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Abstract

This dissertation shows that trustworthy applications can be built out of largely untrustworthy code, by

using information flow control to reason about the effects of code execution. Using this technique we

construct a scalable distributed web server, in which most application code is untrusted and there are no

fully-trusted machines or components.

Building secure applications from untrusted code requires safely executing arbitrary code on sensitive

data, something that no current operating system provides satisfactory mechanisms for. To address this,

we built a new operating system called HiStar that allows any user or application to specify precise data

security policies. The HiStar kernel has a simple, narrow system call interface that enforces these policies

by controlling information flow. HiStar provides a Unix-like environment with acceptable performance

that is implemented in an untrusted user-level library but uses the kernel to enforce security, and runs

a wide variety of Unix applications. The system has no notion of superuser and no fully trusted code

other than the kernel. HiStar’s features permit several novel applications, including an entirely untrusted

login process, separation of data between virtual private networks, and privacy-preserving, untrusted virus

scanners.

In a distributed setting, controlling information flow between processes on mutually distrustful ma-

chines poses another technical challenge. We addressed this by developing DStar, a framework for con-

trolling information flow in distributed systems. DStar describes information flow restrictions associated

with network messages, and allows multiple machines to enforce an overall information flow policy. DStar

separates policy from trust by using self-certifying information flow restrictions, which include a public

key in their name. HiStar applications can use DStar to safely run untrusted code across multiple HiStar

machines. For example, a highly privilege-separated HiStar web server can take advantage of multiple

HiStar machines for performance scalability by only adding a small amount of trusted DStar code. Even

a fully-compromised machine can only subvert the security of users that use or have recently used that

v



machine. Finally, DStar eases incremental deployment, by allowing legacy systems to securely execute

just the least-trusted code on HiStar.

vi



Acknowledgments

I would like to thank David Mazières for his help and guidance in this work, and for being a great adviser.

I am grateful to Monica Lam, Robert Morris, and Frans Kaashoek for teaching me about research. I would

also like to thank Silas Boyd-Wickizer for his contributions to this work. Thanks to the Asbestos group

at MIT and UCLA for providing inspiration and advice for the development of HiStar. I am thankful

to Monica, Dawson Engler, Mendel Rosenblum, and Kunle Olukotun for taking the time to be on my

committee. Thanks also to Constantine Sapuntzakis, Ramesh Chandra, and the members of the SCS group

for many insightful discussions. Finally, I would like to thank my parents, my wife, and her parents, for

their support.

Portions of this dissertation have been previously published in [59].

vii



viii



Contents

Abstract v

Acknowledgments vii

1 Introduction 1

1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Information Flow Control in an Operating System 5

2.1 Tracking Information Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2 Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.4 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Kernel Interface Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Persistent Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.2 Threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.3 Containers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.4 Quotas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.5 Address Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.6 Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Kernel Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.1 Code Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 User-level Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

ix



2.4.1 File System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.2 Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.3 File Descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.4 Users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.5 Gate Calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.6 Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.7 Networking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4.8 Explicit Information Leaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5.1 Anti-Virus Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5.2 User Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5.3 VPN Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.5.4 Web Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5.5 Web Server Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.6 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.6.1 Microbenchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.6.2 Application Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 Distributed Information Flow Control 45

3.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1.1 Message Transfer Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1.2 Sending Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.1.3 RPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.1.4 Additional Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 HiStar Exporter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2.2 Category Mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2.3 Exporter Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3.1 Privilege Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4.1 Distributed Web Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

x



3.4.2 Using DStar in the Distributed Web Server . . . . . . . . . . . . . . . . . . . . 60

3.4.3 Bootstrapping and Replication . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4.4 Heterogeneous Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.5 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.5.1 Application Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.5.2 Web Server Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.5.3 Privilege-Separation on Linux . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.5.4 Linux Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 Discussion 69

4.1 Data Control Idioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.1.1 Discretionary Access Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.1.2 Secret Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.1.3 Export Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.1.4 Taint Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.1.5 Mutual Secrets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.1.6 Combining Privilege . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.1.7 Inward Confinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5 Related work 75

5.1 Operating Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2 Secure Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3 Distributed Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.4 Programming Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.5 Digital Rights Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6 Conclusion 81

A HiStar System Call Interface 83

A.1 Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

A.2 Kernel Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

A.3 Network Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

xi



A.4 Thread Entry Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

A.5 Address Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

A.6 Return Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

A.7 System Call Function Prototypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

A.7.1 Console . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

A.7.2 Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

A.7.3 Network Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

A.7.4 Containers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

A.7.5 Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

A.7.6 Segments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

A.7.7 Address Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

A.7.8 Threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

A.7.9 Thread acting on itself . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

A.7.10 Sleep and wakeup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

A.7.11 Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

B DStar Network Protocol 93

B.1 Protocol Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

xii



List of Tables

2.1 Conventions for the meaning of different levels in HiStar’s Asbestos labels. Only thread

and gate objects can have ? in their label. . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Components of the HiStar web server, their complexity measured in lines of C code,

their tracking and ownership labels, and the worst-case results of an attacker exploiting

a vulnerability in that component. Not included in the lines of code are shared libraries

such as libc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3 Microbenchmark results on HiStar, Linux and OpenBSD. . . . . . . . . . . . . . . . . . 41

2.4 Application-level benchmark results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1 Equivalent HiStar and DStar labels. Because DStar categories are typed, a s subscript

indicates a secrecy category, and an i subscript indicates an integrity category. . . . . . . 47

3.2 Rules for deriving the owns relation from DStar delegation certificates. K and K′ are

public keys, ID is a 64-bit identifier, and T is type of a category. x can be either a key or

a category. K : m denotes a certificate signed by K containing message m. . . . . . . . . 50

3.3 Maximum throughput and minimum latency achieved by different web servers and con-

figurations under two workloads. The PDF workload generated a 2 page PDF document,

and the cat workload ran cat to generate an 8KB text document. The column labeled

Linux reflects Apache. “No PS” ran our web server on HiStar in a single address space,

without any privilege separation. “No DStar” ran the privilege-separated web server from

Section 2.5.4. The “1” column ran the distributed web server all on one machine. Other

columns represent different numbers of physical machines used for the distributed web

server. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

xiii



3.4 Throughput and latency of an echo server; each request opens a new connection and

sequentially sends and receives five 150-byte messages. When the server used the Linux

TCP/IP stack, the client saturated before the server. lwIP runs faster on HiStar due to

direct access to the network device. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.5 Throughput and latency of executing a “Hello world” perl script locally on Linux and

HiStar, and remotely on a HiStar machine invoked from Linux using DStar. . . . . . . . 68

xiv



List of Figures

2.1 The ClamAV virus scanner. Circles represent processes, rectangles represent files and

directories, and rounded rectangles represent devices. Arrows represent the expected data

flow for a well-behaved virus scanner. . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 ClamAV running in HiStar. Lightly-shaded components are confidential, which prevents

them from conveying any information to non-confidential (unshaded) components. The

wrap process is strongly shaded, indicating that it has special privileges which allow it to

relay the scanner’s confidential output to the terminal. . . . . . . . . . . . . . . . . . . . 7

2.3 Labels on components of the HiStar ClamAV port. . . . . . . . . . . . . . . . . . . . . 13

2.4 Part of the label lattice involving two categories, x and y. All other categories in these

labels map to level 1. Arrows show pairs of labels where the “can flow to” v relation

holds. Information can also flow transitively over multiple arrows at the same time. . . . 15

2.5 Kernel object types in HiStar. A soft link names an objects by a particular 〈container ID,

object ID〉 container entry. Threads and gates, which can own categories (i.e., contain ?

in their tracking labels), are represented by rounded rectangles. . . . . . . . . . . . . . . 19

2.6 Structure of a HiStar process. A process container is represented by a thick border. Not

shown are some label components that prevent other users from signaling the process or

reading its exit status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.7 Objects involved in a gate call operation. Thick borders represent process containers. r is

the return category; dr and dw are the process read and write categories for daemon D.

Three states of the same thread object Tp, initially part of the P process, are shown: 1)

just before calling the service gate, 2) after calling the service gate, and 3) after calling

the return gate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.8 A high-level overview of the authentication system. . . . . . . . . . . . . . . . . . . . . 33

xv



2.9 A detailed view of the interactions between authentication system components. The setup

gate, check gate and grant gate (2, 3 and 4) are all part of the user’s authentication service. 34

2.10 Objects created by the user’s setup gate in the session container. . . . . . . . . . . . . . 35

2.11 Secure VPN application. The VPN client is trusted to label incoming VPN packets with

{v2}, reject any outgoing packets tainted in category i, and properly encrypt/decrypt data.

The kernel network device is completely trusted. Neither of the lwIP stacks is trusted. . . 37

2.12 Architecture of the privilege-separated SSL web server running on HiStar. Each process,

indicated by a rounded box, is largely distrustful of other components. Rectangles repre-

sent devices and files. The HiStar tracking label of each component is also shown. A fresh

ssls category is allocated for each connection, while other categories are long-lived. . . . 38

3.1 On the left, the lattice formed by one secrecy category, xs, and one integrity category, yi.

On the right, another integrity category, zi, is added, and the resulting lattice is shown,

with new lattice points (labels) indicated by a shaded background. Arrows show pairs of

labels where the “can flow to” v relation holds. Information can also flow transitively

over multiple arrows at the same time. . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 Typical architecture of a three-tiered web application. The three types of servers com-

prising the web application are the front-end server, the application server, and user data

server. The shaded application code is typically the least trustworthy of all components,

and should be treated as untrusted code to the extent possible. . . . . . . . . . . . . . . . 49

3.3 Objects comprising a mapping between DStar category d and local HiStar category c.

Only the exporter owns secrecy and integrity categories es and ei. . . . . . . . . . . . . . 56

3.4 Structure of the same privilege-separated SSL web server running on multiple physical

HiStar machines. Shaded boxes represent physical machines, and communication be-

tween these physical machines is done through the DStar exporters running on individual

machines. Circled numbers indicate the order in which DStar messages are sent between

machines. Not shown are DStar messages to create mappings on remote machines. . . . 59

xvi



Chapter 1

Introduction

Many serious security breaches stem from vulnerabilities in application software. Despite an extensive

body of research in preventing, detecting, and mitigating the effects of software bugs, numerous errors

remain. Experience has also shown that only a handful of programmers have the right mindset to write

secure code, and few applications have the luxury of being written by such programmers. To make matters

worse, the security of most systems ultimately depends on a large fraction of the code behaving correctly.

As a result, we see a steady stream of high-profile security incidents [42].

How can we build secure systems when we cannot trust programmers to write secure code? One hope

is to enforce the security policy of an application separately from the bulk of the application code. If

security depends only on a small amount of code, this code can be verified or implemented by trustworthy

parties, regardless of the complexity of the application as a whole.

This dissertation’s thesis is to specify and enforce security policy in terms of how information can flow

in a system, or in other words, in terms of how data in the system can be altered or disclosed. Traditionally,

security policies have been specified in terms of what operations a program can invoke [20, 33], but

reasoning about the effects of each operation quickly becomes difficult [15]. On the other hand, specifying

security policy in terms of information flow allows reasoning about which components of a system may

affect which others and how, without having to understand those components themselves. As a result,

small amounts of trusted code can determine and control the security implications of executing much

larger amounts of untrustworthy code.

Many typical security problems can be easily couched in terms of information flow. For example,

protecting users’ private profile information on a web site often comes down to ensuring that one person’s

1



2 CHAPTER 1. INTRODUCTION

information (social security number, credit card, etc.) cannot be sent to another user’s browser. Similarly,

protecting against trojan horses means ensuring that network payloads do not affect the contents of system

files. Likewise, protecting passwords means ensuring that whatever code verifies them can reveal only the

single bit signifying whether or not authentication succeeded.

Specifying security policy in terms of information flow also makes it possible to objectively evalu-

ate any security mechanisms. The security of any operation can be verified by first determining where

information can flow as a result of the operation, and then verifying that such flows are consistent with

the information flow policy. In contrast, security mechanisms in Linux or Windows are hard to evaluate

objectively because they often change in response to application demands and lack a single underlying

objective principle.

There has been a lot of prior work on information flow control, and covert communication channels

have often been cited as a significant limitation [23]. We note that information flow control need not be

perfect to be a valuable tool. Even with a relatively high-bandwidth covert channel of 1,000 bits/second,

an attacker would take almost a full day to leak a database of 100,000 user records of 100 bytes each, a far

cry from today’s compromises of millions of records [42, 53]. Exploiting such channels usually requires

fully compromising code that has access to all the data, which can be hard, and consuming large amounts

of resources, which can be detected.

1.1 Contributions

This dissertation shows that it is practical to build secure applications from mostly untrusted code by

using information flow control to enforce data security. For example, we build a scalable, distributed web

server in which most of the code handling users’ private information and passwords is untrusted, and

only small amounts of partially-trusted code enforce the security of user data. The web server provides a

familiar Unix environment for application code, and requires few to no changes to existing applications.

Moreover, this web server has no fully-trusted machines or components—not even the kernel on any

machine—which further minimizes the effects of any compromise.

Realizing our goal of building secure applications from mostly untrusted components required solv-

ing a number of technical challenges. No existing operating system provided satisfactory mechanisms for

safely executing untrusted code with access to private user data. We addressed this shortcoming by de-

veloping a new operating system, called HiStar, which provides strong information flow control enforced

by a kernel of under 20,000 lines of code. The kernel has a narrow system call interface that controls
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information flow, and all access control decisions in HiStar are based purely on information flow. Every

application in HiStar can define its own information flow control policies which will then be enforced by

the kernel. HiStar has no notion of superuser, and no fully-trusted code other than the kernel, allowing

application developers to decide what code they want to trust. Despite the lack of absolute superuser privi-

leges, an administrator in HiStar can still manage the system’s resources using a new container abstraction

that separates resource allocation and revocation from all other forms of access control.

HiStar is able to make strong security guarantees by providing a simple, narrow kernel interface con-

sisting of six object types. All objects in the system have a tracking label that defines how the information

in each object can be observed or modified. Through its system call interface, the kernel provides only

a small number of object operations with simple, well-defined semantics, making it possible to precisely

track information flow. The kernel further takes into account all other information that goes into each op-

eration, including privileges and resources, in order to avoid implicit information flows that lead to covert

channels.

HiStar provides a shared-memory interface, in which the fundamental operations are reads and writes,

as opposed to a more typical message-passing interface provided by many microkernels. Message-passing

systems usually require bi-directional communication with trusted user-level services, such as a file server,

in order to perform both read and write operations, making it difficult to enforce one-way information flow

control in the kernel. Furthermore, message-passing systems often require implicit resource allocation for

message queues, which can leak information. On the other hand, by providing shared memory access,

HiStar can enforce one-way information flow control purely in the kernel, reducing the need for trusted

user-level servers.

On top of HiStar’s six kernel object types, we implement a familiar, Unix-like development environ-

ment in an untrusted user-space library, which runs standard applications such as gcc, gdb, OpenSSH,

perl, and so on. Because HiStar controls information flow at the level of kernel objects, we can enforce

strong information flow control for our Unix-like environment without having to understand the infor-

mation flow semantics of complex Unix operations. The HiStar Unix library implements the superuser

privileges of the root user purely by convention. Applications handling highly-sensitive data can choose

not to grant their privileges to root, thereby reducing the amount of code with access to their data. At

the same time, root can still manage the system by revoking the resources of recalcitrant users using the

container abstraction.

Scalable applications require distributed systems of multiple machines for performance and reliabil-

ity. However, an operating system such as HiStar can only enforce meaningful security guarantees on a



4 CHAPTER 1. INTRODUCTION

single machine. To build secure scalable applications using information flow control, we designed and

implemented a distributed information flow control framework called DStar. The DStar design is com-

pletely decentralized, with no central authority or fully-trusted machines, which allows multiple mutually-

distrustful entities to specify security policies for their data in a distributed system. Furthermore, a decen-

tralized design avoids inherent performance bottlenecks and single points of compromise.

One problem with a decentralized design is that it can be difficult to determine when information is

allowed to flow between two machines, and having the sender ask any other machine for permission may

in itself leak information. DStar solves this problem by deciding whether information can be sent to an-

other machine without any external information or communication, using only the delegation certificates

to determine what machines are authorized to handle what data. To avoid any central authority, DStar

embeds a public key in the name of each category that places information flow restrictions on data in the

first place, and uses this public key to verify the signatures on delegation certificates.

Although our prototype implementations of HiStar and DStar likely contain covert channels, our se-

curity goal is to avoid covert communication channels inherent in the interface specification. Then, even if

our implementations contain covert channels, we can incrementally mitigate the covert channels as neces-

sary, without modifying the application interface, or affecting well-behaved applications. To avoid covert

channels in specifications, we make explicit all information that goes into each operation, including trust

relations, privileges, and resources.

In addition to building a highly-secure web server, we show how information flow control can be

used to solve a number of other security problems as well. For example, a 110-line trusted wrapper

program can ensure that a complex and untrusted virus scanner cannot leak any private files on HiStar.

A novel login process on HiStar allows users to provide their own authentication code while ensuring

that only one bit of information—whether authentication succeeded or not—is exposed, even if the user

provides his password to malicious code. On a machine connected to both the Internet and an internal

VPN, information flow control can ensure that data does not accidentally leak between the two networks.

1.2 Organization

The next chapter will discuss and evaluate the HiStar operating system in more detail. The DStar frame-

work for distributed systems is described and evaluated in Chapter 3. Limitations of our approach and

typical usage patterns are discussed in Chapter 4. Chapter 5 covers related work, and Chapter 6 con-

cludes.



Chapter 2

Information Flow Control

in an Operating System

The goal of the HiStar operating system is to enforce a data security policy when executing untrusted

code with access to sensitive data. In particular, even if an untrusted application may be able to read some

data, it should not be able to surreptitiously export this data from the system.

A good example of such an application is a virus scanner, which requires access to all of the user’s pri-

vate files, but should never disclose their contents to anyone else. Consider the recently discovered critical

vulnerability in Norton Antivirus that put millions of systems at risk of remote compromise [36]. Suppose

we wanted to avoid a similar disaster with the simpler, open-source ClamAV virus scanner. ClamAV is

over 40,000 lines of code—large enough that hand-auditing the system to eliminate vulnerabilities would

at the very least be an expensive and lengthy process. Yet a virus scanner must periodically be updated

on short notice to counter new threats, in which case users would face the unfortunate choice of run-

ning either an outdated virus scanner or an unaudited one. A better solution would be for the operating

system, HiStar, to enforce security without trusting ClamAV, thereby minimizing potential damage from

ClamAV’s vulnerabilities.

Figure 2.1 illustrates ClamAV’s components. How can we protect a system should these components

be compromised? Among other things, we must ensure a compromised ClamAV cannot purloin private

data from the files it scans. In doing so, we must also avoid imposing restrictions that might interfere with

ClamAV’s proper operation—for example, the scanner needs to spawn a wide variety of external helper

5
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AV
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AV
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/tmp User Data Virus DB Network
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DaemonTTY
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Figure 2.1: The ClamAV virus scanner. Circles represent processes, rectangles represent files and directo-
ries, and rounded rectangles represent devices. Arrows represent the expected data flow for a well-behaved
virus scanner.

programs to decode input files. To understand the scope of the problem we are trying to solve, consider

these few ways in which, on Linux, a maliciously-controlled scanner and update daemon can collude to

copy private data to an attacker’s machine:

• The scanner can send the data directly to the destination host over a TCP connection.

• The scanner can arrange for an external program such as sendmail or httpd to transmit the data.

• The scanner can take over an existing process with the ptrace system call or /proc file system, then

transmit the data through that process.

• The scanner can write the data to a file in /tmp. The update daemon can then read the file and leak

the data by encoding it in the contents, ordering, or timing of subsequent outbound update queries.

• The scanner can use any number of less efficient and subtler techniques to impart the data to the

update daemon—e.g., using system V shared memory or semaphores, calling lockf on various

ranges of the database, binding particular TCP or UDP port numbers, modulating memory or disk

usage in a detectable way, calling setproctitle to change the output of the ps command, or co-opting

some unsuspecting third process such as portmap whose legitimate function can relay information

to the update daemon.

Some of these attacks can be mitigated by running the scanner with its own user ID in a chroot jail.

However, doing so requires highly-privileged, application-specific code to set up the chroot environment,

and risks breaking the scanner or one of its helper programs due to missing dependencies. Other attacks,

such as those involving sockets or System V IPC, can only be prevented by modifying the kernel to restrict

certain system calls. Unfortunately, devising an appropriate policy in terms of system call arguments is
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Figure 2.2: ClamAV running in HiStar. Lightly-shaded components are confidential, which prevents
them from conveying any information to non-confidential (unshaded) components. The wrap process is
strongly shaded, indicating that it has special privileges which allow it to relay the scanner’s confidential
output to the terminal.

an error-prone task, which, if incorrectly done, risks leaking private data or interfering with operation of

a legitimate scanner.

A better way to specify the desired policy is in terms of where information should flow—namely,

along the arrows in the figure. While Linux cannot enforce such a policy, HiStar can. Figure 2.2 shows

our port of ClamAV to HiStar. There are two differences from Linux. First, we have labeled files with

private user data as confidential. Labeling a file as confidential restricts the flow of its contents to other

components that are not marked as confidential, including the network.

The second difference from Linux is that we have launched the scanner from a new, 110-line program

called wrap, which has special privileges that allow it to export confidential data from the system. wrap

can take the virus scanner’s result and report it back to the user. The scanner process cannot read confiden-

tial user files without first marking itself as confidential. Once the scanner process becomes confidential,

it can no longer convey information to the network or to the update daemon. So long as wrap is correctly

implemented, then, ClamAV cannot leak the contents of the files it scans.

