
08.Computation.NA [P].indd 42 7/13/15 11:04 AM

N
ot long ago, hackers stole about
40 million debit- and credit-card
records from Target, another 56 mil-
lion records from Home Depot, and
nearly 5 million patient records from
hospital operator Community Health
Systems. And this past June, personal
information about millions of federal

employees was taken from the U.S. Office of Per-
sonnel Management. These are just a few thunder-
claps in the perfect storm of cyber attacks and data
breaches making headlines recently.

Despite massive efforts to guard sensitive data,
hackers often manage to steal it anyway. It’s a prob-
lem that’s becoming especially acute, now that huge
amounts of information are being concentrated on
the servers of various cloud service providers. Most
times we don’t even know where these machines
are located; how can we possibly feel that our data
is safe with them?

Here’s one way: Encrypt the data before it’s
stored. That way, even if attackers manage to break
into the cloud provider’s system and steal data,
they’ll just get meaningless gibberish.

This might seem a simple solution, but it has a
big shortcoming: When data is encrypted, it’s use-
less to the bad guys, for sure. But in many instances
encryption makes it useless to the good guys as well.

Today’s cloud providers typically perform many
different kinds of useful computations on the data
you entrust them with—looking things up, compil-
ing statistics, analyzing trends, and so forth. Some
apply very sophisticated machine-learning tech-
niques to your data. But no one can do any of that
if the data is encrypted.

How, after all, could Facebook possibly run a face-
detection algorithm on your photos to recognize
your friends if the images it holds are scrambled?
And how could Amazon offer recommendations
if it can’t make sense of the purchase history it
keeps on you?

So it would seem foolhardy to pursue encryption
for anything other than perhaps simple data stor-
age. In the past few years, however, a technique has
emerged that achieves the seemingly impossible:
It enables a cloud provider to perform many kinds
of computations on data that has been encrypted.

The technique relies on special mathematical
properties of certain encryption schemes that
allow the cloud provider to carry out useful com-
putations and produce an encrypted result. The
end user can then decrypt that result to get the
answer he or she is looking for.

The beauty of this approach is that the data
stored by the cloud provider is always encrypted.

Web applications
could increase
security by
keeping data
encrypted
even during
computations
By Raluca Ada Popa & Nickolai Zeldovich

SPECTRUM.IEEE.ORG | nORTh aMERICan | aUG 2015 | 43

08.Computation.NA [P].indd 43 7/13/15 11:04 AM

eBay
[e-commerce]

145,000,000

Heartland
[financial]

130,000,000

T.J. Maxx / T.K. Maxx
[retail]

94,000,000

AOL
[Web]

92,000,000

Anthem
[health care]

80,000,000

Sony
[gaming]

77,000,000

JPMorgan Chase
[financial]

76,000,000

Target
[retail]

70,000,000

Home Depot
[retail]

56,000,000

Evernote
[Web]

50,000,000

Company
 [industry]

Number of
records stolen

So even if someone steals every last bit
of data from a cloud service’s machines
(or subpoenas the information on them),
he gets only the encrypted data, which
is essentially worthless. Indeed, this
approach also protects you from the
possibility of a hacker obtaining com-
plete access to the cloud provider’s com-
puters and running the software on
them at will. Even that intrusion won’t
reveal your data.

Today’s work on computing with
encrypted data has deep roots, reaching
back almost four decades. But such com-
putations are only now becoming prac-
tical, thanks in part to software tools we
helped develop at the MIT Computer
 Science and Artificial Intelligence Labo-
ratory. Those tools are complicated, but
you don’t need to understand their math-
ematical intricacies to get a general sense
of how they work and how, contrary to
intuition, you can compute useful things
with data that you can’t even see.

T
o make clear what we’ve been
working on, consider a hypo-
thetical example. Imagine that
someone—we’ll call her Alice—
uses a medical Web applica-

tion that runs in the cloud. She uses
her browser to enter various kinds of
sensitive information—disease symp-
toms, physical activity, diet, credit-card
information for payments, and so forth—
on the provider’s website. But the com-
pany running this service is scrupulous
about security. It has arranged things so
that Alice’s personal information gets
encrypted on her local machine and is
then sent to the cloud provider, so that
the provider receives and stores only
encrypted data.

