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Abstract. We propose a general method for converting online algorithms to lo-
cal computation algorithms,3 by selecting a random permutation of the input, and
simulating running the online algorithm. We bound the number of steps of the
algorithm using a query tree, which models the dependencies between queries.
We improve previous analyses of query trees on graphs of bounded degree, and
extend this improved analysis to the cases where the degrees are distributed bino-
mially, and to a special case of bipartite graphs.
Using this method, we give a local computation algorithm for maximal matching
in graphs of bounded degree, which runs in time and space O(log3 n).
We also show how to convert a large family of load balancing algorithms (related
to balls and bins problems) to local computation algorithms. This gives several
local load balancing algorithms which achieve the same approximation ratios as
the online algorithms, but run in O(logn) time and space.
Finally, we modify existing local computation algorithms for hypergraph 2-coloring
and k-CNF and use our improved analysis to obtain better time and space bounds,
ofO(log4 n), removing the dependency on the maximal degree of the graph from
the exponent.

1 Introduction

1.1 Background

The classical computation model has a single processor which has access to a given
input, and using an internal memory, computes the output. This is essentially the von
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Newmann architecture, which has been the driving force since the early days of com-
putation. The class of polynomial time algorithms is widely accepted as the definition
of efficiently computable problems. Over the years many interesting variations of this
basic model have been studied, focusing on different issues.

Online algorithms (see, e.g., [6]) introduce limitations in the time domain. An online
algorithm needs to select actions based only on the history it observed, without access
to future inputs that might influence its performance. Sublinear algorithms (e.g. [9, 12])
limit the space domain, by limiting the ability of an algorithm to observe the entire
input, and still strive to derive global properties of it.

Local computation algorithms (LCAs) [13] are a variant of sublinear algorithms.
The LCA model considers a computation problem which might have multiple admis-
sible solutions, each consisting of multiple bits. The LCA can return queries regarding
parts of the output, in a consistent way, and in poly-logarithmic time. For example, the
input for an LCA for a job scheduling problem consists of the description of n jobs
and m machines. The admissible solutions might be the allocations of jobs to machines
such that the makespan is at most twice the optimal makespan. On any query of a job,
the LCA answers quickly the job’s machine. The correctness property of the LCA guar-
antees that different query replies will be consistent with some admissible solution.

1.2 Our results

1.2.1 Bounds on query trees Suppose that we have an online algorithm where the
reply to a query depends on the replies to a small number of previous queries. The reply
to each of those previous queries depends on the replies to a small number of other
queries and so on. These dependencies can be used to model certain problems using
query trees – trees which model the dependency of the replies to a given query on the
replies to other queries.

Bounding the size of a query tree is central to the analyses of our algorithms. We
show that the size of the query tree is O(log n) w.h.p., where n is the number of ver-
tices. d, the degree bound of the dependency graph, appears only in the constant. 4 This
answers in the affirmative the conjecture of [1]. Previously, Alon et al. [1] show that the
expected size of the query tree is constant, and O(logd+1 n) w.h.p.5 Our improvement
is significant in removing the dependence on d from the exponent of the logarithm. We
also show that when the degrees of the graph are distributed binomially, we can achieve
the same bound on the size of the query tree. In addition, in the full version of this
paper, we show a trivial lower bound of Ω(log n/ log log n).

We use these results on query trees to obtain LCAs for several online problems –
maximal matching in graphs of bounded degree and several load balancing problems.
We also use the results to improve the previous algorithms for hypergraph 2-coloring
and k-CNF.

4 Note that, however, the hidden constant is exponentially dependent on d. Whether or not this
bound can be improved to have a polynomial dependency on d is an interesting open question.

5 Notice that bounding the expected size of the query tree is not enough for our applications,
since in LCAs we need to bound the probability that any query fails.
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1.2.2 Hypergraph 2-coloring We modify the algorithm of [1] for an LCA for hyper-
graph 2-coloring, and coupled with our improved analysis of query tree size, obtain an
LCA which runs in time and space O(log4 n), improving the previous result, an LCA
which runs O(logd+1 n) time and space.

1.2.3 k-CNF Building on the similarity between hypergraph 2-coloring and k-CNF,
we apply our results on hypergraph 2-coloring to give an an LCA for k-CNF which runs
in time and space O(log4 n).