The information flow principles behind this type of isolation are not new. Several other systems have

mechanisms capable of isolating an untrusted virus scanner, including SELinux [26], EROS [47], and in

particular Asbestos [10], which inspired this work. HiStar’s labels, which originated in Asbestos, have

features resembling the language-based labels in Jif and Jflow [35].

Unlike these systems, though, HiStar shows how to construct conventional operating system abstrac-

tions, such as processes, from much lower-level kernel building blocks in which all information flow is

explicit. HiStar demonstrates that an operating system can dynamically track information flow through

labeling without the labeling mechanism itself leaking information, thereby avoiding a number of covert

channels inherent in the Asbestos design. By separating resource revocation from access, HiStar also
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shows how to eliminate the notion of superuser from an operating system without inhibiting system ad-

ministration. A HiStar administrator can manage the machine’s resources with no special rights to read or

write arbitrary user data, whereas Asbestos has no mechanism for an administrator to reclaim resources.

By providing a shared-memory kernel interface, unlike message-passing systems such as Asbestos, HiStar

can enforce one-way information flow control purely in the kernel, without the need for trusted user-level

servers. Finally, HiStar’s Unix environment can run many existing applications, such as gcc, gdb, perl, and

OpenSSH, with almost no source code modifications, which makes it easy for existing web applications

to use HiStar.

The next section describes Asbestos labels [10], which HiStar uses to track and control information

flow. Section 2.2 describes the design of the HiStar kernel interface, and how it avoids covert channels in

its specification. Section 2.3 talks about some important implementation details, and Section 2.4 discusses

how user-level applications, including the Unix library, make use of HiStar. A number of applications that

run on HiStar are presented in Section 2.5, and they are evaluated in Section 2.6.

2.1 Tracking Information Flow

HiStar layers all operating system abstractions on top of six low-level kernel object types that will be

described in the next section—threads, address spaces, segments, gates, containers, and devices. Every

object has an Asbestos label that describes how that object’s information can be observed or modified. For

active “agent” objects, such as threads, which can perform actions, the label also specifies the privileges

held by that agent.

The kernel provides a small number of well-defined operations that act on kernel objects. Every time

a thread makes a system call or triggers a page fault, information can potentially flow between the current

thread and other objects in the system. In all such cases, the kernel makes sure that this information flow

is permitted by the labels of the current thread and the other objects. If the labels prohibit the information

flow that would be caused by the operation, the kernel refuses to perform the operation, and returns an

error to the user-space code. Ensuring the correctness of the kernel’s security checks, then, is a matter of

determining which way information can flow between the different objects for each of the operations the

kernel supports.

In the virus scanner example, all objects containing private user data are labeled confidential, and the

kernel prevents any information flow from confidential to non-confidential objects. Initially, the scanner

process is not labeled confidential, and the kernel prevents it from reading the contents of any confidential
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object in the system, since doing so would be against the information flow policy specified by the labels.

If the scanner changes its label to become confidential, the kernel will allow it to read confidential objects.

However, by changing its label to confidential, the scanner also loses its ability to write any data to non-

confidential objects, or to change its label back to non-confidential, since threads are only allowed to

change their label in a way consistent with information flow restrictions. Thus, regardless of the scanner’s

actions, the HiStar kernel ensures that confidential data cannot reach non-confidential objects, including

the network and the colluding update process.

2.1.1 Levels

HiStar controls information flow by using Asbestos labels, which associate confidentiality levels with all

objects in the system. For now, let us assume that each object’s label specifies just one confidentiality

level. The object’s level determines how that object’s data can be modified or observed. Levels are strictly

ordered, and HiStar provides four such levels (0, 1, 2, and 3), though this is not an essential feature of

our system. Information can flow from objects with lower levels to objects with higher levels, but not the

other way around. More precisely, information can flow from an object with level l1 to an object with

level l2 iff l1 ≤ l2, and for this reason we call the ≤ relation can-flow-to. This provides the fundamental

information flow control mechanism.

It is important to note that the can-flow-to relation is transitive. Namely, if information can flow from

level l1 to l2, and then from l2 to l3, then it is also the case that information can flow from l1 to l3, since

l1 ≤ l2 and l2 ≤ l3 imply l1 ≤ l3. This allows us to reason at a high level about when information can flow

between a pair of objects, without having to worry about what intermediate objects the information may

go through and how it may do so.

Generally speaking, higher levels can be thought of as representing secret data, because information at

a high level cannot flow down to lower levels. Conversely, lower levels can be thought of as representing

high-integrity data, because such data can be affected only by other data at a low level. For example, a

process at level 1 can only read objects at levels 0 or 1, and can only modify objects at levels 1, 2, or

3. As a result, objects at level 0 can be thought of as write-protected, and objects with level 2 or 3 as

read-protected.

A special fifth level, ? (pronounced “star”), can appear in the label of active “agent” objects, such

as threads, which can ask the kernel to perform operations on their behalf. Level ? represents special

downgrading privilege, and allows a thread to ignore information flow restrictions—in other words, a
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Level Typical meaning by convention
? has downgrading privileges
0 cannot be written or modified by default
1 default level—no restriction
2 cannot be downgraded or exported by default
3 cannot be read or observed by default

Table 2.1: Conventions for the meaning of different levels in HiStar’s Asbestos labels. Only thread and
gate objects can have ? in their label.

thread at level ? can read and write objects at any level. In particular, such a thread could read data from

an object at level l1 and write that same data to an object at level l2, even if l1 � l2, thereby downgrading

data to a lower level and explicitly violating the transitive information flow principle that we have just

described. Thus, this privilege level is only given to trusted code, such as the small wrap program in the

virus scanner example, with the express purpose of downgrading data in a controlled fashion.

It is up to the user-level application code to decide how best to use levels to enforce a particular

security policy. In the virus scanner example, confidential and non-confidential objects could be labeled

using any pair of levels, as long as the confidential level is greater than the non-confidential one. However,

this dissertation always uses levels in a particular fashion, according to the conventions described in

Table 2.1.

Although the HiStar kernel tries to enforce information flow control, any realistic implementation is

likely going to have covert information flow channels. For example, timing information can often be used

by one process to infer whether another process is using up a lot of processor cycles or not, even if the

two processes should not be able to communicate. Thus, allowing arbitrary threads in the system to raise

their label to the maximum level (3) and observe arbitrarily secret information in the system is likely to be

a bad idea. To alleviate this problem, HiStar introduces a second label, associated only with active agent

objects, such as threads. The tracking label of a thread defines what information the thread has potentially

observed up to this point, and it is this label that we have been discussing so far. This tracking label is

used to determine whether this thread can read or write other objects. A second clearance label specifies

an upper bound on the thread’s tracking label, restricting the amount of information the thread can choose

to read on its own.

By convention, threads in HiStar have a default tracking label of 1 and a clearance label of 2. This

gives rise to the difference between levels 2 and 3 in the level use conventions: by default, threads cannot

arbitrarily raise their label to 3. A thread with downgrading privilege, or level ∗, can create other objects
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and threads with arbitrary labels, and in this way it can specify the information flow policy it wants the

kernel to enforce.

2.1.2 Categories

While levels can be used to control information flow, using levels alone does not provide a very flexible

security mechanism, as it is impossible to track the flow of multiple kinds of information at the same

time—each object has only one level. To allow more complex information flow policies, HiStar provides

the notion of an information flow category, which allows associating multiple confidentiality levels with

each object—one per category. Each category can thus be used to impose different information flow

restrictions using the level mechanism. Information can flow between two objects only if the levels of the

two objects allow information to flow in every single category.

By using two or more categories, applications can specify and enforce more complex information

flow policies than by using levels alone. For example, levels can enforce either secrecy or integrity, but

not both at the same time. If an object has level 3, it may be read-protected, but it can be modified by

anyone else in the system. Similarly, if an object has level 0, it may be write-protected, but anyone can

read its contents. We can enforce both secrecy and integrity of an object using two categories, a read

category and a write category. By setting the object’s level to 3 in the read category, we can read-protect

the object, and by setting the object’s level to 0 in the write category, we can write-protect it at the same

time.

More precisely, each object has a tracking label, which defines the object’s confidentiality level in

different categories. A label is a function from categories to levels. Any given label maps all but a small

number of categories to some default background level for the object—usually 1 by convention. Thus, a

label consists of a default level and a list of categories in which the object has either a higher or lower

level than the default. We write labels inside braces, using a comma-separated list of category-level pairs

followed by the default level. For example, a typical label might be L = {w0, r3, 1}, where w and r are

two categories. This is just a more compact way of designating the function

L(c) =


0 if c = w,

3 if c = r,

1 otherwise.
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Each category in which an object’s level differs from the default level 1 places a restriction on how

other threads may access the object. To see this, consider a thread T with tracking label LT = {1}, and an

object O with tracking label LO = {r3, 1}. Because LO(r) = 3 � 1 = LT (r), O has a higher level than T in

category r. Hence, no information may flow from O to T , which means the thread cannot read or observe

the object. Intuitively, category r is being used to read-protect the object, because the object’s label maps

category r to level 3, above the default 1.

Conversely, an object may have a lower level than the default. If instead an object O′ has LO′ =

{w0, 1}, then LT (w) = 1 � 0 = LO′(w), and no information can flow from T to O′, meaning the thread

cannot write to or modify the object. Here, category w is being used to write-protect the object, by map-

ping category w to level 0 in the object’s label, below the default level of 1. Any given category in an

object’s tracking label can be used to restrict either reading or writing the object, but not both. While it is,

of course, common to restrict both, this requires using two categories.

Like other levels, the special privilege level ? is also scoped to a particular category in a label. Level

? signifies downgrading privileges within a category, and may appear only in the tracking label of threads

or gates. Roughly speaking, when a thread is at level ? in a particular category, the kernel ignores that

category, but not other categories, in performing label checks for operations by that thread. In other words,

if a thread T with tracking label LT has LT (c) = ?, the thread can bypass information flow restrictions in

category c, but not in other categories. We therefore say T owns c. A thread that owns a category can also

grant ownership of the category to other threads using various mechanisms that will be described in the

next section.

While there are only a few levels, HiStar supports an effectively unlimited number of categories.

Categories are named by 61-bit opaque identifiers, which the kernel generates by encrypting a counter

with a block cipher.1 Encrypting the counter prevents one thread from learning how many categories

another thread may have allocated. The counter is sufficiently long that it would take over 60 years to

exhaust the identifier space even allocating categories at a rate of one billion per second. Thus, the system

permits any thread to allocate arbitrarily many categories.

Any thread can allocate a previously-unused category in HiStar. A thread that allocates a category is

granted ownership of that category. We note this is a significant departure from traditional military sys-

tems, which use categories but typically support only a fixed number of categories that must be assigned

by the privileged security administrator.

1The specific length 61 was chosen to fit a category name and a 3-bit level, sufficient to store levels 0 through 3 and ?, in the
same 64-bit field, which facilitated the label implementation.
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Figure 2.3: Labels on components of the HiStar ClamAV port.

2.1.3 Example

Returning to the virus scanner example, Figure 2.3 shows a simplified version of the tracking labels that

would arise if a hypothetical user, “Bob,” ran ClamAV on HiStar. Before even launching the virus scanner,

permissions must be set to restrict access to Bob’s files—otherwise, any process in the system, including

the update daemon, could directly read Bob’s files and transmit them over the network. This is typically

done by the system administrator when initially creating Bob’s account, and by Bob when he creates

additional files. In Unix, Bob’s files would be protected either by setting the file’s permission bits to make

the file only accessible to the user (mode 0600) or by running the update daemon in a chroot jail. In

HiStar, labels can achieve equivalent results.

The equivalent of setting Unix permissions bits in HiStar is for Bob to allocate two categories, br

and bw, which will be used to restrict read and write access to Bob’s files, respectively. Bob labels his

data {br 3, bw 0, 1}. Threads that own br can read the data, so ownership of br acts like a read capability.

Similarly, ownership of bw acts like a write capability. The authentication mechanism described later on

in Section 2.5.2 grants ownership of these two categories to Bob’s shell whenever he logs in and provides

his password.

The wrap program is invoked with all of Bob’s privileges, and in particular, with ownership of br, the

category that restricts read access to Bob’s files. wrap allocates a new category, v (for virus scanner), to

isolate the scanner, and receives sole ownership of this category as a result. wrap then creates a private

/tmp directory writable at level 3 in category v, and launches the scanner labeled 3 in category v. Being

labeled with level 3 in category v prevents the scanner, or any process it creates, from communicating to

the update daemon or network, except through wrap (which has downgrading privileges in v). Level 3 in
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the v category also prevents the scanner, or any program it spawns, from modifying any of Bob’s files,

because those files all have a lower level (the default level of 1) in v.

2.1.4 Notation

Almost every operation in HiStar requires the kernel to check whether information can flow between

objects. In the absence of level ?, information can flow from an object labeled L1 to one labeled L2 only

if L2 is at least as high as L1 in every category. In this case, we say that L1 v L2 (pronounced “L1 can flow

to L2”), or more formally,

L1 v L2 iff ∀c : L1(c)≤ L2(c).

Level ? complicates matters since it represents ownership and downgrading privileges. A thread T

whose tracking label LT maps a category to level ? can ignore information flow constraints on that cat-

egory when reading or writing objects. When comparing LT to an object’s tracking label, the ? must be

considered either less than or greater than numeric levels, depending on context. When T reads an object,

? should be treated as high (greater than any numeric level) to allow observation of arbitrarily secret in-

formation. Conversely, when T writes an object, ? should be treated as low (less than any numeric level)

so that information can flow from T to objects at any level in the category. This shift from high to low

implements downgrading—this is the only way for information at a high level to transition to a low level.

Rather than have ? take on two possible values in label comparisons, we use two different symbols

to represent ownership, depending on context. The existing ? symbol represents the ownership level of a

category when it should be treated low. A new J (“HiStar”) symbol represents the same ownership level

when it should be treated high. This gives us a notation with six “levels,” ordered ? < 0 < 1 < 2 < 3 < J.

However, level J is only used in access rules and never appears in labels of actual objects.

The shifting between levels ? and J required for downgrading is denoted by superscript opera-

tors J and ? that translate ? to J and J to ?, respectively. For example, if L = {a?, bJ, 1}, then

LJ = {aJ, bJ, 1} and L? = {a?, b?, 1}.

We can now precisely specify the restrictions imposed by HiStar when a thread T labeled LT attempts

to access an object O labeled LO:

• T can observe O only if LO v LJ

T (i.e., “no read up”).

• T can modify O, which in HiStar also implies observing O for practical reasons, only if LT v LO v

LJ

T (i.e., “no write down”).
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Figure 2.4: Part of the label lattice involving two categories, x and y. All other categories in these labels
map to level 1. Arrows show pairs of labels where the “can flow to” v relation holds. Information can
also flow transitively over multiple arrows at the same time.

These two basic conditions appear repeatedly in our description of the access checks performed by the

HiStar kernel.

Labels form a lattice [9] under the partial order of the v relation. Part of this lattice involving two

categories in shown in Figure 2.4. We write L1 tL2 to designate the least upper bound of two labels L1

and L2. The label L = L1 tL2 is given by L(c) = max(L1(c),L2(c)). As previously mentioned, threads

may choose to raise their label to observe objects with a higher label. To observe an object O labeled LO,

a thread T labeled LT must raise its tracking label to at least L′T = (LJ

T tLO)?, because that is the lowest

label satisfying both LT v L′T and LO v L′JT .

2.2 Kernel Interface Design

As previously mentioned, the HiStar kernel is organized around six object types: segments, threads, ad-

dress spaces, containers, gates, and devices. Through its system call interface, the kernel provides a small

number of simple operations on these six object types, with well-defined semantics. Each of these oper-

ations correspond to constraints on the labels of the current thread and the objects being accessed. For

example, an operation that reads some object O corresponds to the constraint LO v LT , where LO and LT

are the labels of the object and the current thread. These constraints are in turn enforced by the kernel at

the system call interface. Because the information flow semantics of all object operations are well-defined,

a small and simple kernel can enforce strong information flow control restrictions.

All higher-level abstractions, including the Unix interface, are implemented in untrusted user-level

libraries using these six basic kernel object types. As a result, by providing strong information flow control
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at the kernel interface, HiStar can also control information flow in complex Unix applications, without

having to understand their information flow semantics.

Every HiStar kernel object has a unique, 61-bit object ID, a tracking label, a quota bounding its

storage usage, 64 bytes of mutable, user-defined metadata (used, for instance, to track modification time),

and a few flags, such as an immutable flag that irrevocably makes the object read-only. Except for threads,

objects’ tracking labels are specified at creation time and then become immutable. Some objects allow

efficient copies to be made with different tracking labels, which is useful in cases when applications want

to re-label data.

An object’s tracking label controls information flow to and from the object. In particular, the kernel

interface was designed to achieve the following property:

The contents of object A can only affect object B if, for every category c in which A has a higher

tracking level than B, a thread owning c takes part in the process.

This is a powerful property. It provides end-to-end guarantees of which system components can affect

which others without the need to understand either the components or their interactions with the rest of

the system. Instead, to understand what can happen to data labeled with some category c, it suffices to

understand and verify only those components that own c.

To revisit the virus scanner example, suppose data from the scanner, labeled v3, was somehow ob-

served by the update daemon, with a tracking label of {1}. It follows that the wrap program—the only

owner of v—allowed this to happen in some way, either directly or by pre-authorizing actions on its

behalf (for instance, by creating a gate). The privacy of the user’s data now depends only on the wrap pro-

gram being correct, and not on the virus scanner. In general, we try to structure applications so that key

categories are owned by small amounts of code, and hence the bulk of the system is not security-critical.

Although HiStar provides mechanisms that can be used by applications to improve security, it is

up to application developers to make use of these mechanisms to secure their applications. Users can

also enforce certain security policies on existing applications, without requiring any changes to those

applications themselves, by using a small trusted program such as wrap to specify an information flow

policy. However, all information flow policies enforced by the kernel must come from user-level code;

we show in later sections how different applications make use of the kernel’s mechanisms to enforce a

variety of security policies.

A more technical limitation of HiStar’s approach is that it is almost impossible to provide perfect

information flow control. Malicious software that is labeled confidential can still leak information through
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covert channels—for instance, by modulating CPU usage in a way that affects the response time of other,

non-confidential threads. A related problem is preventing malicious software from making even properly

labeled copies of data it cannot read. Such copies could divulge unintended information—for instance,

allowing someone who just got ownership of a category to read confidential files that were supposed to

have been previously deleted. Restricting copies also lets one limit the amount of time malicious software

can spend leaking data over covert channels.

To prevent code from accessing or copying inappropriate data, each thread has a clearance label,

specifying an upper bound both on the thread’s own tracking label and on the tracking labels of objects

the thread allocates or grants storage to. In the virus scanner example, the update daemon cannot read

Bob’s private files, which have a tracking label of {br 3, bw 0, 1}, because the scanner’s default clearance

label of {2} prevents it from raising its tracking label to level 3 in category br.

2.2.1 Persistent Storage

Like any other operating system, HiStar must provide some mechanism for persistent storage on disk.

However, any file system provided by HiStar must precisely track information flow, to ensure that it

does not violate any information flow control policies. In our virus scanner example, if a malicious virus

scanner writes confidential data to the file system, a colluding update process that is not confidential

should not be able to read it back from the file system and leak it over the network.

Instead of providing a separate interface to a file system on disk, the HiStar kernel provides a single-

level store. This means that the kernel treats all objects, both in memory and on disk, equally. Objects

in memory are simply cached versions of objects on disk, and the kernel periodically writes a consistent

snapshot of all objects in the system to disk. On bootup, the entire system state is restored from the most

recent on-disk snapshot.

A single-level store design simplifies the kernel interface, and reduces the amount of trusted code

needed to track information flow on disk as well as in memory. Using a single-level store, HiStar allows

the file system to be implemented in an untrusted user-level library using the same kernel abstractions

that are used to provide virtual memory. The kernel simply ensures that all information flows according

to object labels, both on disk and in memory, and untrusted user space code implements more complex

file system semantics, such as directory entries and modification times.

A single-level store also eliminates the need for trusted boot scripts to re-initialize processes such as

daemons, which on a more traditional operating systems would not survive a reboot. On the other hand,
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persistence opens up a host of other issues, chief among them the fact that one can no longer rely on

rebooting to kill off errant applications and reclaim resources.

Indeed, resource exhaustion is a potentially troublesome issue for many systems, including Asbestos.

The ability to run a machine out of memory is at best a glaring covert channel and at worst a threat to

system integrity. HiStar’s single-level store at least reduces the problem to disk-space exhaustion, since

all kernel objects are written to disk at each snapshot and can be evicted from memory once stably stored.

HiStar prevents disk space exhaustion by enforcing object quotas. Quotas form a hierarchy under top-level

control of the system administrator—the only inherent hierarchy in HiStar.

The simplest kernel object type provided by HiStar is a segment, which is a variable-length byte array,

similar to a file in other operating systems. The rest of this section discusses other HiStar kernel object

types.

2.2.2 Threads

As previously mentioned, each thread T has a tracking label LT and a clearance label CT . By default, T

has LT (c) = 1 and CT (c) = 2 for most categories c, but the system call

• cat t create category (void)

chooses a previously unused category, c, by encrypting a counter with a block cipher, and sets LT (c)← ?

and CT (c)← 3. At that point T is the only thread whose tracking label maps c to a value below the system

default of 1. In this sense, the label mechanism is egalitarian: no thread has any inherent ownership

privileges with respect to categories created by other threads.

T may raise its own tracking label through the system call

• int self set tracking (label t L),

which sets LT ← L so long as LT v L v CT . This can, for example, let T read a confidential object. T

can also lower its clearance in any category (but not below its tracking label), or increase its clearance in

categories it owns, using

• int self set clearance (label t C),

which sets CT ←C so long as LT vC v (CT tLJ

T ).

