
memory programs. In Proceedings of the ACM Interna-
tional Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS),
pages 503–516, April 2021.

[15] Everspin Technologies, Inc. Spin-transfer Torque
MRAM Technology. https://www.everspin.com/
spin-transfer-torque-mram-technology.

16

https://pmem.io/blog/2023/05/exploring-the-software-ecosystem-for-compute-express-link-cxl-memory/
https://pmem.io/blog/2023/05/exploring-the-software-ecosystem-for-compute-express-link-cxl-memory/
https://pmem.io/blog/2023/05/exploring-the-software-ecosystem-for-compute-express-link-cxl-memory/
https://btrfs.readthedocs.io/en/latest/Checksumming.html
https://btrfs.readthedocs.io/en/latest/Checksumming.html
https://doi.org/10.5281/zenodo.8161141
https://crates.io/crates/crc64fast
https://crates.io/crates/crc64fast
https://www.everspin.com/spin-transfer-torque-mram-technology
https://www.everspin.com/spin-transfer-torque-mram-technology


[16] ext4 Developers. ext4 Data Structures and Algo-
rithms. https://docs.kernel.org/filesystems/
ext4/, 2024.

[17] Robert W. Floyd. Assigning meanings to programs. In
Proceedings of the Symposium on Applied Mathematics,
pages 19–32, 1967.

[18] Xinwei Fu, Wook-Hee Kim, Ajay Paddayuru Shreepathi,
Mohannad Ismail, Sunny Wadkar, Dongyoon Lee, and
Changwoo Min. Witcher: Systematic crash consistency
testing for non-volatile memory key-value stores. In Pro-
ceedings of the ACM Symposium on Operating Systems
Principles (SOSP), pages 100–115, October 2021.

[19] João Gonçalves, Miguel Matos, and Rodrigo Rodrigues.
Mumak: Efficient and black-box bug detection for per-
sistent memory. In Proceedings of the European Confer-
ence on Computer Systems (EuroSys), pages 734–750,
May 2023.

[20] Hamed Gorjiara, Guoqing Harry Xu, and Brian Demsky.
Jaaru: Efficiently model checking persistent memory
programs. In Proceedings of the ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages
415–428, April 2021.

[21] Travis Hance, Andrea Lattuada, Chris Hawblitzel, Jon
Howell, Rob Johnson, and Bryan Parno. Storage systems
are distributed systems (so verify them that way!). In
Proceedings of the USENIX Conference on Operating
Systems Design and Implementation (OSDI), pages 99–
115, November 2020.

[22] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Ja-
cob R. Lorch, Bryan Parno, Michael L. Roberts, Srinath
Setty, and Brian Zill. IronFleet: Proving practical dis-
tributed systems correct. In Proceedings of the ACM
Symposium on Operating Systems Principles (SOSP),
pages 1–17, October 2015.

[23] Chris Hawblitzel, Jon Howell, Jacob R. Lorch, Arjun
Narayan, Bryan Parno, Danfeng Zhang, and Brian Zill.
Ironclad Apps: End-to-end security via automated full-
system verification. In Proceedings of the USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI), pages 165–181, October 2014.

[24] Hewlett Packard Enterprise. HPE Persistent Memory.
https://www.hpe.com/us/en/servers/persistent-
memory.html.

[25] C. A. R. Hoare. An axiomatic basis for computer pro-
gramming. Communications of the ACM, 12(10):576–
580, October 1969.

[26] Morteza Hoseinzadeh and Steven Swanson. Corun-
dum: Statically-enforced persistent memory safety. In
Proceedings of the ACM International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 429–442, April
2021.

[27] Tristan Hume. magic-trace. https://github.com/
janestreet/magic-trace, 2024.

[28] Intel. Pmem-Redis. https://github.com/pmem/pmem-
redis.

[29] Intel. Pmem-RocksDB. https://github.com/pmem/
pmem-rocksdb.

[30] Intel Corporation. Persistent Memory Development Kit.
https://pmem.io/pmdk/.

[31] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao
Liu, Amir Saman Memaripour, Yun Joon Soh, Zixuan
Wang, Yi Xu, Subramanya R. Dulloor, Jishen Zhao, and
Steven Swanson. Basic performance measurements of
the Intel Optane DC persistent memory module. arXiv,
abs/1903.05714, August 2019.

[32] Bart Jacobs and Frank Piessens. Expressive modular
fine-grained concurrency specification. In Proceedings
of the 38th ACM Symposium on Principles of Program-
ming Languages (POPL), pages 271–282, January 2011.