We use the query tree to transform online algorithms to LCAs. We simulate online
algorithms as follows: first a random permutation of the items is generated on the fly.
Then, for each query, we simulate the online algorithm on a stream of input items ar-
riving according to the order of the random permutation. Fortunately, because of the
nature of our graphs (the fact that the degree is bounded or distributed binomially), we
show that in expectation, we will only need to query a constant number of nodes, and
only O(log n) nodes w.h.p. We now state our results:

1.2.4 Maximal matching We simulate the greedy online algorithm for maximal
matching, to derive an LCA for maximal matching which runs in time and spaceO(log3 n).

1.2.5 Load Balancing We give several LCAs to load balancing problems which run
in O(log n) time and space. Our techniques include extending the analysis of the query
tree size to the case where the degrees are selected from a binomial distribution with
expectation d, and further extending it to bipartite graphs which exhibit the characteris-
tics of many balls and bins problems, specifically ones where each ball chooses d bins
at random. We show how to convert a large class of the “power of d choices” online
algorithms (see, e.g., [2, 5, 14]) to efficient LCAs.

1.3 Related work

Nguyen and Onak [11] focus on transforming classical approximation algorithms into
constant-time algorithms that approximate the size of the optimal solution of problems
such as vertex cover and maximum matching. They generate a random number r ∈
[0, 1], called the rank, for each node. These ranks are used to bound the query tree size.

Rubinfeld et al. [13] show how to construct polylogarithmic time local computa-
tion algorithms to maximal independent set computations, scheduling radio network
broadcasts, hypergraph coloring and satisfying k-SAT formulas. Their proof technique
uses Beck’s analysis in his algorithmic approach to the Lovász Local Lemma [3], and
a reduction from distributed algorithms. Alon et al. [1], building on the technique of
[11], show how to extend several of the algorithms of [13] to perform in polylogarith-
mic space as well as time. They further observe that we do not actually need to assign
each query a rank, we only need a random permutation of the queries. Furthermore,
assuming the query tree is bounded by some k, the query to any node depends on at
most k queries to other nodes, and so a k-wise independent random ordering suffices.
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They show how to construct a 1/n2-almost k-wise independent random ordering6 from
a seed of length O(k log2 n).

Recent developments in sublinear time algorithms for sparse graph and combinato-
rial optimization problems have led to new constant time algorithms for approximating
the size of a minimum vertex cover, maximal matching, maximum matching, minimum
dominating set, and other problems (cf. [12, 9, 11, 16]), by randomly querying a con-
stant number of vertices. A major difference between these algorithms and LCAs is
that LCAs require that w.h.p., the output will be correct on any input, while optimiza-
tion problems usually require a correct output only on most inputs. More importantly,
LCAs reuire a consistent output for each query, rather than only approximating a given
global property.

There is a vast literature on the topic of balls and bins and the power of d choices.
(e.g. [2, 5, 8, 14]). For a survey on the power of d choices, we refer the reader to [10].

2 Preliminaries

Let G = (V,E) be an undirected graph. We denote by NG(v) = {u ∈ V (G) : (u, v) ∈
E(G)} the neighbors of vertex v, and by degG(v) we denote the degree of v. When it
is clear from the context, we omit the G in the subscript. Unless stated otherwise, all
logarithms in this paper are to the base 2. We use [n] to denote the set {1, . . . , n}, where
n ≥ 1 is a natural number.

We present our model of local computation algorithms (LCAs): Let F be a com-
putational problem and x be an input to F . Let F (x) = {y | y is a valid solution
for input x}. The search problem for F is to find any y ∈ F (x).

A (t(n), s(n), δ(n))-local computation algorithm A is a (randomized) algorithm
which solves a search problem for F for an input x of size n. However, the LCA A
does not output a solution y ∈ F (x), but rather implements query access to y ∈ F (x).
A receives a sequence of queries i1, . . . , iq and for any q > 0 satisfies the following: (1)
after each query ij it produces an output yij , (2) With probability at least 1− δ(n) A is
consistent, that is, the outputs yi1 , . . . , yiq are substrings of some y ∈ F (x). (3) A has
access to a random tape and local computation memory on which it can perform current
computations as well as store and retrieve information from previous computations.