LT and CT restrict the tracking label L of any object T creates to the range LT v L vCT . Similarly,

any new thread T ′ that T spawns must satisfy LT v LT ′ vCT ′ vCT .
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Figure 2.5: Kernel object types in HiStar. A soft link names an objects by a particular 〈container ID, object
ID〉 container entry. Threads and gates, which can own categories (i.e., contain ? in their tracking labels),
are represented by rounded rectangles.

2.2.3 Containers

Because HiStar has no notion of superuser yet allows any software to create protection domains, nothing

prevents a buggy thread from allocating resources in some new, unobservable, unmodifiable protection

domain. Without any other mechanisms, a system administrator would be powerless to reclaim the stor-

age and CPU resources used by such runaway processes, since doing so may violate the information

flow control policy specified by the runaway process. However, we must ensure that such resources can

nonetheless be deallocated.

HiStar provides hierarchical control over object allocation and deallocation through a container ab-

straction. Containers provide resources to objects, and every HiStar kernel object must exist in some con-

tainer. Containers can be thought of as Unix directories; like Unix directories, containers hold hard links

to objects, and some objects may be hard linked to multiple containers. There is a specially-designated

root container, which can never be deallocated, and has no parent container—the only such object in the

system. Any other object is deallocated once there is no path to it from the root container. Figure 2.5

shows the possible links between containers and other object types.

The container hierarchy separates resource allocation and revocation from all other forms of access

control. Even if the label on a particular container prevents a user from accessing it, the user may still

be able to reclaim the container’s resources by unlinking that container from its parent container. The

user-space Unix library places each process in a separate container, making it possible for users to kill

runaway processes. The system administrator typically has write access to the root container in the system,

providing full control over the system’s resources.
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When allocating an object, a thread must specify both the container into which to place the object

and a 32-byte descriptive string intended to give a rough idea of the object’s purpose (much as the Unix

ps command associates command names with process IDs). For example, to create a container, thread T

makes the system call

• id t container create (id t D, label t L, char *descrip, int avoid types, uint64 t quota).

Here D is the object ID of an existing container, into which the newly created container will be placed.

(We use D for containers to avoid confusion with clearance.) L is the desired tracking label for the new

container, and descrip is the descriptive string. avoid types is a bitmask specifying kernel object types

(e.g., threads) that cannot be created in the container or any of its descendants. quota is discussed in the

next subsection. The system call succeeds only if T can write to D (i.e., LT v LD v LJ

T ) and allocate an

object of tracking label L (i.e., LT v LvCT ).

Objects can be unreferenced from container D by any thread that can write to D. When an object has

no more references, the kernel deallocates it. Unreferencing a container causes the kernel to recursively

unreference the entire subtree of objects rooted at that container.

HiStar implements directories with containers. By convention, each process knows the container ID

of its root directory and can walk the file system by traversing the container hierarchy. The file system

uses a separate segment in each directory container to store file names.

A thread T can create a hard link to segment S in container D if it can write D (i.e., LT v LD v LJ

T ) and

read S (LS v LJ

T ). T can thus prolong S’s life even without permission to modify S. Any other thread T ′

must not observe that T has done this, however, unless T could have otherwise communicated to T ′—i.e.,

LT v LJ

T ′ (which need not be the case just because T ′ has read permission on S).

To achieve this, most system calls specify objects not by ID, but by 〈container ID,object ID〉 pairs,

called container entries. Container entries ensure that it is safe for the thread to know whether a hard link

to some object exists in a particular container, and consequently, whether the object itself still exists or

not. For T ′ to use container entry 〈D,S〉, D must contain a link to S and T ′ must be able to read D—i.e.,

LDv LJ

T ′ . Since T had LT v LD, this implies that LT v LJ

T ′ , and therefore that T is allowed to communicate

to T ′.

Container entries let the kernel check that a thread has permission to know of an object’s existence.

When a thread has this permission, it may also read immutable data specified at the object’s creation.

In particular, for any object 〈D,O〉, if T can read D, then T can also read O’s descriptive string and,

unless O is a thread, O’s tracking label. (Since thread tracking labels are not immutable, T can only read
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the tracking label of another thread T ′ if LJ

T ′ v LJ

T .) By examining the tracking labels of objects labeled

higher than themselves, threads can determine how they must adjust their own label if they wish to read

those objects.

As a special case, every container contains itself. A thread T can access container D as 〈D,D〉 when

LD v LJ

T , even if T cannot read D’s parent, D′. (The root container has a fake parent labeled {3}, and

must always be referenced this way.) One consequence is that if LD′ 6v LD, a thread with write permission

on D′ but not D can nonetheless deallocate D in an observable way. By giving D a lower label than its

parent in one or more categories, the thread T ′ that created D effectively pre-authorized a small amount

of information to be transmitted from threads that can delete D to threads that can use D. Fortunately, the

allocation rules (LT ′ v LD′ v LJ

T ′ and LT ′ v LD vCT ′ ) imply that to create such a D in D′, T ′ must own

every category c for which LD(c) < LD′(c).

2.2.4 Quotas

Every object has a quota, which is either a limit on its storage usage or the reserved value ∞ (which the

root container always has). A container’s usage is the sum of the space used by its own data structures

and the quotas of all objects it contains. One can adjust quotas with the system call

• int quota move (id t D, id t O, int64 t n),

which adds n bytes to both O’s quota and D’s usage. D must contain O, and the invoking thread T must

satisfy LT v LD v LJ

T and LT v LO vCT . If n < 0, LT must also satisfy LO v LJ

T because the call returns

an error when O has fewer than |n| spare bytes, thereby conveying information about O to T .

Threads and segments can both be hard linked into multiple containers; HiStar conservatively “double-

charges” for such objects by adding their entire quota to each container’s usage. One cannot add a link

to an object whose quota may subsequently change. The kernel enforces this with a “fixed-quota” flag on

each object. The flag must be set (though a system call) before adding a link to the object, and can never

be cleared.

We do not expect users to manage quotas manually, except at the very top of the hierarchy. The system

library can manage quotas automatically, though we do not yet enable this feature by default.

2.2.5 Address Spaces

Every thread has an associated address space object containing a list of VA→ 〈S,offset,npages,flags〉

mappings. VA is a page-aligned virtual address. S = 〈D,O〉 is a container entry for a segment to be
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mapped at VA. offset and npages can specify a subset of S to be mapped. flags specifies read, write, and

execute permissions (and some convenience bits for user-level software).

Each address space A has a tracking label LA, to which the usual label rules apply. Thread T can

modify A only if LT v LA v LJ

T , and can observe or use A only if LA v LJ

T . When launching a new thread,

one must specify its address space and entry point. The system call self set as also allows threads to

switch address spaces. When thread T takes a page fault, the kernel looks up the faulting address in T ’s

address space to find a segment S = 〈D,O〉 and flags. If flags allows the access mode, the kernel checks

that T can read D and O (LD v LJ

T and LO v LJ

T ). If flags includes writing, the kernel additionally checks

that T can modify O (LT v LO). If no mapping is found or any check fails, the kernel calls up to a user-

mode page-fault handler (which by default kills the process). If the page-fault handler cannot be invoked,

the thread is halted.

Every thread has a one-page local segment that can be mapped in its address space using a reserved

object ID meaning “the current thread’s local segment.” Thread-local segments are always writable by the

current thread. They provide scratch space to use when other parts of the virtual address space may not be

writable. For example, when a thread raises its tracking label, it can use the local segment as a temporary

stack while creating a copy of its address space with a writable stack and heap.

A system call thread alert allows a thread T ′ to send an alert to T , which pushes T ’s registers on an

exception stack and vectors T ’s PC to an alert handler. To succeed, T ′ must be able to write T ’s address

space A (i.e., LT ′ v LA v LJ

T ′ ) and to observe T (i.e., LT v LJ

T ′ ). These conditions suffice for T ′ to gain

full control of T by replacing the text segment in A with arbitrary code, as well as for T to communicate

information to T ′.

2.2.6 Gates

Gates provide protected control transfer, allowing a thread to jump to a pre-defined entry point in another

address space with additional privilege. A gate object G has a gate label LG (which may contain ?), a

clearance CG, a gate verify label V LG, and thread state, including the container entry of an address space,

an initial entry point, an initial stack pointer, and some closure arguments to pass the entry point function.

A thread T ′ can only allocate a gate G whose label and clearance satisfy LT ′ v LG vCG vCT ′ .

The thread T invoking G must specify a requested label, LR, and clearance, CR, to acquire on entry. T

also supplies a verify label, LV , and verify clearance, CV , to prove ownership and clearance in certain cate-

gories without granting those privileges across the gate call. The gate verify label provides a discretionary
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limit on what threads can invoke G. Gate invocation is permitted when LT v V LG, LT v LV , CV v CT ,

and (LJ

T tLJ

G)? v LR vCR v (CT tCG). The entry point function can examine LV and CV for additional

access control. Note that a thread’s tracking labels are always explicitly specified by user code, and only

verified by the kernel.

Gates are usually used like an RPC service. Unlike typical RPC, where the RPC server provides the

resources to handle the request, gates allow the client to donate the initial resources—namely, the thread

object that invokes the gate. Arguments and return values are passed across the gate in the thread local

segment. Gates can be used to transfer privilege; for example, the login process, described in Section 2.5.2,

uses gates to obtain the user’s privileges. The use of gates in user-level applications is discussed in more

detail in Section 2.4.5.

Gates can also be used to store privilege. As an optimization for this use case, the kernel supports

unbound gates, which do not have any pre-defined entry point. Instead, the thread that invokes the gate

must supply both the address space and entry point that will be executed on gate entry, allowing the

thread to execute arbitrary code with the privileges stored in the gate’s label and clearance. Unbound

gates typically use the gate verify label to restrict the set of threads that can use the gate’s privileges.

2.3 Kernel Implementation

Our implementation of HiStar mainly runs on x86-64 processors, such as AMD Opteron and Athlon64

CPUs, although we have ported the code to the 32-bit x86 and SPARC processors as well. The use of a

64-bit processor makes virtual memory an abundant resource, allowing us to make certain simplifications

in our design, such as the use of virtual memory for file descriptors, described in the next section.

The single-level store is inspired by XFS [51]. It uses a B+-tree to store an on-disk mapping from

object IDs to their location on disk, and two B+-trees to maintain a list of free disk space extents. The first

one is indexed by extent size and is used to find appropriately-sized extents, and the other is indexed by

extent location and is used to coalesce adjacent extents. Our B+-trees have fixed-size keys and values—

object IDs and disk offsets—which significantly simplifies their implementation. Write-ahead logging

ensures atomicity and crash-consistency. Disk space allocation is delayed until an object is written to

disk, making it easier to allocate contiguous extents.

The kernel performs several key optimizations. It caches the result of comparisons between immutable

labels. When switching between similar address spaces, it also invalidates TLB entries with the invlpg
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instruction instead of flushing the whole TLB by re-loading the page table base register. The invlpg op-

timization makes switching between threads in the same address space efficient: at worst, the kernel

invalidates one page translation for the thread-local segment.

2.3.1 Code Size

One of the advantages of HiStar’s simple kernel interface is that the fully-trusted kernel can be quite small.

Our kernel implementation for the x86-64 processors consists of 18,900 lines of C code (of which 7,300

lines contain a semicolon) and 150 lines of assembly; this is roughly 37% fewer lines of C code than the

Asbestos kernel. The source code consists of the following rough components:

• 2,800 lines of architecture-specific code, implementing bootstrapping, virtual memory, and context

switching for a specific processor type.

• 4,500 lines of code for B+-trees, write-ahead logging and object persistence.

• 3,800 lines of code for device drivers, including PCI support, DMA-based IDE, console, three timer

devices, and four network drivers.

• 7,800 lines of code for system calls, containers, profiling, and other components that are not specific

to a particular processor or device.

In comparison, the Asbestos prototype consists of 30,000 lines of code, with 11,100 lines containing

a semicolon, not including the trusted microkernel-style file server or the device driver for the Intel e1000

network card.

In all aspects of the design we have tried to optimize for a simpler and cleaner kernel. For example, IPC

support, aside from shared memory and gates, is limited to a memory-based futex [13] synchronization

primitive, on which the user-level library implements mutexes. The kernel network API consists of three

system calls: get the MAC address of the card, provide a transmit or receive packet buffer, and wait for

a packet to be received or transmitted. There is no dynamic packet allocation or queuing in the kernel,

which simplifies drivers. Our DMA-based Intel eepro100 driver is 500 lines of code, compared to 2,500

in Linux and OpenBSD (not including their in-kernel packet allocation and queuing code). Similarly, our

e1000 driver is 450 lines of code, compared to 20,000 lines in the Linux driver. When hardware support

for IO virtualization becomes available, we expect to move many device drivers out of the fully-trusted

kernel.
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To improve the quality of our code, we have tried to use programming language techniques to catch

errors; although the success is hard to quantify, it has caught many errors we could have easily missed

otherwise. A type-safe enum wrapper helps catch unintended casts by wrapping an int value in a C struct

type. Keeping track of dirty kernel objects is made easier by using the const qualifier. Objects are of type

const struct kobject by default, and only the function kobject dirty() will return a struct kobject, after

marking the object as being dirty. Compiler warnings and attributes, such as GCC attributes noreturn and

warn unused result are used extensively.

2.4 User-level Design

Unix provides a general-purpose computing environment familiar to many people. In designing HiStar’s

user-level infrastructure, our goal was to provide as similar an environment to Unix as possible except in

areas where there were compelling reasons not to—for instance, user authentication, which we redesigned

for better security. As a result, porting software to HiStar is relatively straightforward; code that does not

interact with security aspects such as user management often requires no modification.

The bulk of the Unix environment is provided by a port of the uClibc library [55] to HiStar. The HiStar

platform-specific code is a small layer underneath uClibc that emulates the Linux system call interface,

comprising approximately 20,000 lines of code and providing abstractions like file descriptors, processes,

fork and exec, file system, and signals. Two additional services—networking and authentication—are

provided by separate daemons. A daemon in HiStar is a regular process that creates one or more service

gates for other processes to communicate with it in an RPC-like fashion.

It is important to note that all of these abstractions are provided at user level, without any special

privilege from the kernel. Thus, all information flow, such as the exit status of a child process, is made

explicit in the Unix library. A vulnerability in the Unix library, such as a bug in the file system, only

compromises threads that trigger the bug—an attacker can only exercise the privileges of the compromised

thread, likely causing far less damage than a kernel vulnerability. An untrusted application, such as a virus

scanner, can be isolated together with its Unix library, allowing for control over Unix vulnerabilities.

We have ported a number of Unix software packages to HiStar, including GNU coreutils (ls, dd, and

so on), ksh, gcc, gdb, perl, Python, ghostscript, the links web browser and OpenSSH. In most cases,

porting these software packages required little or no source code modifications, aside from linking it with

the uClibc library and our Linux system call emulation layer. The main exception is applications that are

concerned with security mechanisms; for instance, we had to modify the OpenSSH login process to grant
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user categories instead of changing the Unix user ID of the process upon login. The rest of this section

discusses the design and implementation of our Unix emulation library.

2.4.1 File System

The HiStar file system uses segments and containers to implement files and directories, respectively.

Each file corresponds to a segment object; to access the file contents, the segment is mapped into the

thread’s address space, and any reads or writes are translated into memory operations. The implementation

coordinates with the user-mode page fault handler to return errors rather than SIGSEGV signals upon

invalid read or write requests. A file’s length is defined to be the segment’s length. Extending a file may

require increasing the segment’s quota, which is done through a gate call if the enclosing container is not

writable in the current context. Additional state, such as the modification time, is stored in the object’s

metadata.

A directory is a container with a special directory segment mapping file names to object IDs. Directory

operations are synchronized with a mutex in the directory segment; for example, atomic rename within

a directory is implemented by obtaining the directory’s mutex lock, modifying the directory segment to

reflect the new name, and releasing the lock. Users that cannot write a directory cannot acquire the mutex,

but they can still obtain a consistent view of directory segment entries by atomically reading a generation

number and busy flag before and after reading each entry. The generation number is incremented by the

library on each directory update.

The container ID of the / directory is stored by the Unix library in user space and passed to child

processes across fork and exec operations. The library also maintains a mount table segment, which maps

〈directory,name〉 pairs onto object IDs. The library overlays mounted objects on directories, much like

Unix. Like Plan 9, a process may copy and modify its mount table, for example at user login. The kernel

has a container get parent system call which is used to implement parent directories.

Since file system objects directly correspond to HiStar kernel objects, permissions are specified in

terms of labels and are enforced by the kernel, not by the untrusted user-level file system implementation.

The tracking label on a file segment is typically {r 3, w0, 1}, where categories r and w represent read

and write privilege on that file, respectively. Labels are similarly used for directories: read privilege on a

directory allows looking up and listing the files in that directory, and write privilege allows creating new

files and renaming or deleting existing files.
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Figure 2.6: Structure of a HiStar process. A process container is represented by a thick border. Not shown
are some label components that prevent other users from signaling the process or reading its exit status.

2.4.2 Processes

A process in HiStar is a user-space convention. Figure 2.6 illustrates the kernel objects that make up a

typical process; although this may appear complex, it is implemented as untrusted library code that runs

only with the privileges of the invoking user.

Each process P has two categories, pr and pw, that protect its secrecy and integrity, respectively.

Threads in a process typically have a tracking label of {pr ?, pw ?, 1}, granting them full access to the

process. The process consists of two containers: a process container and an internal container. The process

container exposes objects that define the external interface to the process: a gate for sending signals and

a segment to store the process’s exit status; not shown is a gate used by gdb for debugging. The process

container and exit status segment are labeled {pw 0, 1}, allowing read but not write access by threads of

other processes (which do not own pw). The signal gate has a tracking label of {pr ?, pw ?, 1} and allows

other processes to send signals to this process. The internal container, address space, and segment objects

are labeled {pr 3, pw 0, 1}, preventing direct access by other processes.

2.4.3 File Descriptors

File descriptors in HiStar are implemented in the user-space Unix library. All of the state typically associ-

ated with the file descriptor, such as the current seek position and open flags, is stored in a file descriptor
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segment. Every file descriptor number corresponds to a specific virtual memory address. When a file de-

scriptor is open in a process, the corresponding file descriptor segment is memory-mapped at the virtual

address for that file descriptor number.

Typically each file descriptor segment has a tracking label of { fr 3, fw 0, 1}, where categories fr and

fw grant read and write access to the file descriptor state. Access to the descriptor can be granted by

adding fr ? and fw ? to a thread’s tracking label. Multiple processes can share file descriptors by mapping

the same descriptor segment into their respective address spaces. By convention, every process adds hard

links for all of its file descriptor segments to its own container. As a result, ownership of the file descriptor

is shared by all processes holding it open, and a shared descriptor segment is only deallocated when it has

been closed and unreferenced by every process.

2.4.4 Users

A pair of unique categories ur and uw define the read and write privileges of each Unix user u in HiStar,

including root. Typically, threads running on behalf of user U have a tracking label containing ur ?, uw ?,

and users’ private files would have a tracking label of {ur 3, uw 0, 1}. One consequence of this design is

that a single process can possess the privilege of multiple users, or perhaps multiple user roles, something

hard to implement in Unix. On the other hand, our prototype does not support access control lists. Labels

cannot natively express disjunctive access control (either one of these two users should have access to

this file), and implementing disjunctions would probably require a gate for every access control group.

The authentication service, which verifies user passwords and grants user privileges, is described in more

detail in Section 2.5.2.

2.4.5 Gate Calls

Gates provide a mechanism for implementing IPC. As an example, consider a service that generates

timestamped signatures on client-provided data; such a service could be used to prove possession of data

at a particular time. A HiStar process could provide such a service by creating a service gate whose initial

entry point is a function that computes a timestamped signature of the input data (from the thread-local

segment) and returns the result to the caller. Gates in HiStar have no implicit return mechanism; the caller

explicitly creates a return gate before invoking the service gate, which allows the calling thread to regain

all of the privileges it had prior to calling the service. A fresh category r, which we will call the return

category, is allocated to prevent arbitrary threads from invoking the return gate. To enforce this, the return
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same thread object Tp, initially part of the P process, are shown: 1) just before calling the service gate, 2)
after calling the service gate, and 3) after calling the return gate.
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gate’s verify label is set to {r 0, 3}, which requires ownership of the return category to invoke it. The

caller grants ownership of the return category when invoking the service gate, to allow the service to use

the return gate. Figure 2.7 shows such a gate call from process P to daemon D.

Suppose the caller does not trust the signature-generating daemon D to keep the input data private.

To ensure privacy, the calling thread can allocate a new taint category t and invoke the service gate with

a label of {dr ?, dw ?, r?, t 3, 1}—in other words, tainted in the new category. Ownership of dr and dw

represents D’s privileges to access its own address space and private state, and r represents the privilege

to return to the caller process, P. A thread running with this tracking label in D’s address space can read

any of D’s segments, but not modify them (which would violate information flow constraints in category

t). However, the tainted thread can make a tainted, and therefore writable, copy of the address space and

its segments and continue executing there, effectively forking D into an untainted parent daemon and a

tainted child in which all of the data is labeled t 3. The user-space Unix library performs this copy of the

address space when it determines that it is running in a read-only address space upon gate entry. Unable to

divulge the caller’s data, the thread can still compute a signature and return it to the caller. Upon invoking

the return gate, the thread regains ownership of category t, allowing it to untaint the computed signature.

Resources for the tainted child copy must be charged against some object’s quota. They cannot be

charged to D’s container, because the thread lacks modification permission when tainted t 3 (otherwise,

it could leak information about the caller’s private data to D). Therefore, before invoking the gate, the

calling thread creates a container it can use once inside D. In this example, Tp creates a container labeled

{t 3, r 0, 1} inside P’s internal container.