Later, Alice asks for certain things to
be computed based on what she had
entered earlier—fitness level, diet rec-
ommendations, whatever. Remarkably
enough, the cloud service can carry out
these computations using just Alice’s
encrypted data. The answers will not
seem to make any sense to the provider,
but software running on Alice’s machine
automatically decrypts these results and
presents them in Alice’s browser in the

usual way. So from her standpoint, the
interaction with the Web application
appears perfectly ordinary.

Let’s imagine also that a doctor who
is authorized to access the service asks
for statistics about how many patients
were sick in a given week, what the risk
factors were for people who contracted
a certain disease, or some other infor-
mation. This doctor, too, gets results that
are computed with encrypted data and
returned to her machine in an encrypted
form, at which point they are automati-
cally decrypted and displayed.

In all, Alice and the doctor enjoy
the same level of service they would
have experienced with a regular Web
application. The difference is that sen-
sitive information is never exposed to
hackers who might try to break into
the provider’s database or listen in on
network communications.

How can this possibly work? For con-
creteness, let’s consider a very simple
computation. Imagine that the doc-
tor wants to know the total number of
people using the system who suffered
from a specific disease during the past
year. Assume that the cloud service has
records of the number of people who
reported this disease in each month of
the year, but it holds that information in
encrypted form.

To answer the doctor’s query, the cloud
provider needs to somehow add up 12 dif-
ferent encrypted numbers and return the
result. That might seem impossible, but
it can be done if the encryption scheme
is chosen properly.

Conveniently, in 1999, while working
on his thesis at École Nationale Supéri-
eure des Télécommunications of Paris,
Pascal Paillier developed an encryption
system with a fantastic property: If you
multiply a set of numbers after they’ve
been encrypted, you will obtain, remark-
ably enough, the encrypted version of
their sum.

So the cloud service in our example
just needs to use Paillier’s encryption
system and multiply together the 12
encrypted values corresponding to
the disease totals for each month of
the year. This operation will generate

THESE MASSivE BREACHES go back
more than a decade. An AOL employee stole
92 million records in 2004. The most recent
victim here was Anthem, this past February.

Source: Information Is Beautiful
(http://www.informationisbeautiful.net)

Top 10
corporaTe hacks

44 | aUG 2015 | nORTh aMERICan | SPECTRUM.IEEE.ORG

08.Computation.NA [P].indd 44 7/13/15 11:04 AM

T
he idea of computing with
encrypted data arose first in
1978, when Ronald Rivest, Len
 Adleman, and Michael Dertouzos
wrote a seminal article titled

“On Data Banks and Privacy Homo-
morphisms.” In it, they introduced the
idea of keeping data encrypted while
computing things with it. They called
an encryption scheme that could support
such computation “homomorphic.” They
did not know at the time how to carry
out an encryption that would allow all
sorts of computations to be performed—
and neither did anybody else—but they
and other computer scientists were eager
to find a way.

The quest lasted for more than 30
years. In 2009, Craig Gentry, then a
graduate student at Stanford Univer-
sity, made a major breakthrough: He
came up with an encryption scheme
that allows a computer to calculate any
function at all on data after it has been
encrypted. Such a scheme is called fully
homomorphic encryption.

From a mathematical standpoint,
 Gentry’s solut ion to the problem
was truly beautiful. And soon, other
researchers proposed additional fully
homomorphic encryption systems
aimed primarily at improving the per-
formance and security of Gentry’s origi-
nal scheme.

Despite this progress, a huge problem
remained: The best fully homomorphic
encryption schemes took more than a
million times as long to complete as the
corresponding unencrypted computa-
tions. If it normally took a second for a
website to compute your results, with
fully homomorphic encryption you’d
have to wait about 12 days. Such slug-
gishness was clearly a showstopper.

Then in 2011 a team of security and
cryptography experts, which included
the two of us, built a system called
CryptDB. It allowed a Web application
to perform a range of database queries
in the widely used Structured Query
Language (SQL) with only a 27 percent
performance slowdown.

What was the trick? The key was to
get away from the idea that one encryp-

a value that is the encryption of the
sum of those monthly tallies, with-
out the service ever having access to
the individual values. The cloud ser-
vice returns this result to the doctor’s
machine, which decrypts the value and
displays the total for the year on her
computer screen.