We assume that the input x, the local computation tape and any random bits used
are all presented in the RAM word model, i.e., A is given the ability to access a word
of any of these in one step. The running time of A on any query is at most t(n), which
is sublinear in n, and the size of the local computation memory of A is at most s(n).
Unless stated otherwise, we always assume that the error parameter δ(n) is at most
some constant, say, 1/3. We say that A is a strongly local computation algorithm if
both t(n) and s(n) are upper bounded by O(logc n) for some constant c.

Two important properties of LCAs are as follows. We say an LCAA is query order
oblivious (query oblivious for short) if the outputs of A do not depend on the order of
the queries but depend only on the input and the random bits generated on the random

6 A random ordering Dr is said to be ε-almost k-wise independent if the statistical distance
between Dr and some k-wise independent random ordering by at most ε.
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tape of A. We say an LCA A is parallelizable if A supports parallel queries, that is A
is able to answer multiple queries simultaneously so that all the answers are consistent.

3 Bounding the size of a random query tree

3.1 The problem and our main results

In online algorithms, queries arrive in some unknown order, and the reply to each query
depends only on previous queries (but not on any future events). The simplest way to
transform online algorithms to LCAs is to process the queries in the order in which they
arrive. This, however, means that we have to store the replies to all previous queries,
so that even if the time to compute each query is polylogarithmic, the overall space is
linear in the number of queries. Furthermore, this means that the resulting LCA is not
query-oblivious. The following solution can be applied to this problem ([11] and [1]):
Each query v is assigned a random number, r(v) ∈ [0, 1], called its rank, and the queries
are performed in ascending order of rank. Then, for each query x, a query tree can be
constructed, to represent the queries on which x depends. If we can show that the query
tree is small, we can conclude that each query does not depend on many other queries,
and therefore a small number of queries need to be processed in order to reply to query
x. We formalize this as follows:

LetG = (V,E) be an undirected graph. The vertices of the graph represent queries,
and the edges represent the dependencies between the queries. A real number r(v) ∈
[0, 1] is assigned independently and uniformly at random to every vertex v ∈ V ; we call
r(v) the rank of v. This models the random permutation of the vertices. Each vertex
v ∈ V holds an input x(v) ∈ R, where the range R is some finite set. The input is the
content of the query associated with v. A randomized function F is defined inductively
on the vertices of G such that F (v) is a (deterministic) function of x(v) as well as the
values of F at the neighbors w of v for which r(w) < r(v). F models the output of
the online algorithm. We would like to upper bound the number of queries to vertices
in the graph needed in order to compute F (v0) for any vertex v0 ∈ G, namely, the time
to simulate the output of query v0 using the online algorithm.

To upper bound the number of queries to the graph, we turn to a simpler task of
bounding the size of a certain d-regular tree, which is an upper bound on the number of
queries. Consider an infinite d-regular tree T rooted at v0. Each nodew in T is assigned
independently and uniformly at random a real number r(w) ∈ [0, 1]. For every node w
other than v0 in T , let parent(w) denote the parent node of w. We grow a (possibly
infinite) subtree T of T rooted at v as follows: a node w is in the subtree T if and only
if parent(w) is in T and r(w) < r(parent(w)) (for simplicity we assume all the ranks
are distinct real numbers). That is, we start from the root v0, add all the children of v0
whose ranks are smaller than that of v0 to T . We keep growing T in this manner where
a node w′ ∈ T is a leaf node in T if the ranks of its d children are all larger than r(w′).
We call the random tree T constructed in this way a query tree and we denote by |T |
the random variable that corresponds to the size of T . Note that |T | is an upper bound
on the number of queries since each node in T has at least as many neighbors as that in
G and if a node is connected to some previously queried nodes, this can only decrease
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the number of queries. Therefore the number of queries is bounded by the size of T .
Our goal is to find an upper bound on |T | which holds with high probability.

We improve the upper bound on the query tree of O(logd+1N) given in [1] for
the case when the degrees are bounded by a constant d and extend our new bound to
the case that the degrees of G are binomially distributed, independently and identically
with expectation d, i.e., deg(v) ∼ B(n, d/n).

Our main result in this section is bounding, with high probability, the size of the
query tree T as follows.