[33] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan,
Ales̆ Bizjak, Lars Birkedal, and Derek Dreyer. Iris from
the ground up: A modular foundation for higher-order
concurrent separation logic. Journal of Functional Pro-
gramming, 28(20):1–73, November 2018.

[34] Ralf Jung, Rodolphe Lepigre, Gaurav Parthasarathy,
Marianna Rapoport, Amin Timany, Derek Dreyer, and
Bart Jacobs. The future is ours: prophecy variables in
separation logic. In Proceedings of the ACM SIGPLAN
Symposium on Principles of Programming Languages
(POPL), pages 45:1–32, January 2020.

[35] Samuel Kalbfleisch, Lukas Werling, and Frank Bellosa.
Vinter: Automatic non-volatile memory crash consis-
tency testing for full systems. In Proceedings of the
USENIX Annual Technical Conference (ATC), pages
933–950, July 2022.

[36] Seulbae Kim, Meng Xu, Sanidhya Kashyap, Jungyeon
Yoon, Wen Xu, and Taesoo Kim. Finding semantic bugs
in file systems with an extensible fuzzing framework.
In Proceedings of the ACM Symposium on Operating
Systems Principles (SOSP), pages 147–161, October
2019.

17

https://docs.kernel.org/filesystems/ext4/
https://docs.kernel.org/filesystems/ext4/
https://www.hpe.com/us/en/servers/persistent-memory.html
https://www.hpe.com/us/en/servers/persistent-memory.html
https://github.com/janestreet/magic-trace
https://github.com/janestreet/magic-trace
https://github.com/pmem/pmem-redis
https://github.com/pmem/pmem-redis
https://github.com/pmem/pmem-rocksdb
https://github.com/pmem/pmem-rocksdb
https://pmem.io/pmdk/


[37] KIOXIA America, Inc. XL-Flash. https:
//americas.kioxia.com/en-us/business/memory/
xlflash.html, 2024.

[38] Gerwin Klein, June Andronick, Kevin Elphinstone, Toby
Murray, Thomas Sewell, Rafal Kolanski, and Gernot
Heiser. Comprehensive formal verification of an OS
microkernel. ACM Transactions on Computer Systems
(TOCS), 32(1):1–70, February 2014.

[39] Philip Koopman. CRC Polynomial Zoo. https:
//users.ece.cmu.edu/~koopman/crc/crc64.html,
November 2019.

[40] Greg Kramer. Direct Drive - Azure’s
Next-generation Block Storage Architecture.
https://www.sniadeveloper.org/events/agenda/
session/347, 2022. SNIA Developer Conference.

[41] Leslie Lamport. The temporal logic of actions. ACM
Transactions on Programming Languages and Systems
(TOPLAS), 16(3):872–923, May 1994.

[42] Leslie Lamport and Stephan Merz. Prophecy made
simple. ACM Transactions on Programming Languages
and Systems (TOPLAS), 44(2):1–27, April 2022.

[43] Andrea Lattuada, Travis Hance, Jay Bosamiya, Matthias
Brun, Chanhee Cho, Hayley LeBlanc, Pranav Srinivasan,
Reto Achermann, Tej Chajed, Chris Hawblitzel, Jon
Howell, Jacob R. Lorch, Oded Padon, and Bryan Parno.
Verus: A practical foundation for systems verification.
In Proceedings of the ACM Symposium on Operating
Systems Principles (SOSP), pages 438–454, November
2024.

[44] Hayley LeBlanc, Shankara Pailoor, Om Saran K R E,
Isil Dillig, James Bornholt, and Vijay Chidambaram.
Chipmunk: Investigating crash-consistency in persistent-
memory file systems. In Proceedings of the European
Conference on Computer Systems (EuroSys), pages 718–
733, May 2023.

[45] K. Rustan M. Leino. Dafny: An automatic program
verifier for functional correctness. In Proceedings of the
International Conference on Logic for Programming, Ar-
tificial Intelligence, and Reasoning (LPAR), pages 348–
370, April 2010.

[46] Sihang Liu, Korakit Seemakhupt, Yizhou Wei, Thomas
Wenisch, Aasheesh Kolli, and Samira Khan. Cross-
failure bug detection in persistent memory programs.
In Proceedings of the ACM International Conference
on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), pages 1187–1202,
March 2020.