This general approach to working with
encrypted data isn’t limited to simple
addition. There are all kinds of other
things you can do with encrypted data
if you pick the right encryption scheme,
including comparison, sorting, multipli-
cation and other arithmetic operations,
as well as trigonometric functions.

SEARCH

ADDITION

=

=
? ?

=

x x

x=+

MULTIPLICATION

B2 B3 B5

ENCRYPT:
RAISE B
TO THIS
POWER

ENCRYPT:
RAISE B
TO THIS
POWER

ENCRYPT

ENCRYPT

ENCRYPT

ENCRYPT

ALICE

BOB

EVE

IbAZ6

Tz73b

4zLE9

DECRYPT:
TAKE
LOG
BASE B

ENCRYPT:
MULTIPLY
BY A

ENCRYPT:
MULTIPLY
BY B

DECRYPT:
DIVIDE
BY AB

2 3 5 =2 3 6

=2A 3B 6AB

FOR SiMPLE SEARCHiNg [top], any encryption scheme will work, but for other
operations you need to choose an appropriate method. To perform addition, for
example, you could use exponentiation to encrypt the data, multiply the results, and
compute the logarithm to decrypt [left]. For multiplication, you could first multiply by
some chosen constants to encrypt the two numbers, multiply the encrypted values,
and then divide by the product of the constants to decrypt the result [right]. These
simple encryption schemes would not, of course, be sufficiently secure to use in
practice, but they show the general strategy.

MULTIpLe eNcrYpTIoN scheMes

iNFOgRAPHiC By Carl De Torres nORTh aMERICan | aUG 2015 | 45

08.Computation.NA [P].indd 45 7/13/15 11:04 AM

Currently, there are specialized (and
fast) algorithms for many common oper-
ations, some of which we developed:
addition, multiplication, comparison
by equality or by order, set intersection,
polynomial computation, machine-
learning classification tasks, searching
encrypted text, and others. Using all of
them to encrypt your data, and therefore
storing multiple sets of encrypted data,
allows you to perform a variety of dif-
ferent computations with the encrypted
results. You just switch back and forth
among the encrypted data sets, in each
instance using the one that corresponds
to the operation you need done.

CryptDB exploited this insight for the
first time in a practical way. As a result, it
has gained traction in industry. For exam-
ple, following CryptDB’s lead (and giving
credit to it), Google recently deployed a
system called Encrypted BigQuery. It
can perform queries on an encrypted
version of Google’s BigQuery database.
And the software giant SAP implemented
a system called Search Over Encrypted
Data, which uses CryptDB on top of SAP’s
High-Performance Analytic Appliance
database server. Also, researchers at
MIT’s Lincoln Laboratory use CryptDB
for a special version of the open-source
Apache Accumulo database.

Because each of these systems uses a
variety of different encryption schemes,
application designers are limited in how
they can combine different operations.
Still, being able to do SQL queries on a
collection of encrypted data is often all
you need.

L
ast year, we developed a system
called Mylar to add to the capa-
bilities of CryptDB. Mylar goes
beyond just querying a data-
base full of encrypted data—

it enables users of a Web application to
also share data with one another. Such
data sharing is a staple of many Web
applications: Facebook users share pho-
tos and posts with one another, users
of an online calendar share events, and
so forth. Mylar enables all such sharing,
according to whatever permissions the
user grants others.

MODIFIED DATABASE-
MANAGEMENT SYSTEM

DATABASE PROXY

APPLICATION SERVER

USER 1 USER 2 USER 3

CRYPTDB

ENCRYPTED DATA

ENCRYPTED
RESULT

ENCRYPTED
QUERY

tion system would work for everything.
Fully homomorphic encryption aims
to support all functions within a single
encryption scheme. That makes it slow
even for simple operations.

We and our colleagues realized that an
encryption scheme specialized for just
one operation on the encrypted data
could be much faster. Paillier’s encryp-
tion scheme, for example, can compute
the sum of encrypted values very quickly,
but it can’t compute anything else.

To support a variety of operations,
then, you need to use a variety of spe-
cialized encryption schemes. Each is
efficient at just one thing, but together
they cover quite a lot of territory.