Forking on tainted gate invocation is not appropriate for every service, because it results in multiple

copies of the daemon’s address space. Stateless services such as the timestamping daemon are usually

well-suited to forking. On the other hand, services that maintain mutable shared state likely want to avoid

forking, by refusing tainted gate calls; otherwise, multiple copies of the same mutable shared state will

likely lead to incorrect results.

2.4.6 Signals

Signals are implemented by sending an alert to a thread in a process, passing the signal number as an

argument to the alert handler. The alert handler invokes the appropriate Unix signal handler for the raised

signal. However, sending an alert requires the ability to modify the thread’s address space object, which,

because of pw, only other threads in the same process can do. Therefore, to support Unix signals, each
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process exposes a signal gate in its process container. The gate has a label of {pr ?, pw ?, 1} and an entry

function that sends the appropriate alert to one of the threads in the process, depending on the requested

signal number. The verify label on the signal gate is {uw 0, 3}, where uw corresponds to the user that is

running this process. As a result, only threads that possess the user’s privilege can send signals to that

user’s processes.

2.4.7 Networking

HiStar uses the lwIP [27] protocol stack to provide TCP/IP networking. lwIP runs in a separate netd

process and exposes a single gate that allows callers to perform socket operations. Operations on socket

file descriptors are translated into gate calls to the netd process. By default, netd’s process container is

mounted as /netd in mount tables. As an optimization, a process can create a shared memory segment

with netd and donate resources for a worker thread to netd. Subsequent netd interactions can then use

futexes [13] to communicate over shared memory, avoiding the overhead of gate calls.

The network device is typically labeled {nr 3, nw 0, i2, 1}, where nr and nw are owned by netd, and i

taints all data read from the network. Because netd cannot bypass the tainting with i or leak tainted data in

other categories, it is mostly untrusted. A compromised netd can only mount the equivalent of a network

eavesdropping or packet tampering attack.

2.4.8 Explicit Information Leaks

The Unix interface was not designed to control information flow. As a result, emulating certain aspects of

Unix on HiStar requires information leaks. HiStar implements these leaks at user level, through explicit

untainting gates. By convention, when spawning a tainted thread, or tainting a thread through a gate call,

the user-space library supplies the tainted thread with the container entry of an untainting gate. The new

thread can invoke this gate to leak certain kinds of information, such as the fact it is about to exit (so the

parent shell can reclaim resources and return to the command prompt). Not all categories have untainting

gates; whether or not to create one is up to the category’s owner.

Currently our Unix library provides untainting gates for up to three operations: process exit, quota

adjustment, and file creation. Process exit reports the exit status of a tainted process to its untainted

parent. Quota adjustment allows a tainted process to obtain more quota (or return a part of its quota)

to its untainted parent container. File creation allows a tainted process to create a new tainted file in an

untainted directory. Of these three operations, file creation provides by far the biggest information flow,
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declassifying the name of the newly created file. Low-secrecy applications concerned only with accidental

disclosure allow of these operations for their categories. Higher-secrecy applications may choose to set

fixed quotas for tainted objects and only declassify process exits. Moderate-secrecy applications may want

to prohibit just file creation. The next section shows examples of such applications.

2.5 Applications

The Unix environment described in the previous section allows for general-purpose computing on HiStar,

but does not provide any functionality qualitatively different from Linux. HiStar’s key advantage is that

it enables novel, high-security applications to run alongside a familiar Unix environment. This section

presents some applications that take advantage of HiStar to provide security guarantees not achievable on

typical Unix systems.

2.5.1 Anti-Virus Software

We have implemented an untrusted virus scanner, as suggested in several examples, by porting the

ClamAV scanner [8] to HiStar and using the wrap program to run it in isolation. To provide strong

isolation, wrap does not create the standard Unix untainting gates for category v. wrap also limits the

amount of data that can be leaked through covert channels by killing ClamAV after some period of time.

This amount of time is fixed in our current prototype, but could be scaled with the amount of work that

ClamAV is expected to perform.

ClamAV and its database must be periodically updated to keep up with new viruses. In HiStar, the

update process runs with the privilege to write the ClamAV executable and virus database; however, it

cannot access private user data. Even if a compromised update installs arbitrary code in place of ClamAV,

the tracking label set by wrap when running ClamAV ensures that private information cannot be exported.

2.5.2 User Authentication

User authentication provides a good example of how HiStar can minimize trusted code. Most operating

systems require a highly-trusted process to validate authentication requests and grant credentials. For

example, the Unix login program runs as superuser to set the appropriate user and group IDs after checking

passwords. Even a privilege-separated server such as OpenSSH requires a superuser component to be able

to launch shells for successfully authenticated users.
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Figure 2.8: A high-level overview of the authentication system.

In contrast, HiStar authenticates users without any highly-trusted processes, and allows users to sup-

ply their own authentication services. Even if a user accidentally provides his or her password to a mali-

cious authentication service, HiStar ensures that only one bit of information about the user’s password—

whether the authentication succeeded using that password—is leaked. Providing such isolation under a

traditional operating system would be difficult.

Figure 2.8 shows an overview of the HiStar authentication facility. Logically, four entities coordinate

to authenticate a user: a login client, a directory service, a per-user authentication service, and a logging

service. Of these, the logging service is simplest; the directory and user authentication services trust it to

maintain an append-only log, while it trusts them not to exhaust space with spurious entries.

The login client initiates authentication. It typically consists of an instance of the web server or sshd

that knows a username and password and wishes to gain ownership of the user’s read and write categories,

ur and uw. Login minimally trusts the directory to interpret the username properly (without which authen-

tication could fail or return the wrong credentials). However, login does not trust the other components,

and importantly does not trust anyone with the user’s password. Conversely, no other component trusts

login until it authenticates itself.

The directory service maintains a list of user accounts. Its job is to map usernames to user authenti-

cation service daemons. Login begins the authentication process by asking the directory for a particular

username. The directory responds with the container entry of a gate to the user’s authentication service.

The directory is controlled by the system administrator, but is untrusted except minimally by login and

the logger as described above.

Each user runs an authentication service daemon that owns ur and uw; the daemon’s job is to grant

those categories to login clients that successfully authenticate themselves. Conceptually, this is simple:

login sends the password to the authentication service, which checks it and, if correct, grants ur and uw
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Figure 2.9: A detailed view of the interactions between authentication system components. The setup
gate, check gate and grant gate (2, 3 and 4) are all part of the user’s authentication service.

back to login. Since the authentication service is under the user’s control, it can, at the user’s option,

support non-password techniques such challenge-response authentication.

The complication is that login does not trust the authentication service with the user’s password.

After all, a mistyped username or malicious directory could connect login to the wrong authentication

service. Even the right service might be compromised, which should reveal only the user’s password hash,

not his password. With challenge-response authentication, a similar man-in-the-middle threat exists. The

solution is for login to invoke the authentication service three times: first to set things up, second to check

the password, and third to finally gain ownership of ur and uw. The second step runs tainted, thereby

protecting the secrecy of the password.

Figure 2.9 shows the authentication sequence in more detail. In Step 1, login learns of the appropriate

user’s setup gate from the directory service. Then it allocates two categories: πr, the password read (se-

crecy) category, protects the password from disclosure. The sw category controls write access to a login

session container, which login creates with label {sw 0, 1}.

In Step 2, login invokes the user’s setup gate, granting the user’s code sw ?. The setup gate logs the au-

thentication attempt and allocates a new category, x, to be granted to login after successful authentication.

Before returning, the setup gate code (together with login, as we will discuss later) creates three objects in
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Figure 2.10: Objects created by the user’s setup gate in the session container.

the session container, shown in Figure 2.10. The first is a retry count segment, used to bound the number

of password guesses per logged invocation of the setup gate. The second is an ephemeral check gate, used

to check passwords while tainted; its closure arguments specify the object ID of the retry count segment.

The third is an ephemeral grant gate with clearance {x0, 2}.

In Step 3, login calls the check gate with the password, tainting the thread πr 3. If the password is

correct and the retry count okay, the gate code grants x back to login. (Optionally, the check gate may

accept a verify label of {rootw 0, 3} instead of a password, to emulate a Unix users’ trust of root.) Once

login owns x, it calls the grant gate in Step 4 to obtain ur and uw. The grant gate logs the authentication

success before returning, which is why it must be separate from the tainted check gate, which cannot talk

to the logging service.

In Step 2, creating the retry count segment, which is labeled {πr 3, uw 0, 1}, requires combining the

privileges of two mutually-distrustful entities: login, with a clearance of πr 3, and the user’s code, with

a label of uw ?. The user’s code will not grant uw ? to login before a successful authentication. Similarly,

login does not trust the user’s setup gate code with a clearance of πr 3.

To see why login cannot invoke the setup gate with a clearance of πr 3, consider what malicious setup

gate code can do given such a clearance: It can create a long-lived segment S labeled {πr 3, ur 3, 1}, and

a long-lived thread T labeled {πr 3, ur ?, 1}. Both can be in a container inaccessible to login. The setup

code can furthermore point the check gate to a “trojaned” variant of the password checker that writes the

password to S. Finally, T can read S and leak the password through a covert channel over a long period

of time. T and S will persist long after login has destroyed all objects it knows about with a clearance of

πr 3.

To solve this problem, the developers of the user’s authentication service and the login client agree

ahead of time on a function that both of them want to execute to create the retry count segment. Then,

before invoking the setup gate, login creates a code segment containing the code of the previously agreed-

upon function, as well as a gate G that invokes this code with a clearance of πr 3. Additionally, login

marks the code segment and address space objects invoked by G as immutable in the kernel. Because



36 CHAPTER 2. INFORMATION FLOW CONTROL IN AN OPERATING SYSTEM

these objects are immutable, the user’s setup gate code can verify their contents and be assured that

invoking G with uw ? will execute only the agreed upon code and not somehow result in login usurping

ownership of uw. In this manner, two mutually-distrustful parties can safely execute mutually agreed-upon

code with their combined privilege.

The authentication service implementation is fairly small. The logging service consists of 58 lines

of code; the directory service consists of 188 lines, and the standard password-based user authentication

service consists of 233 lines of code. Common library code that allows combining privileges to create

the retry count segment is 370 lines of C++ code, and the mutually agreed-upon code to create the retry

count segment is 30 lines of assembly. Aside from security, another advantage of privilege-separating

authentication is that the processes can keep relatively small labels, improving the performance of label

operations.

2.5.3 VPN Isolation

Many networks rely so heavily on firewalls for security that the prospect of bridging them to the open

Internet poses a serious danger. Indeed, this is how the Slammer worm disabled a safety monitoring

system at a nuclear power plant in 2003 [41]. At the same time, it has become quite common for people

to connect home machines and laptops to otherwise firewalled networks through encrypted virtual private

networks (VPNs). When VPNs let the same machine connect to either side of a firewall, they risk having

malware either infect internal machines or (as the Sircam worm did) divulge sensitive documents to the

world.

In HiStar, however, one can track the provenance of data with labels and precisely control what flows

between networks. The bootstrap procedure already labels the network device to taint anything received

from the Internet {i2, 1} and block from transmission anything more tainted. One can analogously label

all VPN input {v2, 1} and block any more tainted VPN output. Such a configuration completely isolates

the two networks from each other except as specifically permitted by the owners of i and v. For example,

users might be allowed to untaint i (meaning import external data) when the file passes a virus checker,

such as the one in Section 2.5.1.

We have implemented VPN isolation around the popular OpenVPN package [37]. Figure 2.11 shows

the components of the system and their tracking labels: The VPN runs a second lwIP stack which talks to

the OpenVPN client over a tun device. Porting OpenVPN to HiStar required implementing a tun character

device in the file system library (200 lines of code) and a tun “device driver” for lwIP (100 lines of code).
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Figure 2.11: Secure VPN application. The VPN client is trusted to label incoming VPN packets with
{v2}, reject any outgoing packets tainted in category i, and properly encrypt/decrypt data. The kernel
network device is completely trusted. Neither of the lwIP stacks is trusted.

OpenVPN swaps between v and i taints on the data it encrypts. Users select which network to use by

mounting the appropriate lwIP process on /netd (much like Plan 9). Not shown are untainting gates,

which for this application allow processes to leak exit, quota, and file creation events, as discussed in

Section 2.4.8.

VPN isolation is interesting because it applies a broad policy potentially affecting most processes in

the system, yet requires only a localized change. This would be difficult to achieve in a capability-based

system, for instance.

2.5.4 Web Server

The original motivating application for Asbestos [10] was its web server, which isolated different user’s

data to tolerate buggy or malicious web service code. We have built a similar web server for HiStar, with

a few differences. HiStar’s connection demultiplexer controls resources granted to each worker daemon

through containers, allowing control over resources used by untrusted code. Authentication uses an in-

stance of the daemon described in Section 2.5.2. The SSL code is untrusted, and does not even have access

to the SSL certificate private key. Figure 2.12 shows the overall architecture of this privilege-separated

SSL web server. The web server is built from a number of mutually-distrustful components to reduce the

effects of the compromise of any single component. We first describe how requests are handled in this

web server, and then describe the security properties achieved by this server in the next subsection.
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Figure 2.12: Architecture of the privilege-separated SSL web server running on HiStar. Each process,
indicated by a rounded box, is largely distrustful of other components. Rectangles represent devices and
files. The HiStar tracking label of each component is also shown. A fresh ssls category is allocated for
each connection, while other categories are long-lived.

The TCP/IP stack is implemented by the user-space netd process, which has direct access to the kernel

network device. netd provides a traditional sockets interface to other applications on the system, which is

used by our web server to access the network.

User connections are initially handled by the launcher process, which listens for incoming connec-

tions from web browsers and allocates resources to handle each request. For each request, the launcher

spawns an SSLd daemon to handle the SSL connection with the user’s web browser, and an httpd dae-

mon to process the user’s plaintext HTTP request. The launcher then proxies data between SSLd and the

TCP connection to the user’s browser. SSLd, in turn, uses the RSAd daemon to establish an SSL session

key with the web browser, by generating an RSA signature using the SSL certificate private key kept by

RSAd.

The httpd process receives the user’s decrypted HTTP request from SSLd and extracts from it the

user’s password and request path. It then authenticates the user, by sending the password from the HTTP

request to that user’s password checking agent from the HiStar authentication service. If the authentica-

tion succeeds, httpd receives ownership of the user’s secrecy and integrity categories, and executes the

appropriate application code with the user’s privileges (in our case, we run GNU ghostscript to generate

a PDF document). Any output from the application is sent back to the user’s web browser, via SSLd for

encryption.
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Component Lines Tracking Ownership Effects of Compromise
of Code Label Label

netd 350,000 {} {ns,ni} Same as an active network attacker,
observing and injecting traffic

launcher 310 {} {ssls} Obtain plaintext of user requests,
including passwords, and server responses

SSLd 340,000 {ssls} {} Corrupt request or response, or send
unencrypted data to same user’s browser

RSAd 4,600 {ssls} {rsas,rsai} Disclose the server’s SSL certificate private key
httpd 300 {} {us,ui,ssls} Full access to data in attacker’s account,

but not to other users’ data
authentication 320 {} {us,ui} Full access to data of the user whose agent

is compromised, but no password disclosure
application 680,000+ {us} {ui} Send garbage (but only to same user’s browser),

corrupt user data (for write requests)

Table 2.2: Components of the HiStar web server, their complexity measured in lines of C code, their
tracking and ownership labels, and the worst-case results of an attacker exploiting a vulnerability in that
component. Not included in the lines of code are shared libraries such as libc.

2.5.5 Web Server Security

The HiStar web server architecture has no hierarchy of privileges, and no fully trusted components; in-

stead, most components are mutually distrustful, and the effects of a compromise are typically limited to

one user, usually the attacker himself. Table 2.2 summarizes the security properties of this web server,

including the complexity of different components and effects of compromise.

The largest components in the web server, SSLd and the application code, are minimally trusted, and

cannot disclose one user’s private data to another user, even if they are malicious. The application code

is confined by the user’s secrecy category, us, and it is httpd’s job to ensure that the application code is

labeled with us when httpd runs it. Although the application code owns the user’s integrity category, ui,

this only gives it the privilege to write to that user’s files, but not to export them.

SSLd is confined by the ssls secrecy category, which is a fresh category allocated by the launcher for

each new connection. Both the launcher and httpd own ssls, allowing them to freely handle encrypted and

decrypted SSL data, respectively. However, SSLd can only communicate with the user’s web browser, via

the launcher, or with httpd.

SSLd is also not trusted to handle the SSL certificate private key. Instead, a separate and much smaller

daemon, RSAd, has access to the private key, and only provides an interface to generate RSA signa-

tures for SSL session key establishment. Not shown in the diagram is a category owned by SSLd that
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allows it and only it to invoke RSAd. Although a compromised RSAd can expose the server’s SSL private

key, it cannot directly compromise the privacy of user data, because RSAd runs confined with each user

connection’s ssls category.

Side-channel attacks, such as [1], might allow recovery of the private key; OpenSSL enables RSA

blinding by default to defeat timing attacks such as [5]. To prevent an attacker from observing intermediate

states of CPU caches while handling the private key, RSAd starts RSA operations at the beginning of

a 10 msec scheduler quantum (each 1024-bit RSA operation takes 1 msec), and flushes CPU caches

when context switching to or from RSAd (with support from the kernel), at a minimal cost to overall

performance.

The HiStar authentication service used by httpd to authenticate users is the same exact service that

was described in Section 2.5.2, which further reduces the effects of compromise to a single user, and

ensures that even in the case of a malicious authentication service, the user’s password is not disclosed.

In our current prototype, httpd always grants ownership of ui to the application code, giving it write

access to user data. A conservative implementation may want to avoid granting ui to code that performs

read-only requests, to avoid user data corruption due to buggy read request code.

Our web server does not use SSL client authentication in SSLd. Doing so would require either trusting

all of SSLd to authenticate all users, or extracting the client authentication code into a separate, smaller

trusted component. In comparison, the password checking agent in the HiStar authentication service is

320 lines of code.

One caveat of our current implementation is the absence of SSL session caching. Because a separate

instance of SSLd is used for each client request, clients cannot reuse existing session keys when connect-

ing multiple times, requiring public key cryptography to establish a new session key. This limitation can

be addressed by adding a trusted SSL session cache that runs in a different, persistent process, at the cost

of increasing the amount of trusted code.

2.6 Performance

To evaluate the performance implications of HiStar’s architecture, we compared it to Linux and OpenBSD

under several benchmarks. The benchmarks ran on three identical systems, each with a 2.4 GHz AMD

Athlon64 3400+ processor, 1GB of main memory, and a 40 GB, 7,200 RPM Seagate ST340014A EIDE

hard drive. The first machine ran HiStar; the second ran Fedora Core 5 Linux with kernel version 2.6.16-

1.2080 FC5 x86 64 and an ext3 file system; the third ran 32-bit OpenBSD 3.9 i386 with an in-memory mfs
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Benchmark HiStar Linux OpenBSD
IPC benchmark, per RTT 3.11 µsec 4.32 µsec 2.13 µsec
Fork/exec, per iteration 1.35 msec 0.18 msec 0.18 msec
Fork/exec, dynamic linking — 0.45 msec 0.38 msec
Spawn, per iteration 0.47 msec — —
LFS small, create, async 0.31 sec 0.316 sec 0.22 sec
. . . per-file sync 459 sec 558 sec —
. . . group sync 2.57 sec — —
LFS small, read, cached 0.16 sec 0.068 sec 0.14 sec
. . . uncached 6.49 sec 1.86 sec —
. . . no IDE disk prefetch 86.4 sec 86.6 sec —
LFS small, unlink, async 0.090 sec 0.244 sec 0.068 sec
. . . per-file sync 456 sec 173 sec —
. . . group sync 0.38 sec — —
LFS large, sequential write 2.14 sec 3.88 sec —
. . . sync random write 93.0 sec 89.7 sec —
LFS large, uncached read 1.96 sec 1.80 sec —

Table 2.3: Microbenchmark results on HiStar, Linux and OpenBSD.

file system—a 64-bit version of OpenBSD 3.8 for amd64 performed strictly worse in every benchmark.

We did not run synchronous file system benchmarks under OpenBSD, because we could not disable IDE

write caching.

2.6.1 Microbenchmarks

To evaluate the performance of specific aspects of HiStar, we chose four microbenchmarks: LFS small-file

and large-file benchmarks [43], an IPC benchmark which measures the latency of communication over

a Unix pipe, and a fork/exec benchmark that measures the latency of executing /bin/true using fork

and exec. All microbenchmarks and /bin/true were compiled statically to eliminate dynamic linking

overhead. Table 2.3 shows the performance of the four microbenchmarks on three different operating

systems.

For the IPC benchmark, two processes are created, connected by two uni-directional pipes; each pro-

cess sends any messages it receives back to the other process. The benchmark measures the average

round-trip time taken to transmit an 8-byte message, over one million round-trips. HiStar performs better

than Linux in this benchmark, but somewhat slower than OpenBSD.

HiStar’s performance noticeably suffers in the fork and exec microbenchmark. In part, this is because

Linux and OpenBSD pre-zero memory pages, which HiStar does not yet do. Moreover, while OpenBSD
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and Linux require 9 system calls to fork a child, have the child execute /bin/true, have /bin/true exit,

and have the parent wait for the child, the same workload requires 317 system calls on top of HiStar’s

lower-level interface. However, the flexibility provided by a lower-level interface allows us to implement

more efficient library calls, such as spawn, which directly starts a new process running a specified exe-

cutable. The spawn function runs 3 times faster than the equivalent fork and exec combination, issuing

only 127 system calls per iteration. We note that use of dynamic linking would reduce the relative perfor-

mance difference between HiStar and Linux.