Lemma 1. Let G be a graph whose vertex degrees are bounded by d or distributed
independently and identically from the binomial distribution: deg(v) ∼ B(n, d/n).
Then there exists a constant C(d) which depends only on d, such that

Pr[|T | > C(d) log n] < 1/n2,

where the probability is taken over all the possible permutations π ∈ Π of the vertices
of G, and T is a random query tree in G under π.

3.2 Overview of the proof

Our proof of Lemma 1 consists of two parts. Following [1], we partition the query tree
into L = 3d levels. The first part of the proof is an upper bound on the size of a single
(sub)tree on any level. For the bounded degree case, this was already proved in [1]. We
extend their proof to the binomial case; that is, we prove the following, where T (j)

i is
the j-th subtree on level i of the tree.

Proposition 1. Let T be a tree with vertex degree distributed i.i.d. binomially with
deg(v) ∼ B(n, d/n). For any 1 ≤ i ≤ L and any 1 ≤ j ≤ ti, Pr[|T (j)

i | ≥ m] ≤∑∞
i=m 2−ci ≤ 2−Ω(m), for n ≥ β, for some constant β > 0.

The proof can be found in the full version of this paper.
The second part, which is a new ingredient of our proof, inductively upper bounds

the number of vertices on each level, as the levels increase. For this to hold, it crucially
depends on the fact that all subtrees are generated independently and that the probability
of any subtree being large is exponentially small. The main idea is to show that although
each subtree, in isolation, can reach a logarithmic size, their combination is not likely
to be much larger. We use the distribution of the sizes of the subtrees, in order to bound
the aggregate of multiple subtrees.

3.3 Bounding the increase in subtree size as we go up levels

From [1] and Proposition 1 we know that the size of any subtree, in particular |T1|,
is bounded by O(log n) with probability at least 1 − 1/n3 in both the bounded degree
and the binomial degree cases (see the full version for a more complete discussion).
Our next step in proving Lemma 1 is to show that, as we increase the levels, the size of
the tree does not increase by more than a constant factor for each level. That is, there
exists an absolute constant η depending on d only such that if the number of vertices
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on level k is at most |Tk|, then the number of vertices on level k + 1, |Tk+1| satisfies
|Tk+1| ≤ η

∑k
i=1 |Ti|+O(log n) ≤ 2η|Tk|+O(log n). Since there are L levels in total,

this implies that the number of vertices on all L levels is at most O((2η)L log n) =
O(log n).

The following Proposition establishes our inductive step.

Proposition 2. For any infinite query tree T with constant bounded degree d (or de-
grees i.i.d. ∼ B(n, d/n)), for any 1 ≤ i < L, there exist constants η1 > 0 and
η2 > 0 s.t. if

∑ti
j=1 |T

(j)
i | ≤ η1 log n then Pr[

∑ti+1

j=1 |T
(j)
i+1| ≥ η1η2 log n] < 1/n2

for all n > β, for some β > 0.

Proof. Denote the number of vertices on level k by Zk and let Yk =
∑k
i=1 Zi. Assume

that each vertex i on level ≤ k is the root of a tree of size zi on level k + 1. Notice that
Zk+1 =

∑Yk

i=1 zi.
From [1] and Proposition 1, there are absolute constants c0 and β depending on d

only such that for any subtree T (i)
k on level k and any n > β, Pr[|T (i)

k | = n] ≤ e−c0n.
Therefore, given (z1, . . . , zYk

), the probability of the forest on level k+1 consisting of
exactly trees of size (z1, . . . , zYk

) is at most
∏Yk

i=1 e
−c0(zi−β) = e−c0(Zk+1−βYk).

Notice that, given Yk (the number of nodes up to level k), there are at most
(
Zk+1+Yk−1

Yk−1
)

<
(
Zk+1+Yk

Yk

)
vectors (z1, . . . , zYk

) that can realize Zk+1.
We want to bound the probability that Zk+1 = ηYk for some (large enough) con-

stant η > 0. We can bound this as follows:

Pr[|Tk+1| = Zk+1] <

(
Zk+1 + Yk

Yk

)
e−c0(Zk+1−βYk)

<

(
e · (Zk+1 + Yk)

Yk

)Yk

e−c0(Zk+1−βYk)

= (e(1 + η))
Yke−c0(η−β)Yk

= eYk(−c0(η−β)+ln(η+1)+1)

