
CPHASH: A Cache-Partitioned Hash Table

Zviad Metreveli
Dropbox / MIT CSAIL

Nickolai Zeldovich
MIT CSAIL

M. Frans Kaashoek
MIT CSAIL

Abstract
CPHASH is a concurrent hash table for multicore processors.
CPHASH partitions its table across the caches of cores and uses mes-
sage passing to transfer lookups/inserts to a partition. CPHASH’s
message passing avoids the need for locks, pipelines batches of
asynchronous messages, and packs multiple messages into a sin-
gle cache line transfer. Experiments on a 80-core machine with 2
hardware threads per core show that CPHASH has ∼ 1.6× higher
throughput than a hash table implemented using fine-grained locks.
An analysis shows that CPHASH wins because it experiences fewer
cache misses and its cache misses are less expensive, because of less
contention for the on-chip interconnect and DRAM. CPSERVER,
a key/value cache server using CPHASH, achieves ∼ 5% higher
throughput than a key/value cache server that uses a hash table with
fine-grained locks, but both achieve better throughput and scalability
than MEMCACHED. The throughput of CPHASH and CPSERVER
also scale near-linearly with the number of cores.

Categories and Subject Descriptors D.1.3 [Programming tech-
niques]: Concurrent programming—Parallel programming

General Terms Design, Performance

1. Introduction
Hash tables are heavily used data structures in servers. This paper
focuses on fixed-size hash tables that support eviction of its elements
using a Least Recently Used (LRU) list. Such hash tables are a good
way to implement a key/value cache. A popular distributed appli-
cation that uses a key/value cache is MEMCACHED. MEMCACHED
is an in-memory cache for Web applications that store data, page
rendering results, and other information that can be cached and is
expensive to recalculate. As the number of cores in server machines
increases, it is important to understand how to design hash tables
that can perform and scale well on multi-core machines.

This paper explores designing and implementing a scalable hash
table by minimizing cache movement. In a multi-core processor,
each core has its own cache and perhaps a few caches shared by
adjacent cores. The cache-coherence protocol transfers cache lines
between caches to ensure memory coherence. Fetching lines from
memory or from other cores’ caches is expensive, varying from one
order to two order of magnitude in latency, compared to an L1 fetch.
If several cores in turn acquire a lock that protects a data item, and
then update the data item, the cache hardware may send several
hardware messages to move the lock, the data item, and to invalidate
cached copies. If the computation on a data item is small, it may
be less expensive to send a software message to a core which is
responsible for the data item, and to perform the computation at the
responsible core. This approach will result in cache-line transfers
from the source core to the destination core to transfer the software

Copyright is held by the author/owner(s).
PPoPP’12, February 25–29, 2012, New Orleans, Louisiana, USA.
ACM 978-1-4503-1160-1/12/02.

message, but no cache-line transfers for the lock, the data, and
potentially fewer hardware invalidation messages.

To understand when this message-passing approach might be
beneficial in the context of multicore machines, this paper introduces
a new hash table, which we call CPHASH. Instead of having
each core access any part of a hash table, CPHASH partitions
the hash table into partitions and assign a partition to the L1/L2
cache of a particular core. CPHASH uses message passing to
pass the lookup/insert operation to the core that is assigned the
partition needed for that particular operation, instead of running the
lookup/insert operation locally and fetching the hash table entry and
the lock that protects that entry. CPHASH uses an asynchronous
message passing protocol, allowing CPHASH to batch messages.
Batching increases parallelism: when a server is busy, a client can
continue computing and add messages to a batch. Furthermore,
batching allows packing multiple messages in a single cache line,
which reduce the number of cache lines transferred.

To evaluate CPHASH we implemented it on a 80-core Intel
machine with 2 hardware threads per core. The implementation
uses 80 hardware threads that serve hash-table operations and 80
hardware threads that issue operations. For comparison, we also
implemented an optimized hash table with fine-grained locking,
which we call LOCKHASH. LOCKHASH uses 160 hardware threads
that perform hash-table operations on a 4,096-way partitioned hash
tables to avoid lock contention. The 80 CPHASH server threads
achieve 1.6× higher throughput than the 160 LOCKHASH hardware
threads. The better performance is because CPHASH experiences
1.5 fewer L3 caches misses per operation and the 3.1 L3 misses that
CPHASH experiences are less expensive. This is because CPHASH
has no locks and has better locality, which reduce the contention for
the interconnect and DRAM. CPHASH’s design also allows it to
scale near-linearly to more cores than LOCKHASH.

The follow sections summarize the design and provide one key
performance result. For the interested reader, our technical report [1]
provides more detail on CPHASH, as well as a detailed breakdown
of its performance.

2. CPHASH Design
CPHASH splits a hash table into several independent parts, which
we call partitions. CPHASH uses a simple hash function to assign
each possible key to a partition. Each partition has a designated
server thread that is responsible for all operations on keys that
belong to it. CPHASH pins each server thread to its hardware
thread. Applications use CPHASH by having client threads send
operations to server threads using message passing (via shared
memory). Server threads return results to the client threads also
using message passing.

2.1 Partitions
Every partition in CPHASH is a separate hash table. Each partition
consists of a bucket array, where each bucket is a linked list of hash
table elements. Each partition also has an LRU linked list that holds
hash table elements in the least recently used order. CPHASH uses
the LRU list to determine which elements to evict from a partition
when there is not enough space left to insert new elements.