The LFS small file benchmark creates, reads, and unlinks 10,000 1kB-sized files and reports the total

running time for each of these three phases. We measured different variations of the phases, as shown

in Table 2.3. The asynchronous and cached variations show HiStar has comparable performance to the

other systems for requests that go to cache. The uncached read phase measures the time to read 10,000

small files from disk. Here Linux significantly outperforms HiStar, averaging less than 1/10th the disk’s

8.3 msec rotational latency to read each file. We attribute this performance to read look-ahead in the

IDE disk [46], because Linux clusters files from the same directory while HiStar does not. Disabling

lookahead, HiStar and Linux perform comparably.

In the synchronous unlink phase, HiStar performs significantly worse than Linux. This is because

we implement fsync of a directory by checkpointing the entire system state to disk, whereas Linux only

writes out the modified directory entry. Synchronous file creation in HiStar also checkpoints the entire

system state; however, its performance is comparable to Linux because ext3 performs more writes in this

case. Write-ahead logging allows HiStar to achieve acceptable fsync performance by queuing updates

in a sequential on-disk log. Logged updates are applied in batches; during each run of the synchronous

small file benchmarks, the contents of the on-disk log were applied to disk about 10 times (once for

approximately every 1,000 synchronous operations).

The single-level store offers a new group sync consistency choice not possible under Linux. In group

sync, the system state is checkpointed to disk only once at the end of each benchmark phase. The single-

level store guarantees that the application either runs to completion or appears never to have started. Using

group sync in HiStar, some applications may achieve a significant speedup over Linux, as high as a factor

of 200 for applications similar to the LFS small file benchmark.

For the LFS large file benchmark, we evaluated three phases. In the first phase, a 100MB file was

created by sequentially writing 8KB chunks, with a single call to fsync at the end of the phase. HiStar

achieves close to the maximum disk bandwidth of 58MB/sec [46]; we suspect that block-based (rather

than extent-based) allocation in ext3 accounts for Linux’s slightly lower performance.
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Benchmark HiStar Linux OpenBSD
Building HiStar kernel 6.2 sec 4.7 sec 6.0 sec
Transferring 100MB with wget 9.1 sec 9.0 sec 9.0 sec
Virus-checking a 100MB file 18.7 sec 18.7 sec 21.2 sec
. . . with isolation wrapper 18.7 sec — —

Table 2.4: Application-level benchmark results.

The second phase tested random write throughput; 100MB worth of 8KB chunks were written to

random locations in the existing file, and the modifications were fsynced to disk for each 8KB write. In

the case of pre-existing segments, HiStar allows modified segment pages to be flushed to disk (modified

in-place) without checkpointing the entire system state. As a result, the performance is again quite close

to that of Linux, since each random write involves flushing two 4KB pages to disk both in Linux and in

HiStar.

The third phase of the large-file benchmark tested read performance by sequentially reading the

100MB file in 8KB chunks. The performance is approximately the same between HiStar and Linux.

Currently the HiStar prototype does not support paging in of partial segments, so the entire 100MB file

segment is paged in when the file is first accessed—a limitation we plan to address in the future. As a

result, the performance of random reads differs little from the sequential case.

2.6.2 Application Performance

For an application-level benchmark, we built the HiStar kernel using GNU make 3.80 and GCC 3.4.5 on

the three operating systems; Table 2.4 summarizes the results. HiStar is somewhat slower than Linux and

comparable to OpenBSD. In HiStar, most of the CPU time in this benchmark is spent in user space. Since

most of our optimization efforts to date have focused on the kernel, we expect HiStar to improve on this

benchmark as we move to optimizing the Unix library.

HiStar also achieves good network throughput. When downloading a 100MB file using wget, the

results show all three operating systems could saturate a 100Mbps Ethernet. Finally, we measured the

time taken to check a 100MB file containing randomized binary data for viruses using ClamAV; HiStar

performs competitively with Linux and OpenBSD, both with and without the use of the wrapper described

in Section 2.5.1.
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Chapter 3

Distributed Information Flow Control

Large-scale applications, such as web servers, often require the resources of multiple physical machines

for performance scalability. Although HiStar can provide strong security guarantees on a single machine,

it falls short of enforcing an overall security policy for such distributed applications. This chapter presents

DStar, a system for enforcing an overall information flow control policy across machines in a distributed

system. DStar allows one to reason about information flow in a distributed system—namely, which mes-

sages sent to a machine can affect which messages sent from the machine—all without trusting or even

understanding most of the code in the system.

Superficially, DStar can be thought of as a way to extend HiStar’s information flow control mecha-

nisms over the network. However, controlling information flow in a distributed setting brings with it a

number of additional challenges. While HiStar has the luxury of an entirely trusted kernel, in the dis-

tributed setting there may not be any fully trusted code on any machine. For example, some web server’s

front-end machines may use SSL private keys, some back-end machines may store orders and credit card

numbers, but no single machine needs access to all this data. Moreover, the kernel on a single machine has

access to all information necessary to make access control decisions. In a distributed setting, one machine

may need authorization from a second machine to disclose data to a third machine. Even attempting to

obtain such authorization can inappropriately leak information.

Another, more subtle, complication of the distributed setting is resource allocation, a common source

of covert communication channels, particularly when crossing protection domains. Within a single ma-

chine, HiStar solves this problem by donating resources such as memory across inter-domain calls,

thereby saving the callee from having to commit any of its own resources in a way that would be detectable

45
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by other callers. In a distributed environment, resources on one machine cannot be donated to processes

on a different machine, yet receiver buffer space should still not be implicitly granted to senders.

Each DStar machine runs an exporter daemon that allows processes to communicate over the network

while preserving information flow constraints. At a high level, exporters exchange the local operating

system’s information flow restrictions for authenticated encryption of network messages and vice versa.

Thus, while confined processes cannot directly access the network, exporters provide them an interface

for safe communication with other processes on different machines. The job of the exporter, then, is to

decide when it is safe to send or receive a particular network message.

The main idea behind DStar is the use of self-certifying categories to specify information flow re-

strictions. Each self-certifying category includes the public key of its creator in the category name. This

allows any exporter to determine who is trusted to maintain information flow restrictions for that category

by verifying certificate signatures starting with the creator’s public key, without involving a trusted central

authority by design.

DStar exporters use HiStar to confine untrusted code, but DStar does not mandate any particular con-

finement mechanism. A Unix port of DStar permits partially trusted, unconfined code on legacy operating

systems to inter-operate with confined code on HiStar machines. This facilitates incremental deployments

that migrate only the riskiest parts of the system to HiStar. Capability-based operating systems could also

be used by DStar to isolate code running on a machine, with some limitations we discuss later. Distributed

capability systems, on the other hand, cannot provide confinement of untrusted code.

DStar exporters are mutually distrustful, and are not trusted by the underlying operating system. In

addition to improved security, a decentralized design makes it easier to integrate or communicate between

administrative domains, because there are no central databases to merge. Avoiding a centralized design

also ensures that there are no inherent centralized bottlenecks that would impede scalability.

Using DStar, we show how to build a highly privilege-separated, scalable, distributed web server

that provides strong security guarantees by restricting information flow. For instance, the SSL certificate

private key is not readable even by the SSL library, and can only be used for legitimate SSL negotiation.

Authentication tokens such as passwords are protected, so that even the bulk of the authentication code

cannot disclose them. Private user data returned from a storage server can only be written to an SSL

connection over which the appropriate user has authenticated himself. Even fully-compromised server

machines can only subvert the security of users that use or had recently used those machines.
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HiStar Tracking Label DStar Tracking Label DStar Ownership Label
{1} {} {}
{us 3, 1} {us} {}
{ui 0, us 3, 1} {ui,us} {}
{ui ?, us ?, 1} {} {ui,us}
{ui ?, us 3, 1} {us} {ui}

Table 3.1: Equivalent HiStar and DStar labels. Because DStar categories are typed, a s subscript indicates
a secrecy category, and an i subscript indicates an integrity category.

3.1 Design

DStar represents information flow restrictions using a simplified version of HiStar labels that are easier

to reason about in distributed systems without global knowledge or authority. All DStar categories are

one of two types, secrecy or integrity, determined at category creation time. Secrecy categories restrict

who can observe and disseminate the data, and correspond to categories typically mapped to level 3 in a

HiStar label. Conversely, integrity categories constrain who can modify the data or vouch for its integrity,

and correspond to categories typically mapped to level 0 in HiStar. We use the suffix s and i to indicate

whether a category is a secrecy category or an integrity category, respectively. DStar has no equivalent

of level 2.1 All data in the system has a tracking label, which is a set of categories restricting who can

observe or modify the data. There are no levels in DStar labels, because category types implicitly specify

the equivalent level. Bypassing any category’s restriction requires privilege in that category; in HiStar,

this corresponds to level ?, but DStar represents this privilege with a separate ownership label. Table 3.1

shows a few examples of equivalent HiStar and DStar labels.

Every message M sent over the network in the DStar protocol has a tracking label LM specifying how

its contents have been and should be protected by hosts’ local operating systems. Every process P that

can send or receive messages also has a tracking label, LP, which determines what messages P can send

or receive.

Intuitively, P cannot receive any message whose tracking label contains any secrecy category not in

LP, or any message whose tracking label is missing any integrity category present in LP. Conversely, if

P wants to send a message, the tracking label of the message must contain at least all of the secrecy

categories in LP, and at most all of the integrity categories in LP. For any two labels L1 and L2, we say

L1 v L2 iff L1 contains all the integrity categories in L2 and L2 contains all the secrecy categories in L1.

1The semantics of level 2 in a particular category in HiStar can be achieved by freely granting clearance in that category in DStar
instead.
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{}
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Figure 3.1: On the left, the lattice formed by one secrecy category, xs, and one integrity category, yi. On
the right, another integrity category, zi, is added, and the resulting lattice is shown, with new lattice points
(labels) indicated by a shaded background. Arrows show pairs of labels where the “can flow to”v relation
holds. Information can also flow transitively over multiple arrows at the same time.

With this notation, a sender S can send a message M as long as LS v LM , and a receiver R can receive

M as long as LM v LR. As illustrated in Figure 3.1, labels form a lattice [9] under the v relation; arrows

indicate the direction in which messages can be sent. Labels thus transitively enforce a form of mandatory

access control.

Each process also has a second set of categories, OP, called its ownership label. We say a process

owns a category when its ownership label contains that category. Ownership confers the ability to remove

any restrictions imposed by a category at the owner’s discretion. Thus, we ignore the categories a process

owns when determining what messages it can send and receive, and the rules become LS−OS v LM−OS

and LM−OR v LR−OR.

From the network’s point of view, all access control is discretionary. Any host that receives data

from the network can, at its discretion, retransmit the data with a different tracking label to an arbitrary

destination. Therefore, all processes with direct network access must have the same tracking label, Lnet,

which in the absence of multiple networks is often empty, Lnet = {}.

A process that sends and receives DStar messages over the network is known as an exporter. Ex-

porters allow other processes that don’t have direct network access nonetheless to send data and privilege

across machines. Such processes typically have non-empty tracking labels; exporters arrange for the local

operating system to enforce the restrictions implied by those labels. Specifically, an exporter’s job is to

ensure that, wherever data flows, the data’s tracking label never drops secrecy categories or adds integrity

categories except through the action of other processes owning those categories.

Consider the typical web server shown in Figure 3.2. The user data server sends one user’s data to the

application server in response to a query, but wants to ensure that the application code cannot misuse this

data. To do this, it sends the user’s data in a message M labeled LM = {s}, where s is the user’s secrecy
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Figure 3.2: Typical architecture of a three-tiered web application. The three types of servers comprising
the web application are the front-end server, the application server, and user data server. The shaded
application code is typically the least trustworthy of all components, and should be treated as untrusted
code to the extent possible.

category, to the exporter EA running on the application server A. As long as no one has ever granted

ownership of s to any process on A other than EA, then EA guarantees that M’s contents will not affect any

outgoing message not also labeled with s. (Conversely, if EA transmits a message M′ labeled LM′ = {i} for

some integrity category i not owned by any process other than EA, this means the contents of M′ cannot

depend on any message A has received without i in its label.) To allow the data to eventually reach the

user, the user data server grants ownership of s to the process handling the user’s connection on the HTTP

front-end server. This allows that process to send the application code’s output over the network in an

ordinary, non-DStar TCP connection.

DStar requires two things to enforce its guarantees. First, exporters must map DStar labels onto local

operating system mechanisms that can enforce the appropriate restrictions. In the case of HiStar, this

amounts to a mapping between DStar labels and HiStar labels, which we discuss in Section 3.2. Second,

exporters need a way to ensure they are actually speaking to exporters on other machines and to determine

which categories those exporters own. DStar uses cryptography for this purpose, as we will now describe.

3.1.1 Message Transfer Rules

Exporters that exchange messages are responsible for verifying each other’s authority to participate in

the exchange. Having a fixed network tracking label, Lnet, simplifies the access checks. Before S sends

a message M to R, it must ensure that R is trusted to safeguard M’s privacy, which means checking

LM −OR v LR −OR. Since LS = LR = Lnet, this becomes LM −OR v Lnet −OR, or, when Lnet = {},

simply LM−OR v {}, a formal way of stating the requirement that R owns every secrecy category in M’s

tracking label. Similarly, before accepting the message, R must check that S can vouch for M’s integrity

by verifying that Lnet−OS v LM−OS or, if Lnet = {}, just {} v LM−OS (meaning S owns all integrity

categories in LM). Thus, a key goal of the DStar protocol is to allow exporters to verify one another’s

ownership privileges.
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∀K K owns K
∀K, ID,T K owns 〈K, ID,T 〉
∀K,K′,x (K owns K′),(K′ owns x)⇒ K owns x
∀K,K′,x (K : K′ owns x),(K owns x)⇒ K′ owns x

Table 3.2: Rules for deriving the owns relation from DStar delegation certificates. K and K′ are public
keys, ID is a 64-bit identifier, and T is type of a category. x can be either a key or a category. K : m
denotes a certificate signed by K containing message m.

Each exporter has a public/private key pair, and exporters are named by their public keys. Exporters

use their public keys for two main purposes: to authenticate communications with other exporters (by

negotiating symmetric session keys), and to sign delegation certificates granting ownership to other ex-

porters.

Category names in DStar are tuples of the form 〈Creator, ID,Type〉, where Creator is the public key

of the exporter that created this category, ID is an opaque 64-bit identifier, and Type is either secrecy

or integrity. An exporter by definition owns every category it creates, just as HiStar grants ownership of

categories to the threads that create them. To create a category, an exporter simply chooses an ID value

that it has not used before, which it can do by encrypting a counter with a block cipher.

Exporters can own both categories and other exporters. If exporter K owns K′, then this means K owns

every category owned by K′. An exporter can delegate ownership of any category or exporter it owns to

any other exporter by signing a delegation certificate. A delegation certificate states that one exporter now

owns either some other exporter or some category. Each certificate includes an expiration time to simplify

revocation.

Table 3.2 summarizes the rules used to interpret these delegation certificates. These rules precisely

define OA, the set of categories owned by some exporter A.

When a sender checks that a message can flow to the recipient, the sender must not initiate any net-

work communication to determine which categories the recipient owns. Otherwise, such communication

could in itself convey the fact that a secret process is sending a message, thereby leaking information. For-

tunately, embedding public keys in the names of categories allows the sender to verify that the receiver

owns a category without any additional external information, based purely on self-authenticating delega-

tion certificates. In the next section, we discuss how to distribute these certificates without introducing

covert channels.
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To this point, we have only defined the rules for when it is safe to send a message to an exporter.

However, at a low level, network messages are sent to network addresses, not public keys. Any com-

munication to look up the IP address of an exporter based on its key can in itself leak information. We

therefore introduce address delegation certificates, which contain the exporter’s current network address,

signed with the exporter’s key. An address delegation means that only the named exporter will learn of

messages sent to the specified address.

Exporters currently distribute address delegations by periodically broadcasting them to the local-area

network. Expiration times allow IP address reuse: after expiration, exporters will not connect to the old ad-

dress, as doing so could leak information. In a complex network, broadcast would not be sufficient to dis-

tribute address delegations to all of the exporters. In that situation, we envision using an explicitly-trusted

directory service, akin to DNS, that would map exporter keys to recent address delegation certificates for

that exporter. We have not implemented this in our prototype.

In addition to transferring data, DStar provides privilege transfer. Each message M includes a set of

categories OM whose ownership should be granted to the message recipient. When sender exporter S

sends message M to receiving exporter R, R verifies that S is authorized to grant the privileges specified

by the message by checking that OM−OS = {}.

3.1.2 Sending Messages

DStar messages are sent to message slots on participating machines. A slot is similar to a port listening

for requests from the network, but it also explicitly specifies the resources used to deliver the message, an

important consideration to avoid covert channels. On HiStar, slots correspond to either gates or segments.

Consider a system which uses shared resources to queue incoming messages. A secret process could

leak information by sending (or not sending) many messages to fill up some message queue; a non-secret

process could send a message of its own, and learn information based on whether its message is processed

or dropped. Explicitly naming resources allows the exporter to avoid such covert channels: as we will

discuss later, in HiStar all resources are labeled, and the exporter only delivers messages to resources with

a matching tracking label. Although the network itself is a shared resource, our goal is to make it the only

shared resource; future work on explicit network resource allocation may help address that problem.

The encrypted message format used by exporters over the network is as follows:

struct wire_message {
pubkey recipient_exporter;



52 CHAPTER 3. DISTRIBUTED INFORMATION FLOW CONTROL

slot recipient_slot;
label tracking;
label ownership;
label clearance;
delegation_set dset;
mapping_set mapset;
opaque data;

};

The destination of the message is slot recipient slot on recipient exporter’s machine. The

tracking label specifies information flow restrictions on the contents of the message. The recipient

exporter will grant ownership of categories specified in the ownership label to the recipient slot when

it delivers the message. The protocol also allows granting clearance privilege; it follows much the same

rules as ownership. dset contains delegations proving to the recipient exporter that the sender owns all

integrity categories in the tracking label, and all categories in the ownership and clearance labels.

The mapset contains mappings between DStar categories and local security mechanisms on the recipient

machine; we will discuss them in more detail in the next section. The payload is stored in data.

The exporter provides a single function to send messages:

void send(ip_address, tcp_port, wire_message, delegation_set, mapping_set);

Here, the delegation set and mapping set have the opposite roles from their counterparts in the

wire message. They must prove to the local exporter that it is safe to send the supplied wire message

to the recipient exporter. In particular, the delegation set contains delegations that prove the recipient

exporter owns all secrecy categories in the message tracking label, and the mapping set allows the

exporter to translate between the local security mechanism on the sending host and DStar categories. In

addition, an address delegation, proving that the specified IP address and TCP port number speak to the

recipient exporter, must be included in the delegation set.

3.1.3 RPC

DStar provides a traditional RPC interface in an application library. This RPC library is not part of the

trusted exporter, and instead runs in the application’s address space and protection domain, using the ex-

porter’s message delivery interface for communication. Most importantly, the RPC library cannot violate

any security guarantees enforced by the exporter.

When making an RPC call, the client library first creates a slot to receive the server’s response, and

then sends the request message to the server’s slot. The request message specifies the response slot that
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was just created by the client library, and delegation certificates and mappings for the server to send

back a response. The server library sends its response to the slot specified in the request message, using

delegation certificates and mappings provided by the client. In case of message loss, it is up to the client

to either retransmit the request or return an error after a timeout. The server can implement a reply cache

to provide at-most-once semantics.

Typically, the server’s response message has the same tracking label as that of the client’s request, and

the response message implicitly acknowledges the successful delivery of the client’s request message.

However, the server may want to send a response with a different tracking label; for instance, it may add

an additional secrecy category to the response message. This leads to the following complications.

First, the client must provide resources to accept a secret response message from the server. Second,

the initial client thread that sent the request message will not be able to observe the more secret response

message sent by the server. As a result, the server must send an explicit delivery acknowledgment to the

client, with the tracking label of the original request, to prevent the client from retransmitting the request.

The server must also eventually inform the initial client thread that it can reclaim the resources used to

process the secret response; the server can batch these notifications over a long period of time to reduce

covert channels. Finally, the server may be able to send multiple response messages to the client without

the client’s knowledge; this can be addressed with the help of the guarded invocation service described

next. We will not discuss this style of RPC in more detail, because it is not used by any of the applications

described in this dissertation.

3.1.4 Additional Services

DStar exporters provide some additional functionality, implemented as RPC servers on well-known slots.

The delegation service allows an owner of a category to create a delegation to another exporter, named

by a public key; a signed delegation is returned to the client. If this service is compromised, an attacker

can create arbitrary delegations for all categories owned by this exporter, compromising the security of

any data that this exporter is trusted to handle. This service is fully trusted by the exporter.

The mapping service creates mappings between DStar categories and local operating system security

mechanisms; it will be discussed in more detail in the next section. This service is also fully trusted.

The container service provides a way to allocate a new container in an existing one, with a new

tracking label. This service is attested for, but not trusted by the exporter: its compromise will not violate

the exporter’s security guarantees.
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The container service provides a timeout mechanism used to garbage-collect resources on the server

in case of client failure during a series of RPC calls. A container can be created with a timeout, in which

case a thread is started that will delete the container after the specified timeout. Ephemeral state, such as

category mappings, associated with some higher-level transaction, is stored in this container. Even if the

client fails, resources will be garbage-collected.

The guarded invocation service launches verified executables. A client can use this service to start a

process with specified arguments and privileges on a remote machine, as long as a cryptographic check-

sum of the executable file on the remote machine matches the checksum provided by the client. The caller

must provide resources to execute the resulting process. This service is used in bootstrapping, when only

the public key of a trusted exporter is known. The exporter attests to the authenticity of this service, but

does not trust the service itself.

3.2 HiStar Exporter

We first discuss the overall design of the exporter, inspired by the design of the HiStar kernel, and then

describe how the exporter enforces information flow control on HiStar.