[47] Sihang Liu, Yizhou Wei, Jishen Zhao, Aasheesh Kolli,
and Samira Khan. PMTest: A fast and flexible testing
framework for persistent memory programs. In Pro-
ceedings of the ACM International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 411–425, April
2019.

[48] Jayashree Mohan, Ashlie Martinez, Soujanya Ponna-
palli, Pandian Raju, and Vijay Chidambaram. Crash-
Monkey and ACE: Systematically testing file-system
crash consistency. ACM Transactions on Storage,
15(2):1–34, April 2019.

[49] Moohyeon Nam, Hokeun Cha, Young-ri Choi, Sam H.
Noh, and Beomseok Nam. Write-optimized dynamic
hashing for persistent memory. In Proceedings of the
USENIX Conference on File and Storage Technologies
(FAST), pages 31–44, February 2019.

[50] Ian Neal, Ben Reeves, Ben Stoler, Andrew Quinn,
Youngjin Kwon, Simon Peter, and Baris Kasikci. AG-
AMOTTO: How persistent is your persistent memory
application? In Proceedings of the USENIX Confer-
ence on Operating Systems Design and Implementation
(OSDI), pages 1047–1064, November 2020.

[51] Luke Nelson, Helgi Sigurbjarnarson, Kaiyuan Zhang,
Dylan Johnson, James Bornholt, Emina Torlak, and
Xi Wang. Hyperkernel: Push-button verification of an
OS kernel. In Proceedings of the ACM Symposium on
Operating Systems Principles (SOSP), pages 252–269,
October 2017.

[52] Thanumalayan Sankaranarayana Pillai, Vijay Chi-
dambaram, Ramnatthan Alagappan, Samer Al-Kiswany,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. All file systems are not created equal: On
the complexity of crafting crash-consistent applications.
In Proceedings of the USENIX Symposium on Operat-
ing Systems Design and Implementation (OSDI), pages
433–448, October 2014.

[53] John C. Reynolds. Separation logic: A logic for shared
mutable data structures. In Proceedings of the IEEE
Symposium on Logic in Computer Science (LICS), pages
55–74, July 2002.

[54] Andy Rudoff. Persistent memory programming. ;login:,
42(2):34–40, 2017.

[55] Andy Rudoff. Re: 8 byte atomicity & larger store oper-
ations. https://groups.google.com/u/1/g/pmem/c/
6_5daOuEI00/m/nY_mtKd0CAAJ, October 2020.

[56] Rust Developers. Type Layout. https://doc.rust-
lang.org/reference/type-layout.html, 2024.

18

https://americas.kioxia.com/en-us/business/memory/xlflash.html
https://americas.kioxia.com/en-us/business/memory/xlflash.html
https://americas.kioxia.com/en-us/business/memory/xlflash.html
https://users.ece.cmu.edu/~koopman/crc/crc64.html
https://users.ece.cmu.edu/~koopman/crc/crc64.html
https://www.sniadeveloper.org/events/agenda/session/347
https://www.sniadeveloper.org/events/agenda/session/347
https://groups.google.com/u/1/g/pmem/c/6_5daOuEI00/m/nY_mtKd0CAAJ
https://groups.google.com/u/1/g/pmem/c/6_5daOuEI00/m/nY_mtKd0CAAJ
https://doc.rust-lang.org/reference/type-layout.html
https://doc.rust-lang.org/reference/type-layout.html


[57] Helgi Sigurbjarnarson, James Bornholt, Emina Torlak,
and Xi Wang. Push-button verification of file systems
via crash refinement. In Proceedings of the USENIX
Conference on Operating Systems Design and Imple-
mentation (OSDI), pages 1–16, November 2016.

[58] Gopalan Sivathanu, Charles P. Wright, and Erez Zadok.
Ensuring data integrity in storage: techniques and appli-
cations. In Proceedings of the ACM Workshop on Stor-
age Security and Survivability, pages 26–36, November
2005.

[59] Xudong Sun, Wenjie Ma, Jiawei Tyler Gu, Zicheng Ma,
Tej Chajed, Jon Howell, Andrea Lattuada, Oded Padon,
Lalith Suresh, Adriana Szekeres, and Tianyin Xu. Anvil:
verifying liveness of cluster management controllers. In
Proceedings of the USENIX Conference on Operating
Systems Design and Implementation (OSDI), pages 649–
666, July 2024.

[60] Kasper Svendsen, Lars Birkedal, and Matthew J. Parkin-
son. Modular reasoning about separation of concurrent
data structures. In Proceedings of the 22nd European
Symposium on Programming (ESOP), pages 169–188,
Rome, Italy, March 2013.

