
22  AU G U S T 20 14 VO L . 3 9, N O. 4 www.usenix.org

SECURITY

Building Web Applications on Top of
Encrypted Data Using Mylar
R A L U C A A D A P O P A , E M I L Y S T A R K , J O N A S H E L F E R , S T E V E N V A L D E Z ,
N I C K O L A I Z E L D O V I C H , M . F R A N S K A A S H O E K , A N D H A R I B A L A K R I S H N A N

Using a Web application for confidential data requires the user to
trust the server to protect the data from unauthorized disclosures.
This trust is often misplaced, however, because there are many ways

in which confidential data could leak from a server. For example, attackers
could exploit a vulnerability in the server software to break in [9], a curi-
ous administrator could peek at the data on the server [1, 2], or the server
operator may be compelled to disclose data by law [3]. How can one build
Web applications that protect data confidentiality against attackers with full
access to servers?

We developed Mylar for this purpose. Mylar is a new platform for building Web applications
that stores sensitive data encrypted on the server. The keys that can decrypt the data are
stored in some users’ Web browsers, and the data only gets decrypted in these browsers. Even
if an attacker fully compromises the server, the attacker gets access to only encrypted data
and does not have the necessary decryption keys. Mylar achieves this organization through
a new data sharing mechanism, practical ways of computing on encrypted data at the server,
and a mechanism for verifying that the application code was not tampered with by a compro-
mised server.

Crucially, Mylar enables many classes of applications to protect confidential data from com-
promised servers in a practical way. It leverages the recent shift in Web application frame-
works towards implementing logic in client-side JavaScript code, and sending data, rather
than HTML, over the network [5]; such a framework provides a clean foundation for security.

Mylar is open source and can be found at http://css.csail.mit.edu/mylar/. This article cov-
ers how Mylar works at a high level and how to use Mylar on an example application, a chat
application. For more details on the research behind Mylar (e.g., detailed decryption of each
component, detailed evaluation, etc.), we refer the reader to our NSDI ’14 paper [7].

Mylar’s Techniques
To understand Mylar’s techniques, it is helpful to consider a simple attempt to solve the prob-
lem and to observe why this attempt does not suffice. A simple idea is to give each user her own
encryption key, encrypt a user’s data with that user’s key in the Web browser, and store only
encrypted data on the server. This model ensures that an adversary would not be able to read
any confidential information on the server, because he would lack the necessary decryption
keys. In fact, this model has been already adopted by some privacy-conscious Web applications
[4, 8].

Unfortunately, this approach suffers from three significant security, functionality, and effi-
ciency shortcomings. First, a compromised server could provide malicious client-side code
to the browser and extract the user’s key and data. Ensuring that the server did not tamper
with the application code is difficult because a Web application consists of many files, such

Raluca Ada Popa is a fourth-
year PhD student at MIT
working in security, systems,
and applied cryptography. She
is the recipient of a Google PhD

fellowship for secure cloud computing and
a CRA Outstanding Undergraduate Award.
ralucap@mit.edu

Emily Stark is a core developer
at Meteor Development Group.
She holds an MS degree from
MIT and a BS from Stanford
University, both in computer

science. emily@meteor.com

Jonas Helfer is a PhD student
at MIT’s Computer Science
and Artificial Intelligence Lab.
He holds a master’s degree in
computer science from EPFL

(Switzerland). His many research interests
include systems security, Web security and
software project management. helfer@mit.edu

www.usenix.org AU G U S T 20 14 VO L . 3 9, N O. 4 23

SECURITY
Building Web Applications on Top of Encrypted Data Using Mylar

as HTML pages, JavaScript code, and CSS style sheets, and the HTML pages are often
dynamically generated.

Second, this approach does not provide data sharing between users, a crucial function of
Web applications. To address this problem, one might consider encrypting shared documents
with separate keys and distributing each key to all users sharing a document via the server.
However, distributing keys via the server is challenging because a compromised server can
supply arbitrary keys to users and thus trick a user into using incorrect keys.

Third, this approach requires all of the application logic to run in a user’s Web browser,
because it can decrypt the user’s encrypted data. But this is often impractical: For instance,
doing a keyword search would require downloading all the documents to the browser.

Mylar overcomes the challenges mentioned above with a combination of systems techniques
and novel cryptographic primitives, as follows:

1. Data sharing. To enable sharing, each sensitive data item is encrypted with a key available to
users who share the item. To prevent the server from cheating during key distribution, My-
lar provides a mechanism for establishing the correctness of keys obtained from the server:
Mylar forms certificate paths to attest to public keys and allows the application to specify
which certificate paths can be trusted in each use context. In combination with a user inter-
face that displays the appropriate certificate components to the user, this technique ensures
that even a compromised server cannot trick the application into using the wrong key.