≤ e−c0ηYk/2,

It follows that there is some absolute constant c′ which depends on d only such
that Pr[|Tk+1| ≥ ηYk] ≤ e−c

′ηYk . That is, if ηYk = Ω(log n), the probability that
|Tk+1| ≥ ηYk is at most 1/n3. Adding the vertices on all L levels and applying the
union bound, we conclude that with probability at most 1/n2, the size of T is at most
O(log n). ut

4 Hypergraph 2-coloring and k-CNF

We use the bound on the size of the query tree of graphs of bounded degree to improve
the analysis of [1] for hypergraph 2-coloring. We also modify their algorithm slightly
to further improve the algorithm’s complexity. Due to space limitations, we only state
our main theorems for hypergraph 2-coloring and k-CNF; the proofs can be found in
the full version of this paper.
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Theorem 1. Let H be a k-uniform hypergraph s.t. each hyperedge intersects at most d
other hyperedges. Suppose that k ≥ 16 log d+ 19.
Then there exists an (O(log4 n), O(log4 n), 1/n)-local computation algorithm which,
given H and any sequence of queries to the colors of vertices (x1, x2, . . . , xs), with
probability at least 1 − 1/n2, returns a consistent coloring for all xi’s which agrees
with a 2-coloring of H . Moreover, the algorithm is query oblivious and parallelizable.

Theorem 2. Let H be a k-CNF formula with k ≥ 2. Suppose that each clause inter-
sects no more than d other clauses, and furthermore suppose that k ≥ 16 log d+ 19.
Then there exists a (O(log4 n), O(log4 n), 1/n)-local computation algorithm which,
given a formula H and any sequence of queries to the truth assignments of variables
(x1, x2, . . . , xs), with probability at least 1 − 1/n2, returns a consistent truth assign-
ment for all xi’s which agrees with some satisfying assignment of the k-CNF formula
H . Moreover, the algorithm is query oblivious and parallelizable.

5 Maximal matching

We consider the problem of maximal matching in a bounded-degree graph. We are
given a graph G = (V,E), where the maximal degree is bounded by some constant d,
and we need to find a maximal matching. A matching is a set of edges with the property
that no two edges share a common vertex. The matching is maximal if no other edge
can be added to it without violating the matching property.

Assume the online scenario in which the edges arrive in some unknown order. The
following greedy online algorithm can be used to calculate a maximal matching: When
an edge e arrives, we check whether e is already in the matching. If it is not, we check
if any of the neighboring edges are in the matching. If none of them is, we add e to the
matching. Otherwise, e is not in the matching.

We turn to the local computation variation of this problem. We would like to query,
for some edge e ∈ E, whether e is part of some maximal matching. (Recall that all
replies must be consistent with some maximal matching).

We use the technique of [1] to produce an almost O(log n)-wise independent ran-
dom ordering on the edges, using a seed length of O(log3 n).7 When an edge e is
queried, we use a BFS (on the edges) to build a DAG rooted at e. We then use the
greedy online algorithm on the edges of the DAG (examining the edges with respect to
the ordering), and see whether e can be added to the matching.

As the query tree is an upper-bound on the size of the DAG, we derive the following
theorem from Lemma 1.

Theorem 3. Let G = (V,E) be an undirected graph with n vertices and maximum
degree d. Then there is an (O(log3 n), O(log3 n), 1/n) - local computation algorithm
which, on input an edge e, decides if e is in a maximal matching. Moreover, the algo-
rithm gives a consistent maximal matching for every edge in G.

7 Since the query tree is of size O(logn) w.h.p., we don’t need a complete ordering on the
vertices; an almost O(logn)-wise independent ordering suffices.
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6 The bipartite case and local load balancing

We consider a general “power of d choices” online algorithm for load balancing. In this
setting there are n balls that arrive in an online manner, and m bins. Each ball selects a
random subset of d bins, and queries these bins. (Usually the query is simply the current
load of the bin.) Given this information, the ball is assigned to one of the d bins (usually
to the least loaded bin). We denote by LB such a generic algorithm (with a decision rule
which can depend in an arbitrary way on the d bins that the ball is assigned to). Our
main goal is to simulate such a generic algorithm.