Each hash table element consists of two parts: a header, which
fits in a single cache line and is typically stored in the server thread’s
cache, and the value, which fits in zero or more cache lines following
the header, and is directly accessed by client threads, thereby loading
it into client thread caches. The header consists of the key, the
reference count, the size of the value (in bytes), and doubly-linked-
list pointers for the bucket and for the LRU list to allow eviction.

The ideal size for a partition is such that a partition can fit in
the L1/L2 cache of a core, with some overflow into its shared L3
cache. On our test machine with 80 cores, hash table sizes up to
about 80×256KB+8×30MB = 260MB see the best performance
improvement, at which point CPHASH starts being limited by
DRAM performance.

2.2 Server Threads
CPHASH server threads support two types of operations: Lookup
and Insert. In the case of a Lookup, the message contains the
requested key. If a key/value pair with the given key is found in the
partition, then the server thread updates the head of the partition’s
LRU list and return the pointer to the value to the client thread;
otherwise, the server returns a null pointer.

Performing an Insert operation is slightly more complicated,
because memory must be allocated for the value, and the value must
be copied into the allocated memory. It is convenient to allocate
memory in the server thread, since each server is responsible for a
single partition, and can use a standard memory allocator. However,
copying the actual data is performed in the client thread, to avoid
polluting the cache of the server core.

CPHASH uses reference counting to keep track of outstanding
pointers to hash table elements. To drop a reference, clients send a
message to the corresponding server core.

2.3 Message passing
CPHASH implements message passing between the client and server
threads using pre-allocated circular buffers in shared memory. For
each client and server pair there are two circular rings of buffers—
one for each direction of communication—along with pointers to the
first pending and last pending buffer in the ring. Each buffer can hold
several messages. Message senders locate the next available buffer,
and append as many messages to it as possible up before advancing
the last pending pointer. Receivers poll for pending buffers, and
process all messages in a buffer before moving on.

Buffers are a multiple of the cache line size, and each cache
line can hold several messages. This allows a single cache line
transfer to transmit many messages, thus enabling an amortized
message passing cost of less than one cache miss per message.
Pending indexes are cache-aligned to avoid false sharing. A ring of
buffers allows asynchronous message passing, so that the sender can
perform other tasks while waiting for the response.

3. Performance Evaluation
In this section we discuss the performance results that we achieved
using CPHASH, and compare it to the performance achieved by
LOCKHASH. To evaluate hash table performance, we created a
simple benchmark that generates random queries and performs them
on the hash table. A single query can be either a LOOKUP or an
INSERT operation. The INSERT operation consists of inserting
key/value pairs such that the key is a random 64-bit number and the
value is the same as the key (8 bytes).

We use an 80-core Intel machine for our evaluation. This machine
has eight sockets, each containing a 10-core Intel E7-8870 processor.
All processors are clocked at 2.4 GHz, have a 256 KB L2 cache per
core, and a 30 MB L3 cache shared by all 10 cores in a single socket.
Each of the cores supports two hardware threads (Hyperthreading

in Intel terminology). Each socket has two DRAM controllers, and
each controller is connected to two 8 GB DDR3 1333 MHz DIMMs,
for a total of 256 GB of DRAM.

To evaluate the overall performance of CPHASH relative to its
locking counterpart, LOCKHASH, we measure the throughput of
both hash tables over a range of working set sizes. Clients issue a
mix of 30% INSERT and 70% LOOKUP queries. The maximum
hash table size is equal to the entire working set, which means no
eviction takes place. We run 109 queries for each configuration, and
report the throughput achieved during that run.

For CPHASH, we use 80 client threads, 80 partitions, and 80
server threads. The client and server threads run on the first and
second hardware threads of each of the 80 cores, respectively. This
allows server threads to use the L2 cache space of each core, since
client threads have a relatively small working set size. Each client
maintains a pipeline of 1,000 outstanding requests across all servers;
similar throughput is observed for batch sizes between 512 and
8,192. Larger batch sizes overflow queues between client and server
threads, and smaller batch sizes lead to client threads waiting for
server replies.

Figure 1 shows the results of this experiment. For small working
set sizes, LOCKHASH performs poorly because the number of
distinct keys is less than the number of partitions (4,096), leading
to lock contention. In the middle of the working set range (256 KB–
128 MB), CPHASH consistently out-performs LOCKHASH by a
factor of 1.6× to 2×. With working sizes of 256 MB or greater,
the size of the hash table exceeds the aggregate capacity of all
CPU caches, and the performance of CPHASH starts to degrade
as the CPUs are forced to incur slower DRAM access costs. At
large working sets, such as 4 GB to the right of the graph, the
performance of both CPHASH and LOCKHASH converges and is
limited by DRAM.

 0

 2e+07

 4e+07

 6e+07

 8e+07

 1e+08

 1.2e+08

 1.4e+08

 1.6e+08

 1.8e+08

100KB 1MB 10MB 100MB 1GB 10GB

T
hr

ou
gh

pu
t (

qu
er

ie
s 

/ s
ec

on
d)

Working set size

CPHash
LockHash

Figure 1. Throughput of CPHASH and LOCKHASH over a range
of working set sizes.

Acknowledgments
We thank Robert Morris for helping us improve the ideas in this
paper. This work was partially supported by Quanta Computer and
by NSF award 915164.

References
[1] Z. Metreveli, N. Zeldovich, and M. F. Kaashoek. CPHash: A cache-

partitioned hash table. Technical Report MIT-CSAIL-TR-2011-051, MIT
Computer Science and Artificial Intelligence Laboratory, Cambridge,
MA, November 2011.