2. Computing over encrypted data. Keyword search is a common operation in Web applica-
tions, but it is often impractical to run on the client because it would require downloading
large amounts of data to the user’s machine. Although practical crypto graphic schemes
exist for keyword search, they require that data be encrypted with a single key. This restric-
tion makes it difficult to apply these schemes to Web applications that have many users and
hence have data encrypted with many different keys.

Mylar provides the first cryptographic scheme that can perform keyword search effi-
ciently over data encrypted with different keys. The client provides an encrypted word to
the server, and the server can return all documents that contain this word without learn-
ing the word or the contents of the documents.

3. Verifying application code. With Mylar, code running in a Web browser has access to the us-
er’s decrypted data and keys, but the code itself comes from the untrusted server. To ensure
that this code has not been tampered with, Mylar checks that the code is properly signed by
the Web site owner. This checking is possible because application code and data are sepa-
rate in Mylar, so the code is static. Mylar uses two origins to simplify code verification for
a Web application. The primary origin hosts only the top-level HTML page of the applica-
tion, whose signature is verified using a public key found in the server’s X.509 certificate. All
other files come from a secondary origin, so that if they are loaded as a top-level page, they
do not have access to the primary origin. Mylar verifies the hash of these files against an
expected hash contained in the top-level page.

Mylar’s Architecture
There are three different parties in Mylar: the users, the Web site owner, and the server
operator. Mylar’s goal is to help the site owner protect the confidential data of users in the
face of a malicious or compromised server operator.

System Overview
Mylar embraces the trend towards client-side Web applications; Mylar’s design is suitable for
platforms that:

Steven Valdez is a graduate
student pursuing a dual
bachelor’s/master’s degree
in computer science at MIT,
focusing on systems and

security research. dvorak42@mit.edu

Nickolai Zeldovich is an
associate professor at MIT.
His research interests are
in building practical secure
systems. nickolai@csail.mit.edu

M. Frans Kaashoek is a
professor at MIT, where he
co-leads the Parallel and
Distributed Operating Systems
Group (http://www.pdos.csail.

mit.edu/). Frans is a member of the National
Academy of Engineering and the American
Academy of Arts and Sciences and is the
recipient of the ACM SIGOPS Mark Weiser
award and the 2010 ACM-Infosys Foundation
award. He co-founded Sightpath, Inc. and
Mazu Networks, Inc. kaashoek@mit.edu

Hari Balakrishnan’s research
interests are in networked
computer systems. He is a
professor of computer science
at MIT. hari@csail.mit.edu

24  AU G U S T 20 14 VO L . 3 9, N O. 4 www.usenix.org

SECURITY
Building Web Applications on Top of Encrypted Data Using Mylar

1. Enable client-side computation on data received from the
server.

2. Allow the client to intercept data going to the server and data
coming from the server.

3. Separate application code from data, so that the HTML pages
supplied by the server are static.

AJAX Web applications with a unified interface for sending
data over the network, such as Meteor [5], fit this model. Such
frameworks provide a clean foundation for security, because
they send data separately from the HTML page that presents the
data. In contrast, traditional server-side frameworks incorpo-
rate dynamic data into the application’s HTML page in arbitrary
ways, making it difficult to encrypt and decrypt the dynamic
data on each page while checking that the fixed parts of the page
have not been tampered with.

Mylar’s Components
The architecture of Mylar is shown in Figure 1. Mylar consists of
the four following components:

Browser extension. It is responsible for verifying that the client-
side code of a Web application that is loaded from the server has
not been tampered with.

Client-side library. It intercepts data sent to and from the server
and encrypts or decrypts that data. Each user has a private-
public key pair. The client-side library stores the private key
of the user at the server, encrypted with the user’s password.
(The private key of a user can also be stored at a trusted third-
party server, to better protect it from offline password guess-
ing attacks and to recover from forgotten passwords without
regenerating keys.) When the user logs in, the client-side library
fetches and decrypts the user’s private key. For shared data,
Mylar’s client creates separate keys that are also stored at the
server in encrypted form.

Server-side library. It performs computation over encrypted data
at the server. Specifically, Mylar supports keyword search over
encrypted data, because we have found that many applications
use keyword search.