The load balancing problem can be represented by a bipartite graphG = ({V,U}, E),
where the balls are represented by the vertices V and the bins by the vertices U . The
random selection of a bin u ∈ U by a ball v ∈ V is represented by an edge. By defi-
nition, each ball v ∈ V has degree d. Since there are random choices in the algorithm
LB we need to specify what we mean by a simulation. For this reason we define the
input to be the following: a graph G = ({V,U}, E), where |V | = n, |U | = m, and
n = cm for some constant c ≥ 1. We also allocate a rank r(u) ∈ [0, 1] to every u ∈ U .
This rank represents the ball’s arrival time: if r(v) < r(u) then vertex v arrived before
vertex u. Furthermore, all vertices can have an input value x(w). (This value represents
some information about the node, e.g., the weight of a ball.) Given this input, the al-
gorithm LB is deterministic, since the arrival sequence is determined by the ranks, and
the random choices of the balls appear as edges in the graph. Therefore by a simulation
we will mean that given the above input, we generate the same allocation as LB.

We consider the following stochastic process: Every vertex v ∈ V uniformly and
independently at random chooses d vertices in U . Notice that from the point of view
of the bins, the number of balls which chose them is distributed binomially with X ∼
B(n, d/m). Let Xv and Xu be the random variables for the number of neighbors of
vertices v ∈ V and u ∈ U respectively. By definition, Xv = d, since all balls have d
neighbors, and hence each Xu is independent of all Xv’s. However, there is a depen-
dence between the Xu’s (the number of balls connected to different bins). Fortunately
this is a classical example where the random variables are negatively dependent (see
e.g. [8]). 8

6.1 The bipartite case

Recall that in Section 3, we assumed that the degrees of the vertices in the graph were
independent. We would like to prove an O(log n) upper bound on the query tree T
for our bipartite graph. As we cannot use the theorems of Section 3 directly, we show
that the query tree is smaller than another query tree which meets the conditions of our
theorems.

The query tree for the binomial graph is constructed as follows: a root v0 ∈ V is
selected for the tree. (v0 is the ball whose bin assignment we are interested in deter-
mining.) Label the vertices at depth j in the tree by Wj . Clearly, W0 = {v0}. At each
depth j, we add vertices one at a time to the tree, from left to right, until the depth is

8 We remind the reader that two random variables X1 and X2 are negatively dependent if
Pr[X1 > x|X2 = a] < Pr[X1 > x|X2 = b], for a > b and vice-versa.
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"full" and then we move to the next depth. Note that at odd depths (2j + 1) we add bin
vertices and at even depths (2j) we add ball vertices.

Specifically, at odd depths (2j + 1) we add, for each v ∈ W2j its d neighbors
u ∈ N(v) as children, and mark each by u.9 At even depths (2j) we add for each
node marked by u ∈ W2j−1 all its (ball) neighbors v ∈ N(u) such that r(v) <
r(parent(u)), if they have not already been added to the tree. Namely, all the balls
that are assigned to u by time

A leaf is a node marked by a bin u` for whom all neighboring balls v ∈ N(u`) −
{parent(u`)} have a rank larger than its parent, i.e., r(v) > r(parent(u`)). Namely,
parent(u`) is the first ball to be assigned to bin u`. This construction defines a stochas-
tic process F = {Ft}, where Ft is (a random variable for) the size of T at time t. (We
start at t = 0 and t increases by 1 for every vertex we add to the tree).

We now present our main lemma for bipartite graphs. The proof can be found in the
full version of the paper.

Lemma 2. Let G = ({V,U}, E) be a bipartite graph, |V | = n and |U | = m and
n = cm for some constant c ≥ 1, such that for each vertex v ∈ V there are d edges
chosen independently and at random between v and U . Then there is a constant C(d)
which depends only on d such that

Pr[|T | < C(d) log n] > 1− 1/n2,

where the probability is taken over all of the possible permutations π ∈ Π of the
vertices of G, and T is a random query tree in G under π.

6.2 Local load balancing

The following theorem states our basic simulation result.

Theorem 4. Consider a generic online algorithm LB which requires constant time per
query, for n balls and m bins, where n = cm for some constant c > 0. There exists
an (O(log n), O(log n), 1/n)-local computation algorithm which, on query of a (ball)
vertex v ∈ V , allocates v a (bin) vertex u ∈ U , such that the resulting allocation is
identical to that of LB with probability at least 1− 1/n.