SECuRiTy iS OFTEN a concern when information is held in a cloud
database. CryptDB addresses this issue by encrypting the data in a way
that still allows normal database queries to be performed. The application
itself runs locally, as does a database proxy, which performs the encryption
and decryption. The proxy also translates queries into a form that can be
run on the modified database-management system running in the cloud.

saFeTY aT aLTITUDe

iNFOgRAPHiCS By Carl De Torres46 | aUG 2015 | nORTh aMERICan

08.Computation.NA [P].indd 46 7/13/15 11:04 AM

For instance, let’s say Alice of our
hypothetical example wants to share
her medical history with her doctor
so that she can be treated. The desire
here is that both Alice and her doctor be
able to decrypt Alice’s medical informa-
tion. A hacker, whom we’ll call Malice,
shouldn’t be able to decrypt Alice’s
data, even if Malice manages to hack
the cloud- service provider and steal all
the data and code stored there.

The same should apply, of course, to
any number of people who’ve chosen to
share their information with this doctor—
perhaps it’s everyone in the database.
Indeed, allowing a doctor access to
everyone’s data would be a prerequi-

site for answering many important ques-
tions. For instance, the doctor might
want to search all the data stored on
the cloud medical application to look for
people with a rare disease. The search
request she sends to the Web application
would contain an encrypted keyword
corresponding to the name of that dis-
ease. CryptDB could handle that request
if all the data were encrypted with the
same cryptographic key. The problem, of
course, is that different people’s records
will inevitably be encrypted with differ-
ent keys, so searching through the whole
set is normally impossible.

Mylar skirts the problem by distrib-
uting a shared encryption key to users

who want to share data. That must be
done carefully, to prevent a hacker from
tricking users into sharing data with a
server he controls.

To avoid that, Mylar includes a special
browser extension that verifies the code
downloaded from the server. The system
still works without it, but less securely.
Mylar also offers an identity-provider
service, which acts like a Web certificate
authority. (A Web certificate authority is
an entity that helps ensure that you are
connecting with the real thing when you
visit a website using https, the secure
version of hypertext transfer protocol.)

We have used Mylar to secure a vari-
ety of Web applications—for health care,
chats, forums, photo sharing, calendars,
and online courses. These experiments
showed that Mylar is fast: It increases
computation time by only 17 percent
on average.

Mylar has also been adopted in a real-
world application, one used at the Newton-
Wellesley Hospital, in Newton, Mass., to
collect information about women with
endometriosis, a painful abdominal dis-
order. At this very moment, Mylar is help-
ing to protect the privacy of these patients.

W
e are confident that com-
puting with encrypted
data, using systems like
CryptDB and Mylar, will
become one of the primary

strategies for protecting confidential
information stored in the cloud. And
this approach can protect more than
just data: It’s also been used to secure
cloud computers running linear alge-
braic operations, big-data analytics, and
machine-learning tools.

The security of information stored
online is a huge problem these days, and
computing on encrypted data could be
an important part of the solution. It pro-
tects sensitive information against theft
for the simple reason that if even the
company holding the data has no idea
what the values mean, an attacker will
have nothing of value to steal. n

POST yOuR COMMENTS at http://spectrum.
ieee.org/computation0815

THE AuTHORS’ MyLAR Web-application framework allows users to
share data with those they choose. This is done by encrypting shared data
with particular encryption keys and then storing encrypted versions of
those keys in such a way that only the proper users can access them. Here
Bob and Alice use their keys [blue, purple] to obtain copies of a third key
[black], which they each can use to access their shared encrypted data.

sharING WhILe carING

MYLAR

BOB’S BROWSER

ENCRYPTION
MODULE

KEY DISTRIBUTION
MODULE

ENCRYPTED DATA STORE

ENCRYPTED KEY STORE

EVE’S BROWSER

ENCRYPTION
MODULE

KEY DISTRIBUTION
MODULE

ALICE’S BROWSER

ENCRYPTION
MODULE

KEY DISTRIBUTION
MODULE

BOB AND
ALICE’S
SHARED
DATA

011001
101010
001100
101100

SPECTRUM.IEEE.ORG | nORTh aMERICan | aUG 2015 | 47

08.Computation.NA [P].indd 47 7/13/15 11:04 AM