Identity provider (IDP). For some applications, Mylar needs a
trusted identity provider service (IDP) to verify that a given
public key belongs to a particular username. An application
needs the IDP if the application has no trusted way of verifying
the users who create accounts, and the application allows users
to choose whom to share data with. For example, if Alice wants
to share a sensitive document with Bob, Mylar’s client needs
the public key of Bob to encrypt the document. A compromised
server could provide the public key of an attacker, so Mylar needs
a way to verify the public key. The IDP helps Mylar perform this
verification by signing the user’s public key and username. An
application does not need the IDP if the site owner wants to pro-
tect only against attackers that do not actively change a server’s
behavior (namely, attackers that only read the data at the server,
and do not install software at the server), or if the application
has a limited sharing pattern for which it can use a static root of
trust (as described in our full paper [7]).

An IDP can be shared by many applications, similar to an
 OpenID provider [6]. The IDP does not store per-application
state, and Mylar contacts the IDP only when a user first creates
an account in an application; afterwards, the application server
stores the certificate from the IDP.

Threat Model
Threats
Both the application and the database servers can be fully
controlled by an adversary: The adversary may obtain all data
from the server, cause the server to send arbitrary responses to
Web browsers, etc. This model subsumes a wide range of real-
world security problems, from bugs in server software to insider
attacks.

Mylar also allows some user machines to be controlled by the
adversary and to collude with the server. This may be either
because the adversary is a user of the application or because the
adversary broke into a user’s machine.

Guarantees
Mylar protects a data item’s confidentiality in the face of
arbitrary server compromises, as long as none of the users with
access to that data item use a compromised machine. Mylar
does not hide data access patterns or communication and timing
patterns in an application. Mylar provides data authentication
guarantees but does not guarantee the freshness or correctness
of results from the computation at the server.

Assumptions
To provide the above guarantees, Mylar assumes that the Web
application as written by the developer will not send user data
or keys to untrustworthy recipients and cannot be tricked
into doing so by exploiting bugs (e.g., cross-site scripting). Our

Figure 1: System overview. Shaded components have access only to
 encrypted data. Thick borders indicate components introduced by Mylar.

www.usenix.org AU G U S T 20 14 VO L . 3 9, N O. 4 25

SECURITY
Building Web Applications on Top of Encrypted Data Using Mylar

 prototype of Mylar is built on top of Meteor, a framework that
helps programmers avoid many common classes of bugs in
practice.

Mylar also assumes that the IDP correctly verifies each user’s
identity (e.g., email address) when signing certificates. To sim-
plify the job of building a trustworthy IDP, Mylar does not store
any application state at the IDP, contacts the IDP only when
a user first registers, and allows the IDP to be shared across
applications.

Finally, Mylar assumes that the user checks the Web browser’s
security indicator (e.g., the https shield icon) and the URL of
the Web application they are using before entering any sensitive
data. This assumption is identical to what users must already
do to safely interact with a trusted server. If the user falls for a
phishing attack, neither Mylar nor a trusted server can prevent
the user from entering confidential data into the adversary’s
Web application.

Security Overview
At a high level, Mylar achieves its goal as follows. First, it verifies
the application code running in the browser, so that it is safe to
give client-side code access to keys and plaintext data. Then, the
client code encrypts the data marked sensitive before sending it
to the server. Because users need to share data, Mylar provides
a mechanism to securely share and look up keys among users.
Finally, to perform server-side processing, Mylar introduces a
new cryptographic scheme that can perform keyword search
over documents encrypted with many different keys, without
revealing the content of the encrypted documents or the word
being searched for.

Implementation and Evaluation
To evaluate Mylar’s design, we built a prototype on top of the
Meteor Web application framework [5]. We ported six appli-
cations to protect confidential data using Mylar: a medical
application for endometriosis patients, a Web site for managing

Figure 2: Mylar API for application developers split in three sections: authentication, encryption/integrity annotations, and access control. All of the func-
tions except princ_create_static and searchable run in the client browser. This API assumes a MongoDB storage model where data is organized as
collections of documents, and each document consists of fieldname-and-value pairs. Mylar also preserves the generic functionality for unencrypted data of
the underlying Web framework.