3.2.1 Overview

To reduce the effect of any compromise, the exporter avoids superuser privilege by design. We have

already described the mutually-distrustful DStar network protocol, but the same principle applies on the

local machine as well. The exporter runs as an ordinary process on HiStar without any inherent privileges

from the kernel. The owner of each local category explicitly allows the exporter to translate between that

category’s restriction on the local machine and encrypted messages to other DStar exporters, by granting

ownership of the local HiStar category to the exporter. The exporter uses this ownership to allow threads

with non-empty tracking labels, which may not be able to send or receive network messages directly, to

send and receive appropriately-labeled DStar messages.

Resource allocation can lead to unexpected covert channels, or worse yet, denial of service attacks,

if not addressed by the fundamental design. The overall design of DStar, and that of the HiStar exporter,

labels all resources in the system, and ensures that resource use and allocation are subject to the same

information flow constraints as reading and writing.
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Finally, to ensure that all data is appropriately labeled and that these labels are checked on access,

global data and resources are avoided. Instead, the exporter is largely stateless, and requires that all

state and resources necessary to send and receive messages be explicitly specified in each request. This

aspect of the design is similar in spirit to the “no ambient authority” principle espoused by capability

systems [17]. We will now describe how a stateless exporter can still maintain mappings between DStar

and HiStar categories.

3.2.2 Category Mappings

Recall that one of the main tasks of the exporter is to translate between DStar categories and corresponding

HiStar categories on the local machine. Since the exporter must be stateless, it is up to the users to

supply these mappings in each message. However, these mappings are crucial to the security guarantees

provided by the exporter—by corrupting these mappings, an attacker could convince the exporter to label

an incoming secret message using a category owned by the attacker on the local machine, violating all

security guarantees.

In the network protocol, exporters use signed certificates to get around this problem: users supply

certificates to send each message, but exporters verify the signature on each certificate. On the local

machine, exporters also need ownership of the local HiStar category in order to be able to manipulate

data labeled with that category. Since the HiStar kernel only allows category ownership to be stored in

thread or gate objects, the exporter fundamentally requires resources (for a kernel object) for each category

it handles on the local machine.

Thus, for each mapping between a DStar category and a HiStar category, the exporter needs two

things: a kernel object storing ownership of the local HiStar category, and some sort of a secure binding

between the DStar and HiStar categories. The secure binding could be represented by a certificate, but

since the exporter already needs a kernel object to store ownership, we store the secure binding along with

that kernel object, and avoid the overhead of public key cryptography.

The objects representing a mapping between DStar category d and HiStar category c are shown in

Figure 3.3. These objects are stored in a user-provided container, allowing users to manage their own

resources, and making the exporter stateless. The exporter uses a pair of secrecy and integrity categories,

es and ei, to ensure the security of mappings, in the face of malicious users providing resources for these

mappings. Gate g stores the exporter’s ownership of category c. The gate has a verify label of {ei 0, 3} (not

shown in the figure), ensuring that only the exporter, which owns ei, can use this gate to obtain ownership
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Lg = {c?, 1}〈c,d,m,s,g〉
Gate g

Ls = {es 3, ei 0, 1}

Binding segment s

container
User-provided

Lm = {es 3, ei 0, 1}
Mapping container m

Figure 3.3: Objects comprising a mapping between DStar category d and local HiStar category c. Only
the exporter owns secrecy and integrity categories es and ei.

of c. A secure binding segment s stores the mapping tuple 〈c,d,m,s,g〉, consisting of the HiStar and DStar

categories, and the object IDs of the objects that comprise the mapping.

Users must provide this mapping tuple, 〈c,d,m,s,g〉, in order to use a particular category mapping.

The mapping set, mentioned earlier in the wire message and the send() function, is a set of such

tuples. The exporter verifies the integrity of each mapping by checking that the supplied mapping tu-

ple matches the contents of the binding segment, and that the label on the binding segment is correct.

Since only the exporter owns ei, no one else could have altered the binding segment, and the mapping is

authentic.

The mapping service, briefly mentioned earlier, allows applications to create new mappings. This

service can allocate a fresh HiStar category for an existing DStar category, or a fresh DStar category

for an existing HiStar category. The exporter does not grant the freshly-allocated category to the caller;

instead, if the caller owns the existing category, it can separately gain ownership of the new category

through the mapping.

It is safe for anyone to create such fresh mappings: if they did not own the existing category, they will

not own the newly-allocated category either, and will not be able to change the security policy set by the

owner of the existing category. On the other hand, creating a mapping between an existing pair of HiStar

and DStar categories requires the caller to prove ownership of both categories, by granting them to the

mapping service. In all cases, the caller must provide the container to store the new mapping, and must

grant the mapping service privileges to access this container.

The exporter does not check whether the sender can observe the parent container of the mapping

container, a check typically done by HiStar to ensure the caller is authorized to observe the container’s

resources. This potentially opens up a covert channel when the mapping is deallocated from its parent

container. However, we treat the mapping tuple as a capability, or pre-authorization, to observe whether

the mapping has been deallocated. Thus, the covert channel can only be exploited by processes that can
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already, in some way, communicate mapping tuples to one another. The HiStar kernel similarly treats

containers as pre-authorizations to use resources that one would not be able to otherwise allocate. The

pseudo-random 61-bit object IDs of the gate g and binding segment s prevent anyone from guessing a

valid mapping tuple to learn when it gets deallocated.

3.2.3 Exporter Interface

To allow other processes to send DStar messages, the exporter on HiStar provides a well-known gate. A

thread first writes the message it wants to send to a segment object, and then invokes the exporter’s gate,

specifying the object ID of the message segment and granting on gate invocation any privileges that it

wants to send as part of the message. The exporter uses the verify label and verify clearance to check that

the caller can read and write the supplied segment, and that the caller’s tracking label is compatible with

the tracking and ownership labels specified in the message, before sending the message.

When delivering remote messages to the local machine, the HiStar exporter supports two types of

message slots: segment slots and gate slots. Only gate slots support privilege transfer, but they incur

higher overhead than segment slots.

Segment slots name a segment by its 61-bit kernel object ID and the object ID of its parent container

(required to name any object in HiStar). Before delivering a message to a segment slot, the exporter

translates the DStar label of the message into a HiStar label, and ensures that the segment tracking label

is the same as the message tracking label. This both provides access control and avoids resource covert

channels. (The exporter also checks that the sender, represented by the message tracking label, can read

the segment’s parent container.) To deliver the message, the exporter writes the message into the segment,

and uses a futex [13] to wake up any threads waiting for a message.

Gate slots name a gate kernel object and a container used for message delivery. To deliver a message

to a gate slot, the exporter creates a segment containing the message in the slot’s specified container,

then creates a new thread in the same container, and uses this thread to invoke the slot’s gate with all

ownership privileges that were specified in the message. The tracking label of the segment and the thread

are determined by translating the message’s DStar tracking label into a HiStar label. As with segment

slots, the exporter ensures that the caller, represented by the message tracking label, is allowed to modify

and observe the container and observe the gate.

All broadcast address delegation certificates received by an exporter are made available to other

threads on the same machine, by writing them to a well-known file with a tracking label of {ei 0, 1}.
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The file’s tracking label ensures that only threads authorized to receive data from the network can read it,

and only the exporter can write to it. This makes it easy to find address delegation certificates for local

exporters without adding covert channels.

3.3 Implementation

The current implementation of the exporter comprises about 3,700 lines of C++ source code, and runs on

both HiStar and Linux (though on Linux, all software must be trusted to obey information flow restric-

tions). The client library, trusted by individual processes to talk to the exporter on HiStar, is another 1,500

lines of C and C++ code. The exporter uses the libasync event-driven library [29] for processing network

messages and cryptography, as well as libc and libstdc++, which dwarf it in terms of lines of code.

3.3.1 Privilege Management

The client RPC library uses unbound gates to store any privileges received from the server; such privileges

are initially held by the incoming message thread. The initial client thread can then acquire these privileges

by invoking the gate.

The exporter uses unbound gates to avoid the need for large labels representing all of its privileges.

When a local thread invokes the exporter’s gate to send a message, the thread may have secrecy categories

in its tracking label, which prevent it from modifying the exporter’s address space when it first enters. In

this case, the thread tries to acquire ownership of all such categories by invoking the gates associated with

each category mapping provided as part of the request. If it now owns all those categories, it can switch

to the original exporter address space, and continue processing the message there; otherwise, it halts. The

tracking label of any thread is therefore proportional to the number of categories in the tracking label of

the message, rather than the total number of categories owned by the exporter.

3.4 Applications

To illustrate how DStar helps build secure distributed systems, we focus on two scenarios, based around

web applications. We first show how the HiStar web server can be distributed over multiple machines like

a typical three-tiered web application, providing performance scalability and strong security guarantees

similar to those provided by a single HiStar machine. Second, we also show how, even in an existing web



3.4. APPLICATIONS 59

RSAd

authenticationauthentication
proxy

user
files server

file
User Data Server

125 4

netd

launcher

httpd

SSLd

HTTP Front-end
Server

Application Server

6

3

application
code

Client
HTTPS

RSA private key

Figure 3.4: Structure of the same privilege-separated SSL web server running on multiple physical Hi-
Star machines. Shaded boxes represent physical machines, and communication between these physical
machines is done through the DStar exporters running on individual machines. Circled numbers indicate
the order in which DStar messages are sent between machines. Not shown are DStar messages to create
mappings on remote machines.

service environment, DStar can be used to improve security by incrementally adding information flow

control for untrusted code.

Although our evaluation focuses on well-understood web applications, many distributed systems

could benefit from specifying global security policies in terms of information flow. For example, a medi-

cal records system could use DStar as a mechanism to ensure patient privacy across a distributed system

of servers and desktops. The policy controlling release of patient records would be implemented by a

small trusted program with ownership of the patient’s secrecy category.

3.4.1 Distributed Web Server

We have taken the HiStar web server, described earlier in Section 2.5.4, and used DStar to turn it into a

typical three-tiered web application, as shown in Figure 3.4. The first tier, the HTTP front-end servers, run

components responsible for accepting client connections and handling the HTTP protocol: the launcher,

SSLd, RSAd, and httpd. The second tier, or application servers, run application-specific logic to handle user

requests. Finally, the third tier, user data servers, store private user data and perform user authentication.

Servers in the first two tiers are largely stateless, making it easy to improve overall performance by

adding more physical machines. This is an important consideration for complex web applications, where

simple tasks such as generating a PDF document can easily consume 100 milliseconds of CPU time, when

using GNU ghostscript for this purpose. The third tier, the user data servers, can also be partitioned over
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multiple machines, by keeping a consistent mapping from each individual user to the particular user data

server responsible for his data. Our prototype has a statically-configured mapping from users to user data

servers, replicated on each HTTP front-end server.

These changes involved adding 740 lines of C++ code: a 140-line trusted authentication proxy, a 220-

line untrusted RPC server to launch application code, a 100-line file server, trusted to preserve integrity

but not secrecy, and finally 280 lines of code added to httpd.

Interactions between components on the same machine remain the same, with the same security prop-

erties as before. For instance, the RSA private key is kept private by the same RSAd process, providing

only an RSA signing function. Interactions between components on different machines, on the other hand,

now go through the exporters on the respective machines, but still maintain the same structure and secu-

rity properties as on a single machine, with the exception that the exporters are now part of the trusted

code base for the web server.

The one difference is authentication; we have not yet ported the HiStar authentication service to work

over DStar, and instead rely on a trusted authentication proxy to invoke the HiStar authentication service

locally on the user data server. httpd trusts the authentication proxy to keep the user’s password secure,

but guarded invocation can ensure that the user’s password is only passed to an approved authentication

proxy binary. The next subsection discusses how the web server uses DStar to provide similar security

properties in a distributed system as we achieved on a single machine, by trusting the exporter code on

each machine.

3.4.2 Using DStar in the Distributed Web Server

To use DStar, applications, such as our distributed web server, must explicitly manage two important

aspects of the distributed system. First, applications must explicitly define trust between the different

machines in the distributed system, by creating the appropriate delegation certificates. Second, appli-

cations need to explicitly allocate resources on different machines—including containers and category

mappings—to be able to communicate between machines and execute code remotely. The rest of this

section describes how the distributed web server addresses these issues.

The key trust relation in our distributed web server concerns the individual users’ secrecy and integrity

categories, or in other words, what machines are authorized to act on behalf of what users. All user

categories in our design are initially created, and therefore owned, by the exporter on that user’s data

server. When the authentication proxy receives the correct user password in Step 1, it asks the local
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exporter to create a short-lived delegation certificate, valid only for a few minutes, for the user’s secrecy

and integrity categories to the exporter on httpd’s front-end machine. Short-lived certificates ensures that,

even if other machines are compromised, they can only subvert the security of users that are currently

using, or have recently used those machines. The authentication proxy sends these certificates, along with

granting ownership of the user’s categories using the ownership field of the message, to httpd in Step 2.

Although httpd receives ownership of the user’s categories, it does not act on behalf of the user di-

rectly. Instead, httpd passes ownership of the user’s categories to the application server in Step 3, where

application code uses them in Step 4 to communicate with the user data server. httpd asks the exporter

on its front-end machine to generate these delegation certificates to the application server. To be consid-

ered valid, these certificates must be presented together with a chain of certificates up to the category’s

creator—the user data server—proving that the front-end machine is authorized to delegate ownership in

the first place. Since this chain includes the initial, short-lived certificate from the authentication proxy,

malicious exporters cannot extend the amount of time they can act on the user’s behalf.

The distributed web server must also explicitly provide resources for all messages and processes.

Since the launcher process drives the execution of each user request, it starts out with ownership of a

global resource category, rG
i , which gives it access to resources on all other machines (we will discuss

this category in more detail in the next subsection). Each application and user data server has a container

labeled {rG
i }, known to the launcher process. The container’s label allows the launcher process to use that

container’s resources.

When the launcher starts httpd, it grants it ownership of rG
i , and gives it the names of containers on

all other servers. When httpd communicates with the authentication proxy in Step 1, for example, it uses

one of these containers, along with its ownership of rG
i , to send the request message.

A notable case arises in Step 4, when the application code wants to communicate with the file server.

Although httpd could grant the application code ownership of rG
i , the application code would not be able

to use the resources of a container labeled {rG
i } on the user data server, because the application code is

itself labeled {us}, and allowing it to write to that container would constitute a covert channel. Instead,

httpd pre-allocates a sub-container with a label of {us,ui} on the user data server, using that machine’s

resource allocation service, and passes the name of this container to the application code in Step 3. The

application code can use this container to communicate with the file server, but cannot leak the user’s

private data through resource covert channels.

Although in our prototype the application code communicates with only one user data server, a more

complex application can make use of multiple data servers to handle a single request. Doing so would
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require the application code to present delegation certificates and have access to resources on all the data

servers it wants to contact. To do this, httpd could either pre-allocate all such delegations and resources

ahead of time, or provide a callback interface to allocate resources and delegations on demand. In the

latter case, httpd could rate-limit or batch requests to reduce covert channels.

3.4.3 Bootstrapping and Replication

Though the HTTP front-end servers and the application servers are largely stateless, a bootstrapping

mechanism is still needed to add a new server to an existing distributed system. In the case of HTTP

front-end servers, the SSL private key must also be securely distributed to the new server to start a new

RSAd process; we want to ensure that the private key is only revealed to an RSAd process, and not to any

other process that may be running on the remote machine.

For analogy, consider the process of adding a new machine to an existing Linux cluster. An admin-

istrator might typically install Linux, then from the console set a root password, configure an ssh server,

and (if diligent about security) record the ssh host key to enter on other machines. From this point on,

the administrator can access the new machine remotely, and might use a tool such as rdist or rsync to

copy over configuration files and application binaries. The ability to copy private data to the new machine

safely stems from knowing its ssh host key, while the authority to access the machine in the first place

stems from knowing its root password.

To add a new physical machine to a DStar cluster requires similar guarantees. Instead of an ssh host

key, the administrator just records the exporter’s public key, but the function is the same, namely for

other machines to know they are talking to the new machine and not an impostor. However, DStar has no

equivalent of the root password, and instead uses categories.

In fact, the root password serves two somewhat distinct purposes in Linux: it authorizes clients to

allocate resources such as processes and memory on the new machine—i.e., to run programs—and it au-

thorizes the programs that are run to access and modify data on the machine. DStar splits these privileges

amongst different categories.

When first setting up the DStar cluster, the administrator creates an integrity category ri on the first

HiStar machine, and a corresponding DStar category rG
i (G for global). rG

i represents the ability to allocate

and deallocate all resources used by the distributed web server on any machine. It can be thought of as

the “resource allocation root” for this particular application. However, there is no equivalent “data access

root.” Instead, different pieces of data are protected by different categories.
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When configuring the new machine, the administrator must allow rG
i to allocate resources. There is a

bootstrap procedure in which the administrator gives the name of category rG
i to the exporter, the exporter

allocates a local HiStar category r′i, creates a new container protected by r′i, and stores a mapping between

rG
i and r′i in that container. Finally, the exporter announces the mapping it just created for r′i and the object

ID of the new container; the mapping is self-authenticating, and need not be securely transferred.

Processes on other machines can now copy files to the new machine and execute code there if they

own rG
i and know the mapping from rG

i to r′i, much as the ssh client can on Linux if it knows the new

machine’s root password. The difference is that a process that owns rG
i and other categories can use the

other categories to create files that cannot be read and written just by virtue of owning rG
i .

For example, to replicate RSAd, the administrator creates a sub-container in the machine’s initial

container, protected by a fresh integrity category, creates appropriate mappings and delegations for this

category, and passes ownership of this category to an RSAd replication daemon running on the local

machine, along with the public key of the new server where the new RSAd should run. The replication

daemon uses the provided container to create mappings and delegations for the private key’s secrecy

category, and uses guarded invocation to invoke an identical RSAd binary on the remote host.

The private key is sent to the new machine protected by its DStar secrecy category, rsaG
s . Ownership

of this secrecy category is granted to the new machine’s exporter and RSAd process, but the latter is

conditional on guarded invocation (in case an attacker has tampered with the RSAd binary on the new

machine). Note that the original process that granted the RSAd replication daemon access to a container

on the new machine cannot read the private key now stored there, because it does not own rsaG
s . Both

the replication daemon and the guarded invocation service, consisting of 120 and 200 lines of C++ code

respectively, are trusted to keep the private key secure, in addition to RSAd itself.

Once RSAd is running on the new machine, the administrator starts the launcher, also with guarded

invocation, and grants it ownership of categories it can use to communicate with the user data and ap-

plication servers. The launcher, in turn, starts SSLd and httpd as incoming client connections arrive, and

grants httpd the same categories so it can interact with user data and application servers directly. HiStar’s

system-wide persistence eliminates the need for a trusted process to start RSAd and launcher when the

machine reboots.

The current bootstrap procedure is tedious, requiring the manual transfer of category names and pub-

lic keys. In the future, we envisage a setup utility that uses a password protocol like SRP [57] to achieve
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mutual authentication with an installation daemon and automate the process. Alternatively, hardware at-

testation, such as TCPA, could be used to vouch for the fact that a given machine is running HiStar and a

DStar exporter with a particular public key.

3.4.4 Heterogeneous Systems

To illustrate how DStar can facilitate incremental deployment, we show how Linux can use HiStar to

execute untrusted perl code with strong security guarantees. To this end, we have implemented a DStar

RPC server running on HiStar, which takes as input the source code of a perl script and the input data

for the perl script, and returns two outputs: the return status of the perl process, and its output, when run

using the provided script and input data. The DStar exporter translates any information flow restrictions

and privileges supplied by the caller into HiStar labels, which the HiStar kernel then enforces.

Using the Unix port of DStar, a Linux machine can use this perl service to execute untrusted perl code,

with well-defined security properties beyond those of a typical sandbox. It is up to the Linux machine to

specify how different instances of perl can share data, by specifying the security policy using secrecy and

integrity categories in the tracking label of the request message. For instance, to ensure each request is

processed in complete isolation, a new secrecy category is used for each request.

If different scripts running on behalf of the same user should be allowed to share data, such as by

storing data in the file system on the HiStar machine, the same secrecy category should be used for each

request made on behalf of a given user. Most sandboxing mechanisms on Linux offer limited facilities for

secure, persistent storage.

One distinction in using DStar from a Linux machine rather than HiStar is that the caller must reason

about labels in terms of DStar categories, rather than local HiStar categories; the Linux kernel provides

no local category abstraction of its own.

A Linux machine can also be used as a database for HiStar machines, as long as all software running

on Linux is fully trusted to keep information flow restrictions, for example by storing the tracking label of

each database row in a special column. While such an approach may open certain covert channels inherent

in Linux’s implicit resource allocation, it may be an appealing alternative for incremental deployment.

Although not evaluated in this dissertation, we believe DStar could facilitate safe communication be-

tween currently-disparate systems that provide strong isolation, including label-based operating systems

like HiStar, capability-based operating systems like EROS, and programming languages like Jif.
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t Max throughput (req/sec) 11.7 15.8 16.3 11.8 11.8 11.8 14.3 24.6 27.8 14.7 14.7 15.7 25.7 9 25.3 42.4 93.6
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Table 3.3: Maximum throughput and minimum latency achieved by different web servers and configura-
tions under two workloads. The PDF workload generated a 2 page PDF document, and the cat workload
ran cat to generate an 8KB text document. The column labeled Linux reflects Apache. “No PS” ran our
web server on HiStar in a single address space, without any privilege separation. “No DStar” ran the
privilege-separated web server from Section 2.5.4. The “1” column ran the distributed web server all on
one machine. Other columns represent different numbers of physical machines used for the distributed
web server.

3.5 Performance

To quantify the overheads imposed by DStar, we evaluate the performance of our web server and perl

service under various conditions. The overheads introduced by both HiStar and DStar in the web server

are acceptable for compute-intensive web applications such as PDF generation, where the performance

is close to that of a Linux system. On the other hand, our web server delivers static content much more

slowly than Linux.