Proof. Let K = C(d) log |U | for some constant C(d) depending only on d. K is the
upper bound given in Lemma 2. (In the following we make no attempt to provide the
exact values for C(d) or K.)

We now describe our (O(log n), O(log n), 1/n)-local computation algorithm for
LB. A query to the algorithm is a (ball) vertex v0 ∈ V and the algorithm will chose a
(bin) vertex from the d (bin) vertices connected to v0.

We first build a query tree as follows: Let v0 be the root of the tree. For every
u ∈ N(u0), add to the tree the neighbors of u, v ∈ V such that r(v) < r(v0). Continue
inductively until either K nodes have been added to the random query tree or no more

9 A bin can appear several times in the tree. It appears as different nodes, but they are all marked
so that we know it is the same bin. Recall that we assume that all nodes are unique, as this
assumption can only increase the size of the tree.
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nodes can be added to it. If K nodes have been added to the query tree, this is a failure
event, and assign to v0 a random bin in N(v0). From Lemma 2, this happens with
probability at most 1/n2, and so the probability that some failure event will occur is at
most 1/n. Otherwise, perform LB on all of the vertices in the tree, in order of addition
to the tree, and output the bin to which ball v0 is assigned to by LB. ut

A reduction from various load balancing algorithms gives us the following corollar-
ies to Theorem 4.

Corollary 1. (Using [5]) Suppose we wish to allocate m balls into n bins of uniform
capacity, m ≥ n, where each ball chooses d bins independently and uniformly at ran-
dom. There exists a (log n, log n, 1/n) LCA which allocates the balls in such a way that
the load of the most loaded bin is m/n+O(log log n/ log d) w.h.p.

Corollary 2. (Using [15]) Suppose we wish to allocate n balls into n bins of uniform
capacity, where each ball chooses d bins independently at random, one from each of d
groups of almost equal size θ(nd ). There exists a (log n, log n, 1/n) LCA, which allo-
cates the balls in such a way that the load of the most loaded bin is ln lnn/(d−1) ln 2+
O(1) w.h.p. 10

Corollary 3. (Using [4]) Suppose we wish to allocate m balls into n ≤ m bins,
where each bin i has a capacity ci, and

∑
i ci = m. Each ball chooses d bins at ran-

dom with probability proportional to their capacities. There exists a (log n, log n, 1/n)
LCA which allocates the balls in such a way that the load of the most loaded bin is
2 log log n+O(1) w.h.p.

Corollary 4. (Using [4]) Suppose we wish to allocate m balls into n ≤ m bins, where
each bin i has a capacity ci, and

∑
i ci = m. Assume that the size of a large bin is at

least rn log n, for large enough r. Suppose we have s small bins with total capacityms,
and that ms = O((n log n)2/3). There exists a (log n, log n, 1/n) LCA which allocates
the balls in such a way that the expected maximum load is less than 5.

Corollary 5. (Using [7]) Suppose we have n bins, each represented by one point on a
circle, and n balls are to be allocated to the bins. Assume each ball needs to choose
d ≥ 2 points on the circle, and is associated with the bins closest to these points. There
exists a (log n, log n, 1/n) LCA which allocates the balls in such a way that the load of
the most loaded bin is ln lnn/ ln d+O(1) w.h.p.

6.3 Random ordering

In the above we assume that we are given a random ranking for each ball. If we are not
given such random rankings (in fact, a random permutation of the vertices in U will also
suffice), we can generate a random ordering of the balls. Specifically, since w.h.p. the

10 In fact, in this setting the tighter bound is ln lnn
d lnφd

+ O(1), where φd is the ratio of the d-step

Fibonacci sequence, i.e. φd = limk→∞
k
√
Fd(k), where for k < 0, Fd(k) = 0, Fd(1) = 1,

and for k ≥ 1 Fd(k) =
∑d
i=1 Fd(k − i)
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size of the random query isO(log n), anO(log n)-wise independent random ordering11

suffices for our local computation purpose. Using the construction in [1] of 1/n2-almost
O(log n)-wise independent random ordering over the vertices in U which uses space
O(log3 n), we obtain (O(log3 n), O(log3 n), 1/n)-local computation algorithms for
balls and bins.
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