Function Semantics

idp_config(url, pubkey) Declares the url and pubkey of the IDP and returns the principal corresponding to the IDP.

create_user(uname, password, auth_princ) Creates an account for user uname, which is certified by principal auth_princ.

login(uname, password) Logs in user uname.

logout() Logs out the currently logged-in user.

collection.encrypted({field: princ_field}, ...) Specify that field in collection should be encrypted for the principal in princ_field.

collection.auth_set([princ_field, fields], ...) Authenticate the set of fields with principal in princ_field.

collection.searchable(field) Mark field in collection as searchable.

collection.search(word, field, princ, filter, proj) Search for word in field of collection, filter results by filter, and project only the fields
 in proj from the results. Use princ’s key to generate the search token.

princ_create(name, creator_princ) Create principal named name, sign the principal with creator_princ, and give
 creator_princ access to it.

princ_create_static(name, password) Create a static principal called name, hardcode it in the application, and wrap its secret
 keys with password.

princ_static(name, password) Return the static principal name; if a correct password is specified, also load the secret
 keys for this principal.

princ_current() Return the principal of currently logged in user.

princ_lookup(name1, ..., namek, root) Look up principal named name1 as certified by a chain of principals named name1
 rooted in root (e.g., the IDP).

granter.add_access(grantee) Give the grantee principal access to the granter principal.

grantee.allow_search(granter) Allow matching keywords from grantee on granter’s data.

26  AU G U S T 20 14 VO L . 3 9, N O. 4 www.usenix.org

SECURITY
Building Web Applications on Top of Encrypted Data Using Mylar

homework and grades, a chat application called kChat, a forum,
a calendar, and a photo-sharing application. The endometrio-
sis application is used to collect data from patients with that
medical condition and was designed under the aegis of the MIT
Center for Gynepathology Research by surgeons at the Newton-
Wellesley hospital (affiliated with Harvard Medical School)
in collaboration with biological engineers at MIT; the Mylar-
secured version is currently being tested by patients and is
undergoing IRB approval before deployment.

Our results show that Mylar requires little developer effort: We
had to modify an average of just 36 lines of code per application.
We also evaluated the performance of Mylar on three of the
applications above. For example, for kChat, our results show that
Mylar incurs modest overheads: a 17% throughput reduction and
a 50-ms latency increase for the most common operation (send-
ing a message). These results suggest that Mylar is a good fit for
multi-user Web applications with data sharing.

Using Mylar
Mylar for Developers
The developer starts with a regular (non-encrypted) Web appli-
cation implemented in Mylar’s underlying Web platform (Meteor
in our prototype). To secure this application with Mylar, a
developer uses Mylar’s API (Figure 2), which we show how to use
on a chat example. First, the developer uses Mylar’s authentica-
tion library for user login and account creation. If the application
allows a user to choose which other users to share data with, the
developer should also specify the URL and public key of a trusted
IDP.

Second, the developer specifies which data in the application
should be encrypted and who should have access to it. Mylar
uses principals for access control; a principal corresponds to
a public/private key pair and represents an application-level
access control entity, such as a user, a group, or a shared docu-
ment. In our prototype, all data is stored in MongoDB collections,
and the developer annotates each collection with the set of fields
that contain confidential data and the name of the principal that
should have access to that data (i.e., whose key should be used).

Third, the developer specifies which principals in the applica-
tion have access to which other principals. For example, if Alice
wants to invite Bob to a confidential chat, the application must
invoke the Mylar client to grant Bob’s principal access to the chat
room principal.

Fourth, the developer changes their server-side code to invoke
the Mylar server-side library when performing keyword search.
Our prototype’s client-side library provides functions for com-
mon operations such as keyword search over a specific field in a
MongoDB collection.

Finally, as part of installing the Web application, the site owner
generates a public/private key pair and signs the application’s
files with the private key using Mylar’s bundling tool. The Web
application must be hosted using https, and the site owner’s pub-
lic key must be stored in the Web server’s X.509 certificate. This
ensures that even if the server is compromised, Mylar’s browser
extension will know the site owner’s public key and will refuse to
load client-side code if it has been tampered with.

Chat Application Example
To demonstrate how a developer can build a Mylar application,
we show the changes that we made to the kChat application to
encrypt messages. In kChat, users can create chat rooms, and
existing members of a chat room can invite new users to join.
Only invited users have access to the messages from the room.
A user can search over data from the rooms she has access to.
Figure 3 shows the changes we made to kChat, using Mylar’s
API (Figure 2).