Benchmarks were run on 2.4GHz AMD Athlon64 machines with 1MB of CPU cache, 1GB of main

memory, and a switched 100Mbps Ethernet. In benchmarks requiring multiple machines, some of the

machines had a similar processor with 512KB of CPU cache. For web server comparison experiments,

we used Apache 2.0.55 on Ubuntu 6.06 with kernel version 2.6.15-26-amd64-generic. The PDF workload

used a2ps version 4.13b and ghostscript version 8.54. Xen experiments used Xen version 3.0.4 and kernel

2.6.16.33-xen for all domains. Web servers used OpenSSL 0.9.8a with 1024-bit certificate keys; DStar

exporters used 1280-bit Rabin keys.

3.5.1 Application Performance

To evaluate the performance of applications running on our web server, we approximated a realistic ser-

vice using a PDF generation workload. For each request, an HTTPS client connected to the server and

supplied its user name and password. The web server generated a 2-page PDF document based on an

8KB user text file stored on the server, and sent it back to the client. Clients alternated between two dif-

ferent users; since the web server did not cache any authentication state, this did not skew performance.

With multiple front-end servers, clients used a round-robin selection policy. We measured the minimum
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latency observed when a single client was active, and the maximum throughput achieved with the optimal

number of clients. The optimal number of clients varied for different configurations, but was generally

proportional to the number of servers.

Table 3.3 shows the results of this experiment. Linux provides 25% more throughput than a non-

privilege-separated web server running on HiStar; the difference is largely due to the overhead of fork

and exec on HiStar. Privilege separation of the web server on HiStar adds a further 8% penalty. Running

the distributed web server on a single machine shows the CPU overhead imposed by DStar, although such

a configuration would not be used in practice.

Additional front-end and user data servers did not improve the performance of this workload when

only one application server was in use, as the workload is largely CPU-bound on the application server.

Adding a second application server improves throughput by 90%, and a third application server brings

40% more throughput. At this point the bottleneck has shifted over to the front-end servers. Using two

front-end and user data servers avoids bottlenecks there, and in that case, three application servers deliver

2.95 times the throughput of a single application server.

3.5.2 Web Server Overhead

To more closely examine the overheads imposed by our web server, we replaced the CPU-intensive PDF

workload with a cat process which simply reads an 8KB user file from the server; the results are shown

in Table 3.3. Both the privilege-separated and non-privilege-separated web servers on HiStar have much

lower performance than Apache. Although Apache can achieve even greater throughput serving static

content without using cat, we wanted to measure the overhead of executing application code. The lower

performance reflects that the design of our web server is geared towards isolation of complex application

code; running simple application code incurs prohibitively high overhead.

Although the distributed web server has relatively low performance on a single machine, it achieves

good performance scalability when adding more physical machines. Unlike in the PDF workload, the

bottlenecks here are the front-end and user data servers. Doubling the number of front-end and user

data servers more than doubles the overall throughput; we believe this anomaly is caused by batching

of TCP/IP and DStar messages on the application server, which reduces context switching overhead.

Using two front-end or two user data servers alone does not achieve the same performance improvement,

suggesting that both are bottlenecks.



3.5. PERFORMANCE 67

lwIP on HiStar lwIP on Linux Linux native
Throughput 267 req/sec 238 req/sec 5595+ req/sec
Request latency 3.8 msec 4.7 msec 1.4 msec

Table 3.4: Throughput and latency of an echo server; each request opens a new connection and sequen-
tially sends and receives five 150-byte messages. When the server used the Linux TCP/IP stack, the client
saturated before the server. lwIP runs faster on HiStar due to direct access to the network device.

We believe that our web server’s low performance is in part due to the high latency and low throughput

of lwIP and its sockets API, since it was optimized to conserve memory on embedded devices. We ported

lwIP to run in user space on Linux, and measured the throughput and latency of requests to a TCP echo

server running with the native Linux TCP/IP stack, lwIP on Linux, and lwIP on HiStar. Table 3.4 shows the

results: lwIP achieves similar performance on both Linux and HiStar, while the native Linux TCP/IP stack

significantly outperforms lwIP. Running in user space is unlikely to be key to lwIP’s low performance;

Click [22] showed that user-level TCP implementations can perform competitively. We hope to achieve

better performance in the future by running the Linux TCP stack in the netd process on HiStar.

3.5.3 Privilege-Separation on Linux

Is it possible to construct a simpler, faster privilege-separated web server on Linux that offers similar

security properties? We constructed a prototype, running separate launcher, SSLd, RSAd, and Apache

processes, using chroot and setuid to isolate different components from each other. This configuration

performed similarly to a monolithic Apache server. However, to isolate different users’ application code

from one another, Apache needs access to setuid, and needs to run as root, a step back in security. We

can fix this by running Apache and application code in a Xen VM; this reduces the throughput of the

PDF workload to 5.5 req/sec. Even this configuration cannot guarantee that malicious application code

cannot disclose user data; doing so would require one VM per request, a fairly expensive proposition.

This suggests that the complexity and overhead of HiStar’s web server may be reasonable for the security

it provides, especially in a distributed setting.

3.5.4 Linux Integration

Table 3.5 shows the latency and throughput of running a simple perl script that prints “Hello world”

on Linux, on HiStar, and finally on HiStar invoked using DStar from a Linux machine. A fresh secrecy

category was used for each request in the latter case. This simple perl script provides a worst-case scenario,
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Linux HiStar HiStar using DStar
Throughput (req/sec) 349 161 52
Latency (msec) 2.9 6.5 96

Table 3.5: Throughput and latency of executing a “Hello world” perl script locally on Linux and HiStar,
and remotely on a HiStar machine invoked from Linux using DStar.

by incurring all of the overhead of invoking perl with little actual computation to amortize over; perl

scripts that perform actual work would fare much better. The lower performance of perl on HiStar is

largely due to the overhead of emulating fork and exec system calls. DStar incurs a number of round-trips

to allocate a secrecy category and create a container for ephemeral call state, which, combined with lwIP’s

high latency, contributes to a significantly higher request latency. Comparing the throughput of perl scripts

on HiStar running locally and remotely shows that DStar adds an overhead of 13 msec of CPU time per

request, which may be an acceptable price for executing arbitrary perl code with well-defined security

properties from a Linux machine.



Chapter 4

Discussion

4.1 Data Control Idioms

HiStar and DStar applications that have been developed so far tend to use information flow control mech-

anisms in a few common patterns. This section shows these patterns and how they are used by the appli-

cations described earlier. Most of these patterns can be combined to achieve multiple security properties

at the same time, by simply combining the label components from the individual patterns.

4.1.1 Discretionary Access Control

The Unix library on HiStar extensively implements discretionary access control using labels, by allocating

a pair of categories, r and w, for each protection domain. For example, each user, each process, and each

file descriptor has its own pair of discretionary protection handles. To prevent other threads from reading

or writing protected objects, the object is labeled {r 3, w0, 1}. Read-only protection, allowing anyone to

read but not write the object, is achieved by using a tracking label of {w0, 1}. Discretionary access is

conveyed by granting either {r?} to give read access or {r?, w?} to give read-write access. For example,

to share a file descriptor between multiple processes or threads, ownership of that file descriptor’s handles

is granted to all of the threads using the file descriptor.
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4.1.2 Secret Execution

Secret execution allows executing untrusted code on potentially private data while ensuring that the data

and privileges given to this untrusted code are not leaked. In other words, any information about the

execution of this untrusted code, including whether it was executed at all, is secret. This pattern is used to

isolate untrusted code in both the virus scanner example presented in Chapter 1 and the SSLd daemon used

by the web server. A fresh category, s, is allocated to isolate the untrusted code, and the code is executed

with a tracking label of {s3, 1}. Only threads labeled {s?}, initially just the thread that allocated category

s, can receive any information from the isolated, untrusted code, and as a result, they have full control

over what data or privileges the untrusted code can expose.

4.1.3 Export Protection

Export protection provides an intermediate level of protection between allowing or disallowing read ac-

cess to private files. If a file is read-protected with a tracking label of {r 3, 1}, untrusted code can be

given limited access to this file by granting a clearance of {r 3, 2}, instead of a tracking label of {r?, 1},

which would have given full discretionary access. This allows the untrusted code to read the file contents,

but does not allow it communicate the contents to anyone outside of the system (except through threads

labeled {r?, 1}). This pattern is used in the HiStar web server to execute untrusted web application code

with access to the user’s private files, while ensuring that the application code cannot disclose the contents

of the user’s files to anyone outside of the system.

4.1.4 Taint Tracking

Similar to export protection, taint tracking prevents potentially sensitive data from leaving the system

except through a small amount of privileged code. The main difference from export protection is in how

this mechanism is used by the applications. Unlike export protection, taint tracking allows almost any

thread to raise its tracking label to become tainted (using level 2 in HiStar), and the privileged code only

ensures that the tainted data leaves the system in an appropriate way. For example, the VPN application

uses two categories, i and v, to label data from the Internet and from the VPN respectively: data from the

Internet is labeled {i2,1} and data from the VPN is labeled {v2,1}. Internet data cannot not be sent out

over the VPN, and vice-versa, without passing some additional sanity checks, such as a virus scanner.
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4.1.5 Mutual Secrets

A variation of secret execution, this pattern allows the executed code to keep its own secret information

that is not accessible to the caller. For example, Section 2.4.5 described a timestamped signature daemon

that keeps a private signature key, but allows other processes to invoke it and generate signatures on their

own data. Other processes cannot access the secret signature key directly, and the signature daemon code

cannot launder the secret data supplied to it by other processes, since it is invoked with a tainted tracking

label. The executed code is trusted to maintain the secrecy of its own private information, such as the

private key in the signature daemon example. This pattern is used by the login process to verify the user-

supplied password, and by the RSAd daemon in the web server, which holds the SSL certificate private

key in secret.

A daemon process can allocate a category d to protect the secrecy of its own data, and store its data

in a segment labeled {d 3, 1}. The daemon then creates a gate with label {d ?, 1} to allow other processes

to invoke it on their private data. The caller would then allocate a fresh category s to protect the secrecy

of its data, and invoke the daemon’s gate on its private input data with a label of {d ?, s3, 1}. This allows

the daemon to read both its data and the caller’s data, but only return its results back to the caller. The

daemon cannot export a copy of the caller’s private data or store a copy in its own container.

4.1.6 Combining Privilege

Privilege combination allows two parties to combine their privileges to perform a certain operation, when

neither trusts the other one with its privileges outright. For example, this pattern is used by the login

process to create the retry counter segment, using the privileges of both the login process and the user

authentication daemon. To combine privileges, both parties agree ahead of time on a short piece of code

that they want to execute. The first of the two parties creates a read-only code segment containing this

code, along with a gate that invokes this code segment with the first party’s privileges. The second party

verifies that the gate, address space, and segment contain the agreed-upon code and are marked read-only,

and invokes the gate with its own privileges. The outcome is the execution of the read-only code segment

with the privileges of both parties. Either party can potentially abort the execution, but cannot affect it in

any other way.
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4.1.7 Inward Confinement

Inward confinement can be used to ensure that executing code does not receive any unwanted external

inputs, either from an attacker or some other colluding process. This can be useful in implementing a

stronger form of a chroot jail, ensuring that an application runs in isolation, perhaps in combination with

the secret execution pattern described earlier. A category i is allocated to provide inward confinement, and

the confined code is executed with a tracking label of {i0, 1} and a clearance of {i0, 2}. All approved

inputs to the executing code are labeled {i0, 1}. The tracking labels of most other objects in the system

have a higher level in category i (typically level 1), precluding the executed code from being influenced

by those objects.

4.2 Limitations

We believe HiStar and DStar provide a good environment to develop secure applications with small trusted

code size. Nonetheless, the systems have limitations both in terms of functionality and security. Some

of these limitations are artifacts of the implementation that we hope to correct, while others are more

fundamental to the approach.

Users familiar with Unix will find that, though HiStar resembles Unix, it also lacks several useful

features and changes the semantics of some operations. For example, HiStar does not currently keep file

access times; although possible to implement for some cases, correctly tracking time of last access is in

many situations fundamentally at odds with information flow control.

Another difference is that chmod, chown, and chgrp revoke all open file descriptors and copy the file

or directory. Because each file has one read and one write category, group permissions require a file’s

owner to be in the group. There is no file execute permission without read permission, and no setuid bit

(though gates arguably provide a better alternative to both). Several other facilities are missing, though

we hope to add them, including support for system-wide backup and restore, and a user-level trampoline

mechanism to allow upgrading of software behind gates (since gate entries are fixed).

Though HiStar is intended to allow administration without a superuser, we do not yet have experience

administering a production HiStar system. However, we believe that to the extent it is needed, superuser

privilege should be implemented by convention—explicitly granting most privilege to the root user—not

by design. A HiStar administrator can still revoke all resources by virtue of having write permission on the
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root container. This provides a worst-case answer to uncooperative users that refuse to grant the necessary

privilege to root.

While the HiStar kernel automatically provides consistency across kernel crashes and restarts, a

crashed or killed process can leave locked mutexes, such as the directory segment mutex. We currently do

not recover from such problems, but foresee two potential solutions. The first is to do write-ahead logging

in memory; given some way of detecting a dead or crashed process—for example, through timeouts—

other processes can recover the directory segment. The second is to prevent the thread from being killed

while it is holding the directory mutex, by adding a hard-link to it in the directory container. If the thread

is unreferenced from other containers, it will continue executing until removing itself from the directory

container.

Because Asbestos labels are more general than capabilities, they allow multiple objects to be protected

by the same category and multiple categories to place restrictions on the same object. Users familiar with

capability systems will rightfully object that protecting multiple objects with the same category limits

the granularity at which privileges can be enumerated. HiStar can be used like a capability system by

allocating a new category pair for every object, but our Unix library does not do this. However, as the

VPN example showed, HiStar has the advantage of allowing new policies to be overlaid on existing

software, which cannot be done as easily in pure capability systems.

One security limitation is that HiStar does not support CPU quotas, though we hope to add these using

the container hierarchy. A more serious problem we do not know how to solve is covert timing channels.

For example, in simple tests, we can leak 20 bits/second reliably though a wall-banging attack on HiStar,

and suspect a more clever attacker would improve on our number by an order of magnitude. Moreover,

many network services have to offer low response latency, and as a result, it becomes increasingly practical

to leak information to outside observers by modulating response time. However, covert channel mitigation

is outside the scope of this work.

DStar is particularly susceptible to covert timing channels that arise because of shared network re-

sources. Additionally, an active attacker can do things like spoof ARP replies and overflow MAC address

tables or even flood the network to glean information about the communication patterns of exporters. Us-

ing ordinary Ethernet switches, DStar must partially trust the network. This is somewhat reasonable if all

malicious code is contained on HiStar machines, but dangerous should malicious code in HiStar collude

with a Linux box on the same network to leak information. In future work, we intend to integrate DStar

with network switches that can better conceal communication patterns [6].
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The current prototype of DStar can only enforce information flow restrictions using HiStar. However,

capability-based operating systems, such as KeyKOS [4] and EROS [47], can also be used to provide strict

program isolation, albeit with an a priori partitioning of capabilities, which restricts program structure. A

DStar exporter could run on EROS and enforce information flow constraints by partitioning capabilities

according to labels. Once a process starts running with some tracking label, it can never change its tracking

label, since there is no mechanism to revoke capabilities granting write access to files with a tracking label

lower in the lattice than the new tracking label. A DStar exporter on a capability-based system would not

be able to grant clearance (the privilege to raise one’s tracking label). Wrapping each capability in a proxy

that checks tracking labels would effectively result in a label-based system.



Chapter 5

Related work

There has been significant prior work on information flow control and controlling execution of untrusted

code. This chapter discusses the most relevant related work in operating systems, networks, distributed

systems, and programming languages.

5.1 Operating Systems

HiStar was directly inspired by Asbestos [10], but differs in providing system-wide persistence, explicit

resource allocation, and a lower-level kernel interface that closes known covert storage channels and

makes all information flow explicit. Unlike Asbestos, which is a message-passing system, HiStar relies

heavily on shared memory. The HiStar kernel provides gates, not IPC, with the important distinction that

upon crossing a gate, a thread’s resources initially come from its previous domain. By contrast, Asbestos

changes a process’s tracking label to track information flow when it receives IPCs, which is detectable by

third parties and can leak information. Asbestos highly optimizes comparisons between enormous labels,

which so far we have not done in HiStar.

HiStar controls information flow with mandatory access control (MAC), a well-studied technique

dating back decades [3]. The ADEPT-50 dynamically adjusted labels (essentially taint tracking) using the

High-Water-Mark security model back in the late 1960s [24]; the idea has often resurfaced, for instance

in IX [32] and LOMAC [14]. HiStar and its predecessor Asbestos are novel in that they make operations

such as category allocation and declassification available to application programmers, where previous

OSes reserved this functionality for security administrators. Decentralized declassification allows novel
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uses of categories that we believe promote better application structure and support applications, such as

web services, not targeted by previous MAC systems.

Superficially, HiStar resembles the capability-based KeyKOS [4] system and its successor EROS [47].

Both systems use a small number of kernel object types and a single-level store. HiStar’s container abstrac-

tion is reminiscent of hierarchical space banks in KeyKOS. However, while KeyKOS uses kernel-level

capabilities to enforce labels at user-level, HiStar bases all protection on kernel-level labels. The difference

is significant because labels specify security properties while imposing less structure on applications—for

example, an untrusted thread can dynamically alter its tracking label to observe secret data, which has no

analogue in a capability system.

HiStar has no superuser. A number of previous systems have limited, partitioned [32], or virtual-

ized [40] superuser privileges. Several operating systems including Linux support POSIX capabilities,

which can permit some superuser privileges while disabling others.

Plan 9 [39] also has no superuser. Administrative tasks such as adding users can only be performed on

the file server console, virtually eliminating the threat of network break-ins. On workstations, however,

the console user has special privileges, and on compute servers a pseudo-user named “bootes” does. Plan 9

provides a complete, working system with a trusted computing base many times smaller than comparable

operating systems. It also provides per-process file namespaces, which inspired HiStar’s user-level mount

table segments. However, Plan 9 was never intended to support MAC.

HiStar uses gates for protected control transfer, an idea dating back to Multics [45]. However, HiStar’s

protection domains are not hierarchical like Multics rings. HiStar gates are more like doors in Spring [16].

Singularity [18] provides programming-language-based security without an underlying operating sys-

tem. Somewhat like containers, Singularity addresses coherent resource deallocation with a new abstrac-

tion called Software-Isolated Processes (SIPs). Singularity does not provide MAC, however.

SELinux [26] lets Linux support MAC; like most MAC systems, policy is centrally specified by the

administrator. In contrast, HiStar lets applications craft policies around their own categories of informa-

tion. Retrofitting MAC to a large existing kernel such as Linux is potentially error-prone, particularly

given the sometimes ill-specified semantics of Linux system calls. HiStar’s disciplined, small kernel can

potentially achieve much higher assurance at the cost of compatibility.

Extensions to Linux such as [49] make it easier for applications to use the operating system’s protec-

tion mechanisms, namely user IDs, to create their own protection domains. Unlike HiStar, these protection

domains only provide discretionary access control, and cannot prevent the disclosure of sensitive infor-

mation by malicious code.
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5.2 Secure Networks

Multi-level secure networks [2, 12, 31, 48] enforce information flow control in a trusted network, but pro-

vide very coarse-grained trust partitioning. By comparison, DStar functions even in an untrusted network

such as the Internet, at the cost of introducing some inherent covert channels, and allows fine-grained trust

to be explicitly configured between hosts. Using a secure, trusted network would reduce covert channels

introduced by DStar. There has also been significant work on ways to minimize the rate of such channels,

for instance by introducing noise or randomness [19].

Unlike multi-level secure networks, DStar does not support labeling a machine without giving it own-

ership privilege: in other words, an exporter’s tracking label is always the empty set. Providing a non-

empty tracking label would require a trusted component to act as a proxy for the machine, ensuring that

any packets sent or received by the machine are consistent with its current tracking label. This can be

done either with support from the network, or by explicitly forwarding messages through a proxy trusted

to maintain the tracking labels of machines it is proxying.

5.3 Distributed Systems

Shamon [30] is a distributed mandatory access control system that uses a shared reference monitor to

enforce information flow policies between virtual machines. In contrast, DStar avoids the centralized

authority of a shared reference monitor, making it practical to build distributed MAC systems that span

administrative domains. Combining DStar with HiStar allows for policies to be applied to fine-grained

objects such as files or threads, as opposed to entire VMs.

A number of systems, including Taos [56], have mechanisms for access control in a distributed system.

However, none of them can enforce information flow control. Unlike capability-based operating systems,

distributed capability systems such as Amoeba [52] cannot isolate untrusted code; a malicious program

can always manufacture capabilities to contact a colluding server. The Taos speaks-for relation inspired

the much simpler DStar owns relation, used to define discretionary privileges between exporters.

Jaeger et al [21] used IPsec to label network communications between SELinux machines, but did

not provide an overall security policy for the distributed system, and relied on external mechanisms for

establishing trust and bootstrapping. Labeling IPsec keys is similar to how the DStar exporter translates

between local labels and authenticated encryption of network messages; instead of associating labels with

encryption keys, DStar transfers the label in each message. Security mechanisms provided by SELinux
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use a global per-machine policy; DStar allows anyone, including applications, to define new security

policies at runtime.

5.4 Programming Languages

Decentralized declassification, while new in operating systems, was previously provided by programming

languages, notably Jif [7, 35]. There are significant differences between a language and an operating

system. Jif can track information flow at the level of individual variables and perform most label checks

at compile time. It also has the luxury of relying on the underlying operating system for bootstrapping,

storage, trusted input files, administration, etc., which avoids many issues HiStar needs to address.