[61] Joseph Tassarotti et al. Perennial asyn-
chronous disk prophecy equivalence proof.
https://github.com/mit-pdos/perennial/blob/
master/src/goose_lang/ffi/async_disk_equiv.v,
November 2021.

[62] Joseph Tassarotti et al. Perennial asynchronous disk
prophecy model. https://github.com/mit-pdos/
perennial/blob/master/src/goose_lang/ffi/
async_disk_proph.v, November 2021.

[63] Tom’s Hardware. Samsung’s Memory-Semantic
CXL SSD Brings a 20X Performance Up-
lift. https://www.tomshardware.com/news/
samsung-memory-semantic-cxl-ssd-brings-
20x-performance-uplift, August 2022.

[64] Doug Voigt. Persistent memory atomics and trans-
actions. https://www.snia.org/educational-
library/persistent-memory-atomics-and-
transactions-2017, October 2017.

[65] Fabian Wolff, Aurel Bílý, Christoph Matheja, Peter
Müller, and Alexander J. Summers. Modular specifica-
tion and verification of closures in Rust. In Proceedings
of the ACM Conference on Object Oriented Program-
ming Systems Languages and Applications (OOPSLA),
pages 1–29, October 2021.

[66] XFS Developers. XFS Self Describing
Metadata. https://www.kernel.org/doc/

Documentation/filesystems/xfs-self-
describing-metadata.txt, 2024.

[67] Jian Xu, Lu Zhang, Amirsaman Memaripour, Akshatha
Gangadharaiah, Amit Borase, Tamires Brito Da Silva,
Steven Swanson, and Andy Rudoff. NOVA-Fortis: A
fault-tolerant non-volatile main memory file system. In
Proceedings of the ACM Symposium on Operating Sys-
tems Principles (SOSP), pages 478–496, October 2017.

[68] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph
Izraelevitz, and Steven Swanson. An empirical guide
to the behavior and use of scalable persistent memory.
In Proceedings of the USENIX Conference on File and
Storage Technologies (FAST), pages 169–182, February
2020.

[69] Junfeng Yang, Paul Twohey, Dawson Engler, and Madan-
lal Musuvathi. Using model checking to find serious file
system errors. In Proceedings of the USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI), pages 273–287, December 2004.

19

https://github.com/mit-pdos/perennial/blob/master/src/goose_lang/ffi/async_disk_equiv.v
https://github.com/mit-pdos/perennial/blob/master/src/goose_lang/ffi/async_disk_equiv.v
https://github.com/mit-pdos/perennial/blob/master/src/goose_lang/ffi/async_disk_proph.v
https://github.com/mit-pdos/perennial/blob/master/src/goose_lang/ffi/async_disk_proph.v
https://github.com/mit-pdos/perennial/blob/master/src/goose_lang/ffi/async_disk_proph.v
https://www.tomshardware.com/news/samsung-memory-semantic-cxl-ssd-brings-20x-performance-uplift
https://www.tomshardware.com/news/samsung-memory-semantic-cxl-ssd-brings-20x-performance-uplift
https://www.tomshardware.com/news/samsung-memory-semantic-cxl-ssd-brings-20x-performance-uplift
https://www.snia.org/educational-library/persistent-memory-atomics-and-transactions-2017
https://www.snia.org/educational-library/persistent-memory-atomics-and-transactions-2017
https://www.snia.org/educational-library/persistent-memory-atomics-and-transactions-2017
https://www.kernel.org/doc/Documentation/filesystems/xfs-self-describing-metadata.txt
https://www.kernel.org/doc/Documentation/filesystems/xfs-self-describing-metadata.txt
https://www.kernel.org/doc/Documentation/filesystems/xfs-self-describing-metadata.txt

	Introduction
	Background and related work
	Identification of storage system bugs
	Formal verification of crash consistency
	Formal verification of corruption detection

	Verifying crash consistency using PoWER
	PoWER
	Correspondence to other approaches
	Strategies for satisfying preconditions
	Extending PoWER to concurrent contexts

	Provably detecting corruption
	Modeling media corruption
	Checking for PM corruption

	Verified systems
	CapybaraKV
	Safe reads and writes
	Concurrent variants
	Discussion

	CapybaraNS
	Persistent memory model

	Evaluation
	Verification effort
	CapybaraKV performance

	Conclusion
	Artifact Appendix
	Installation
	Experiment workflow
	Expected results