// On both the client and the server:
idp = idp_config(url, pubkey);
Messages.encrypted({“message”: “roomprinc”});
Messages.auth_set([“roomprinc”, [“id”, “message”,
 “room”, “date”]]);
Messages.searchable(“message”);

// On the client:

function create_user(uname, password):
   create_user(uname, password, idp);

function create_room(roomtitle):
   princ_create(roomtitle, princ_current());

function invite_user(username):
 global room_princ;
 room_princ.add_access(princ_lookup(username, idp));

function join_room(room):
 global cur_room, room_princ;
 cur_room = room;
 room_princ = princ_lookup(room.name,
  room.creator, idp);

function send_message(msg):
 global cur_room, room_princ;
 Messages.insert({message: msg, room: cur_room.id,
  date: new Date().toString(),
  roomprinc: room_princ});

function search(word):
 return Messages.search(word, “message”,
  princ_current(), all, all);

Figure 3: Pseudo-code for changes to the kChat application to encrypt
messages. Not shown is unchanged code for managing rooms, receiving
and displaying messages, and login/logout (Mylar provides wrappers for
Meteor’s user accounts API).

www.usenix.org AU G U S T 20 14 VO L . 3 9, N O. 4 27

SECURITY
Building Web Applications on Top of Encrypted Data Using Mylar

The call to Messages.encrypted specifies that data in the “mes-
sage” field of that collection should be encrypted. This data will
be encrypted with the public key of the principal specified in the
“roomprinc” field. All future accesses to the Messages collection
will be transparently encrypted and decrypted by Mylar from
this point. The call to Messages.searchable specifies that cli-
ents will need to search over the “message” field; consequently,
Mylar will store a searchable encryption of each message in
addition to a standard ciphertext.

When a user creates a new room (create_room), the application
in turn creates a new principal, named after the room title and
signed by the creator’s principal. To invite a user to a room, the
application needs to give the new user access to the room princi-
pal, which it does by invoking add_access in invite_user.

When joining a room (join_room), the application must look up
the room’s public key, so that it can encrypt messages sent to
that room. The application specifies both the expected room title
as well as the room creator as arguments to princ_lookup, to
distinguish between rooms with the same title.

To send a message to a chat room, kChat needs to specify a
principal in the roomprinc field of the newly inserted docu-
ment. In this case, the application keeps the current room’s
principal in the room_princ global variable. Similarly, when
searching for messages containing a word, the application sup-
plies the principal whose key should be used to generate the
search token. In this case, kChat uses the current user principal,
princ_current().

Mylar for Users
To obtain the full security guarantees of Mylar, a user must
install the Mylar browser extension, which detects tampered
code. However, if a site owner wants to protect against attack-
ers who only read server data (as opposed to actively modifying
data or installing software at the server), users don’t have to
install the extension and their browsing experience is entirely
unchanged.

Conclusion
Mylar is a novel Web application framework that enables devel-
opers to protect confidential data in the face of arbitrary server
compromises. Experimental results show that using Mylar
requires few changes to an application, and that the performance
overheads of Mylar are modest.

Acknowledgments
This research was supported by NSF award IIS-1065219, by
DARPA CRASH under contracts #N66001-10-2-4088 and
#N66001-10-2-4089, by Quanta, and by Google.

References
[1] D. Borelli, “The Name Edward Snowden Should Be Send-
ing Shivers Up CEO Spines,” Forbes, Sept. 2013: http://www
.forbes.com/sites/realspin/2013/09/03/the-name-edward
-snowden-should-be-sending-shivers-up-ceo-spines/.

[2] A. Chen, “GCreep: Google Engineer Stalked Teens, Spied
on Chats,” Gawker, Sept. 2010. http://gawker.com/5637234/.

[3] Google, Inc. User Data Requests—Google Transparency
Report: http://www.google.com/transparencyreport
/userdatarequests/, accessed Sept. 2013.

[4] MEGA: The Privacy Company: https://mega.co.nz
/#privacycompany, accessed Sept. 2013.

[5] Meteor, Inc., Meteor: A Better Way to Build Apps:
http://www.meteor.com, accessed Sept. 2013.

[6] OpenID Foundation, OpenID: http://openid.net, accessed
Sept. 2013.

[7] R. A. Popa, E. Stark, J. Helfer, S. Valdez, N. Zeldovich, M.
F. Kaashoek, and H. Balakrishnan, “Building Web Applica-
tions on Top of Encrypted Data Using Mylar,” Proceedings
of the 11th Symposium on Networked Systems Design and
Implementation (NSDI ’14), Seattle, WA, Apr. 2014.

[8] Cryptocat: https://crypto.cat/, accessed Sept. 2013.

[9] J. Tudor, “Web Application Vulnerability Statistics,”
June 2013: http://www.contextis.com/services/research
/white-papers/web-application-vulnerability-statistics-2013/.

http://www.google.com/transparencyreport/userdatarequests/
http://www.google.com/transparencyreport/userdatarequests/