Jif labels allow different principals to express their security concerns by specifying what other prin-

cipals are allowed to read or write certain data. A DStar category roughly corresponds to a pair of Jif

principals: an owner principal po and a tracking principal pt . For each piece of data, each owner principal

po can add either no restrictions, or require anyone reading the data (or writing, depending on the type

of the category) to act for pt . Owning a DStar category corresponds to acting for po. Having a category

in a tracking label corresponds to acting for pt , except that DStar has no external labeled input or output

channels; all files and communications are implemented inside the model.

HiStar and DStar do not provide disjunctive reader policies or conjunctive writer policies, though they

can be implemented by using a separate category to represent the entire policy and explicitly granting its

ownership as appropriate.

Secure program partitioning [58] is largely complementary to DStar, automatically partitioning a sin-

gle program into multiple programs, running on a set of machines specified at compile time with varying

trust, to uphold an overall information flow policy. DStar provides mechanisms to enforce an overall in-

formation flow policy without restricting program structure, language, or partitioning mechanism. Given

the sub-programs generated by secure program partitioning, DStar could potentially be used to execute

them in a distributed system without trusting the compiler to correctly partition the code. Secure program

partitioning has a much larger TCB, and relies on trusted external inputs to avoid a number of difficult

issues addressed by DStar, such as determining when it is safe to connect to a given host at runtime,

resource allocation issues, and bootstrapping.

Language-based approaches to information flow control offer some techniques for analyzing concur-

rent programs [44], largely restricted to static, compile-time verification. DStar checks labels at runtime,
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allowing complex security policies to be defined by application code, at the cost of deferring label mis-

match errors until execution time. Language-based techniques largely avoid addressing many practical

issues solved by DStar, such as trust management, resource allocation, support for heterogeneous sys-

tems, and execution of arbitrary machine code.

5.5 Digital Rights Management

The problem of specifying and enforcing data security policies has received significant attention in the

industry, under the name of digital rights management (DRM) in the consumer space, and information

rights management (IRM) in the enterprise environment. Rights management systems sign and encrypt all

sensitive data when it is written to disk or sent over the network, and only decrypt the data when handling

it in memory, thereby reducing the security problem to the distribution of keys. Although an attacker

without the appropriate key may not be able to decrypt the data, other information about the data, such as

its size, or when it was sent, constitutes a covert channel that HiStar and DStar try to avoid.

In general, rights management systems available today tend to have orders of magnitude more trusted

code than HiStar or DStar. These systems also tend to have a higher-level policy language than HiStar

and DStar labels. For example, a rights management policy may allow or prohibit printing the contents

of a particular document. In HiStar, such a high-level policy would be implemented by partially-trusted

code with privilege to declassify certain information when sending it to the printer. The underlying ker-

nel would then ensure that untrusted applications cannot export data via the printer, except through this

partially-trusted daemon.

Consumer DRM systems are typically concerned with preventing a malicious user from getting access

to certain data, while allowing trusted software on the user’s machine to access the data. The application

software that has access to the sensitive data is usually fully trusted not to reveal the data directly to the

user. For example, the TCPA Trusted Platform Module [54] provides tamper-resistant, verifiable execu-

tion of trusted software on hardware controlled by an untrusted user. HiStar addresses a complementary

problem, namely, how to minimize the amount of trust placed in software, given fully trusted hardware.

DStar could use TCPA to verify whether a remote machine is running HiStar, in which case it may trust

the remote machine to enforce certain information flow control restrictions.

Enterprise rights management systems, such as [11, 25, 34, 38], focus on a slightly different prob-

lem. Namely, they try to make sure that security policies are always up-to-date and that users do not

accidentally reveal sensitive information to unauthorized parties, and tend to worry less about security in
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the face of physical hardware access. They can track information flow between applications through the

file system, clipboard, and even the display. However, these information flow tracking mechanisms are

implemented by interposing on existing, high-level interfaces, and are sometimes application-specific. As

a result, the amount of trusted code tracking information flow is orders of magnitude greater than that of

HiStar, and such rights management systems contain numerous covert channels that HiStar closes.

In a distributed setting, enterprise rights management systems rely on a central policy server to spec-

ify data security policies. As a result, it becomes difficult for users from multiple organizations to work

together on a common document, without placing the document under the control of one particular or-

ganization’s policy server. On the other hand, DStar decouples the specification of an information flow

control policy associated with certain data from the trust in machines that enforce this policy.
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Conclusion

This dissertation showed that information flow control can be used to build secure, scalable, distributed

systems from largely untrusted code.

To be able to execute untrusted code with access to confidential data on a single machine, we built a

new operating system called HiStar that can safely execute untrusted code, by providing strict informa-

tion flow control without superuser privilege. HiStar’s narrow interfaces allow for a small trusted kernel

of less than 20,000 lines, on which a Unix-like environment is implemented mostly as untrusted user-level

library code. By providing a shared-memory interface, HiStar is able to enforce one-way information flow

control purely in the kernel, without the need for trusted user-level servers. A new container abstraction

lets administrators manage and revoke resources for processes they cannot observe. Through its use of

immutable labels, HiStar demonstrated that an operating system can dynamically track information flow

through tainting without the taint mechanism itself leaking information. Side-by-side with the Unix envi-

ronment, the system supports a number of high-security, privilege-separated applications previously not

possible in a traditional Unix system.

We showed that information flow control can also be used to enforce security of untrusted code in

large-scale distributed systems of multiple machines, by developing DStar, a framework for enforcing

information flow control in distributed systems. The decentralized design of DStar not only improved

security, but also removed any inherent scalability bottlenecks and simplified communication across ad-

ministrative domains. Using self-certifying categories, DStar solved a number of difficult problems in a

decentralized setting, such as determining when it is safe to communicate with a remote machine and

controlling resource allocation, without introducing additional covert channels.
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Using HiStar and DStar, we built a highly privilege-separated distributed web server with strong

security guarantees, where most of the server code is untrusted. In most cases, even a fully compromised

web server machine cannot violate the security of all users. Benchmarks showed that the web server has

good overall performance and scales well with the number of physical machines. Finally, we showed that

DStar allows for incremental deployment, by executing just the untrusted perl code on HiStar.
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HiStar System Call Interface

This appendix shows in detail the system call interface provided by the HiStar kernel, in C language

syntax. Sections A.1 through A.6 discuss the data types used in the system call interface, and A.7 presents

the function prototypes for every system call in HiStar.

A.1 Labels

The system call interface describes Asbestos labels using a struct ulabel, defined as follows:

struct ulabel {
uint32_t ul_size;
uint32_t ul_nent;

uint8_t ul_default;
uint32_t ul_needed;

uint64_t *ul_ent;
};

Category-level mappings comprising the label are stored in a contiguous array of 64-bit values pointed

to by ul ent. The category name, a 61-bit integer, is stored in the low bits of the 64-bit entry, and the

level is stored in the upper 3 bits. Levels 0 through 3 are represented by their respective integer values,

whereas level ? is represented by the value 4. The default level of a label is specified by ul default.

The size of the ul ent array is defined by ul size. ul nent defines the number of used entries in

the array, in case the kernel returns fewer entries than the user pre-allocated space for. Conversely, if the
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user provided too few entries, the kernel sets ul needed to the number of additional entries needed in

ul ent to represent the label.

A.2 Kernel Objects

The type of a kernel object is represented by a kobject type t:

typedef enum {
kobj_container,
kobj_thread,
kobj_gate,
kobj_segment,
kobj_address_space,
kobj_netdev

} kobject_type_t;

Container entries are represented by a struct cobj ref:

struct cobj_ref {
uint64_t container;
uint64_t object;

};

A.3 Network Devices

The network device interface in HiStar allows the user to supply receive and transmit buffers for the

network card. Each buffer must reside in a single memory page, to simplify kernel code. netbuf type

specifies either a receive or a transmit buffer:

typedef enum {
netbuf_rx,
netbuf_tx

} netbuf_type;

This buffer consists of a struct netbuf hdr, followed by the actual data payload:



A.4. THREAD ENTRY POINT 85

struct netbuf_hdr {
uint16_t size;
uint16_t actual_count;

};

#define NETHDR_COUNT_DONE 0x8000
#define NETHDR_COUNT_ERR 0x4000
#define NETHDR_COUNT_MASK 0x0fff

The size field, set by user-space code, specifies the size of the packet buffer, in bytes, following the

netbuf hdr. The actual count field, on the other hand, is set by the kernel, and contains the status of

the packet buffer. The lower 12 bits specify the length of the received packet, for receive buffers. The high

two bits of actual count specify whether the kernel is done with the buffer (NETHDR COUNT DONE) and

whether any error occurred while sending or receiving the packet (NETBUF COUNT ERR).

A.4 Thread Entry Point

The initial state of a thread’s execution is defined by a struct thread entry:

enum { thread_entry_narg = 6 };

struct thread_entry {
struct cobj_ref te_as;
void *te_entry;
void *te_stack;

uint64_t te_arg[thread_entry_narg];
};

The te as field specifies the container entry of the thread’s address space. te entry and te stack

specify the initial program counter and stack pointer. 6 additional 64-bit arguments are passed to the entry

point in te arg. On the 64-bit x86-64 processors, these arguments are copied directly into architectural

registers. On other platforms, such as the 32-bit i386, these arguments are stored in the thread object,

and made accessible to the application code through the sys self get entry args system call, which

returns a struct thread entry args:

struct thread_entry_args {
uint64_t te_arg[thread_entry_narg];

};
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As an optimization, truncated 32-bit values of the first 3 arguments are passed in architectural registers

when running on the 32-bit i386.

A.5 Address Space

An address space is described using a struct u address space:

struct u_address_space {
void *trap_handler;
void *trap_stack_base;
void *trap_stack_top;
uint64_t size;
uint64_t nent;
struct u_segment_mapping *ents;

};

Mappings between virtual addresses and segments are stored in the ents array. size and nent specify

the number of available and used mapping entries, respectively. The trap handler, trap stack base,

and trap stack top fields specify how to handle an alert sent to a thread in this address space.

Each mapping is represented by a struct u segment mapping:

struct u_segment_mapping {
struct cobj_ref segment;
uint64_t start_page;
uint64_t num_pages;
uint32_t kslot;
uint32_t flags;
void *va;

};

#define SEGMAP_EXEC 0x01
#define SEGMAP_WRITE 0x02
#define SEGMAP_READ 0x04
#define SEGMAP_REVERSE_PAGES 0x08

segment specifies a container entry for the segment being mapped. start page and num pages

specify what subset of the segment’s pages should be mapped. kslot is a kernel-internal identifier that

allows a specific segment mapping to be changed later on without changing the entire address space. va

specifies the virtual address at which the specified sequence of pages should be mapped.
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Flags controlling the segment mapping are specified in flags. These include permission bits (read,

write, and execute), as well as an optimization for handling grow-down stacks in the x86 architecture: the

SEGMAP REVERSE PAGES flag reverses the order of pages in the mapping.

A.6 Return Values

Most system call functions return a signed integer value to signify the success or failure of an operation.

Operations that allocate objects return an int64 t, which, if negative, specifies an error code, and if

positive, specifies the object ID of the newly created object. The container, to form a container entry for

the new object, is specified when allocating the object.

The possible error code values (returned as negative numbers in case of an error) are as follows:

enum {
E_UNSPEC = 1, // Unspecified or unknown problem
E_INVAL, // Invalid parameter
E_NO_MEM, // Request failed due to memory shortage
E_RESTART, // Restart system call
E_NOT_FOUND, // Object not found
E_LABEL, // label check error
E_BUSY, // device busy
E_NO_SPACE, // not enough space in buffer
E_AGAIN, // try again
E_IO, // disk IO error
E_FIXED_QUOTA, // object has a fixed quota
E_VAR_QUOTA, // object has a variable quota
E_RESOURCE // container out of space

};

A.7 System Call Function Prototypes

A.7.1 Console

int sys_cons_puts(const char *s, uint64_t size);
int sys_cons_getc(void);
int sys_cons_probe(void);
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A.7.2 Objects

int sys_obj_unref(struct cobj_ref o);
kobject_type_t

sys_obj_get_type(struct cobj_ref o);
int sys_obj_get_label(struct cobj_ref o, struct ulabel *l);
int sys_obj_get_name(struct cobj_ref o, char *name);
int64_t sys_obj_get_quota_total(struct cobj_ref o);
int64_t sys_obj_get_quota_avail(struct cobj_ref o);
int sys_obj_get_meta(struct cobj_ref o, void *meta);
int sys_obj_set_meta(struct cobj_ref o,

const void *oldm, void *newm);
int sys_obj_set_fixedquota(struct cobj_ref o);
int sys_obj_set_readonly(struct cobj_ref o);
int sys_obj_get_readonly(struct cobj_ref o);

A.7.3 Network Devices

int64_t sys_net_create(uint64_t container, uint64_t card_idx,
const struct ulabel *l, const char *name);

int64_t sys_net_wait(struct cobj_ref ndev, uint64_t waiter_id,
int64_t waitgen);

int sys_net_buf(struct cobj_ref ndev, struct cobj_ref seg,
uint64_t offset, netbuf_type type);

int sys_net_macaddr(struct cobj_ref ndev, uint8_t *buf);

A.7.4 Containers

int64_t sys_container_alloc(uint64_t parent, const struct ulabel *l,
const char *name, uint64_t avoid_types,
uint64_t quota);

int64_t sys_container_get_nslots(uint64_t container);
int64_t sys_container_get_parent(uint64_t container);
int64_t sys_container_get_slot_id(uint64_t container, uint64_t slot);
int sys_container_move_quota(uint64_t parent, uint64_t child,

int64_t nbytes);

A.7.5 Gates

int64_t sys_gate_create(uint64_t container,
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const struct thread_entry *s,
const struct ulabel *label,
const struct ulabel *clear,
const struct ulabel *verify,
const char *name, int entry_visible);

int sys_gate_enter(struct cobj_ref gate,
const struct ulabel *label,
const struct ulabel *clearance,
const struct thread_entry *s);

int sys_gate_clearance(struct cobj_ref gate, struct ulabel *ul);
int sys_gate_get_entry(struct cobj_ref gate,

struct thread_entry *s);

A.7.6 Segments

int64_t sys_segment_create(uint64_t container, uint64_t num_bytes,
const struct ulabel *l, const char *name);

int64_t sys_segment_copy(struct cobj_ref seg, uint64_t container,
const struct ulabel *l, const char *name);

int sys_segment_addref(struct cobj_ref seg, uint64_t ct);
int sys_segment_resize(struct cobj_ref seg, uint64_t num_bytes);
int64_t sys_segment_get_nbytes(struct cobj_ref seg);
int sys_segment_sync(struct cobj_ref seg, uint64_t start,

uint64_t nbytes, uint64_t pstate_ts);

A.7.7 Address Spaces

int64_t sys_as_create(uint64_t container, const struct ulabel *l,
const char *name);

int64_t sys_as_copy(struct cobj_ref as, uint64_t container,
const struct ulabel *l, const char *name);

int sys_as_get(struct cobj_ref as, struct u_address_space *uas);
int sys_as_set(struct cobj_ref as, struct u_address_space *uas);
int sys_as_get_slot(struct cobj_ref as,

struct u_segment_mapping *usm);
int sys_as_set_slot(struct cobj_ref as,

struct u_segment_mapping *usm);

A.7.8 Threads

int64_t sys_thread_create(uint64_t container, const char *name);
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int sys_thread_start(struct cobj_ref thread,
const struct thread_entry *s,
const struct ulabel *l,
const struct ulabel *clear);

int sys_thread_trap(struct cobj_ref thread, struct cobj_ref as,
uint32_t trapno, uint64_t arg);

A.7.9 Thread acting on itself

void sys_self_yield(void);
void sys_self_halt(void);
int64_t sys_self_id(void);
int sys_self_addref(uint64_t container);
int sys_self_get_as(struct cobj_ref *as_obj);
int sys_self_set_as(struct cobj_ref as_obj);
int sys_self_set_label(const struct ulabel *l);
int sys_self_set_clearance(const struct ulabel *l);
int sys_self_get_clearance(struct ulabel *l);
int sys_self_set_verify(const struct ulabel *l,

const struct ulabel *c);
int sys_self_get_verify(struct ulabel *l, struct ulabel *c);
int sys_self_fp_enable(void);
int sys_self_fp_disable(void);
int sys_self_set_waitslots(uint64_t nslots);
int sys_self_set_sched_parents(uint64_t p0, uint64_t p1);
int sys_self_set_cflush(int cflush);
int sys_self_get_entry_args(struct thread_entry_args *targ);

A.7.10 Sleep and wakeup

int sys_sync_wait(volatile uint64_t *addr, uint64_t val,
uint64_t wakeup_at_nsec);

int sys_sync_wait_multi(volatile uint64_t **addrs, uint64_t *vals,
uint64_t num, uint64_t nsec);

int sys_sync_wakeup(volatile uint64_t *addr);

A.7.11 Miscellaneous

int64_t sys_handle_create(void);

int sys_machine_reboot(void);
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int64_t sys_clock_nsec(void);

int64_t sys_pstate_timestamp(void);
int sys_pstate_sync(uint64_t timestamp);
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Appendix B

DStar Network Protocol

This appendix gives a precise definition of the DStar network protocol discussed in Chapter 3, using

the XDR protocol description language [50]. Parts of the protocol for handling public key encryption

and signatures are borrowed from SFS [28], in particular the sfs pubkey2, sfs sig2, and sfs ctext2

encodings.

B.1 Protocol Definition

/*
* Distributed HiStar protocol
*/

%#include <sfs_prot.h>

typedef unsigned dj_timestamp; /* UNIX seconds */
typedef opaque dj_stmt_blob<>; /* No recursive definitions in XDR */
typedef sfs_pubkey2 dj_pubkey;
typedef sfs_sig2 dj_sign;

struct dj_gcat { /* Global category name */
dj_pubkey key;
unsigned hyper id;
bool integrity;

};

struct dj_address {

93
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unsigned ip; /* network byte order */
unsigned port; /* network byte order */

};

/*
* Labels.
*/

struct dj_label {
dj_gcat ents<>;

};

struct dj_cat_mapping {
dj_gcat gcat;
unsigned hyper lcat;

unsigned hyper res_ct; /* sub-ct storing the mapping */
unsigned hyper res_gt; /* unbound gate providing { lcat* } */

};

struct dj_catmap {
dj_cat_mapping ents<>;

};

/*
* Delegations.
*/

enum dj_entity_type {
ENT_PUBKEY = 1,
ENT_GCAT,
ENT_ADDRESS

};

union dj_entity switch (dj_entity_type type) {
case ENT_PUBKEY:

dj_pubkey key;
case ENT_GCAT:

dj_gcat gcat;
case ENT_ADDRESS:

dj_address addr;
};

struct dj_delegation { /* via says a speaks-for b */
dj_entity a;
dj_entity b;
dj_pubkey *via;
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dj_timestamp from_ts;
dj_timestamp until_ts;

};

struct dj_delegation_set {
dj_stmt_blob ents<>; /* XDR-encoded dj_signed_stmt */

};

/*
* Message transfer.
*/

enum dj_slot_type {
EP_GATE = 1,
EP_SEGMENT,
EP_MAPCREATE,
EP_DELEGATOR

};

enum dj_special_gate_ids { /* set container to zero */
GSPEC_CTALLOC = 1,
GSPEC_ECHO,
GSPEC_GUARDCALL

};

struct dj_gatename {
unsigned hyper gate_ct;
unsigned hyper gate_id;

};

struct dj_ep_gate {
unsigned hyper msg_ct; /* container for segment & thread */
dj_gatename gate;

};

struct dj_ep_segment {
unsigned hyper seg_ct;
unsigned hyper seg_id;

};

union dj_slot switch (dj_slot_type type) {
case EP_GATE:

dj_ep_gate ep_gate;
case EP_SEGMENT:

dj_ep_segment ep_segment;
case EP_MAPCREATE:

void;
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case EP_DELEGATOR:
void;

};

struct dj_message {
dj_pubkey from;
dj_pubkey to;

dj_slot target; /* gate or segment to deliver to */
dj_label tracking; /* tracking label */
dj_label glabel; /* grant label for gates */
dj_label gclear; /* grant clearance for gates */
dj_catmap catmap; /* target node category mappings */
dj_delegation_set dset; /* supporting delegations */
opaque msg<>;

};

/*
* Not all message delivery codes are exposed to the sender.
*/

enum dj_delivery_code {
DELIVERY_DONE = 1,
DELIVERY_TIMEOUT,
DELIVERY_NO_ADDRESS,
DELIVERY_LOCAL_DELEGATION,
DELIVERY_REMOTE_DELEGATION,
DELIVERY_LOCAL_MAPPING,
DELIVERY_REMOTE_MAPPING,
DELIVERY_LOCAL_ERR,
DELIVERY_REMOTE_ERR

};

/*
* Session key establishment.
*/

struct dj_key_setup {
dj_pubkey sender;
dj_pubkey to;
sfs_ctext2 kmsg;

};

/*
* Signed statements that can be made by entities. Every network
* message is a statement.
*



B.1. PROTOCOL DEFINITION 97

* Fully self-describing statements ensure that one statement
* cannot be mistaken for another in a different context.
*/

enum dj_stmt_type {
STMT_DELEGATION = 1,
STMT_MSG,
STMT_KEY_SETUP

};

union dj_stmt switch (dj_stmt_type type) {
case STMT_DELEGATION:

dj_delegation delegation;
case STMT_MSG:

dj_message msg;
case STMT_KEY_SETUP:

dj_key_setup keysetup;
};

struct dj_stmt_signed {
dj_stmt stmt;
dj_sign sign;

};
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