
Revealing and Analyzing Imperceptible Deviations in Images
and Videos

by

Neal Wadhwa

Submitted to the Department of Mathematics
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in Applied Mathematics

at the Massachusetts Institute of Technology

February 2016

© 2016 Massachusetts Institute of Technology
All Rights Reserved.

Signature of Author:

Department of Mathematics
December 3rd, 2015

Certified by:

William T. Freeman
Thomas and Gerd Perkins Professor of Electrical Engineering and Computer Science

Thesis Supervisor

Accepted by:

Jonathan Kelner
Professor of Mathematics

Chair, Committee for Graduate Students

2

Revealing and Analyzing Imperceptible Deviations in Images and Videos
by Neal Wadhwa

Submitted to the Department of Mathematics
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Abstract
The world is filled with objects that appear to follow some perfect model. A sleeping

baby might look still and a house’s roof should be straight. However, both the baby
and the roof can deviate subtly from their ideal models of perfect stillness and perfect
straightness. These deviations can reveal important information like whether the baby
is breathing normally or whether the house’s roof is sagging.

In this dissertation, we make the observation that these subtle deviations produce
a visual signal that while invisible to the naked eye can be extracted from ordinary
and ubiquitous images and videos. We propose new computational techniques to reveal
these subtle deviations to the naked eye by producing new images and videos, in which
the tiny deviations have been magnified.

We focus on magnifying deviations from two ideal models: perfect stillness and
perfect geometries in space. In the first case, we leverage the complex steerable pyramid,
a localized version of the Fourier transform, whose notion of local phase can be used to
process and manipulate small motions or changes from stillness in videos. In the second
case, we find hidden geometric deformations in images by localizing edges to sub-pixel
precision.

In both cases, we experimentally validate that the tiny deviations we magnify are
indeed real, comparing them to alternative ways of measuring tiny motions and subtle
geometric deformations in the world. We also give a careful analysis of how noise in
videos impacts our ability to see tiny motions. Additionally, we show the utility of
revealing hidden deviations in a wide variety of fields, such as biology, physics and
structural analysis.

Thesis Supervisor: William T. Freeman
Title: Thomas and Gerd Perkins Professor of Electrical Engineering and Computer
Science
Thesis Committee: Professor Frédo Durand, Professor Alan Edelman, Professor John
W. M. Bush

3

4

Acknowledgments

I would like to thank my advisor: Professor William T. Freeman for his support and

advice, and Professor Frédo Durand, with whom have I collaborated closely. I would

also like to thank my other collaborators: Dr. Michael Rubinstein, Abe Davis, Justin

Chen, Dr. Tali Dekel, Donglai Wei, Dr. Gautham Mysore and Tianfan Xue. I also

thank John Bush and Alan Edelman for serving on my thesis examination committee.

I would also like to thank my current and former office mates: Andrew Owens,

Joseph Lim, Roger Grosse, and Jiajun Wu, and my fellow Spring 2015 Computational

Photography TAs: Katie Bouman, Adrian Dalca and Gaurav Chaurasia. I thank Katie

again for giving me helpful feedback on the title and abstract of this dissertation.

I also want to thank Justin Chen again for all the high-speed videos of pipes and

cantilevered beams. I thank Jon Blake Sellon and Denny Freeman’s group for sending

us videos of an in-vitro mammalian tectorial membrane, and Katia Bertholdi’s group

at Harvard for allowing us to film their metamaterials.

I would like to acknowledge fellowships and grants that have funded my research

during my Ph. D: National Defense Science and Engineering Fellowship, National

Science Foundation Graduate Fellowship, Quanta Research, Shell, NSF CGV-1111415

(Analyzing Images Through Time), and the MIT Mathematics Department.

Finally, I would like to thank my parents for their life-long support of my decisions.

5

6

Table of Contents

Abstract 3

List of Figures 11

1 Introduction 31

2 Phase-Based Motion Magnification 35

2.1 Introduction . 35

2.2 Linear Eulerian Video Magnification . 37

2.3 Phase-Based Motion Processing . 41

2.3.1 Simplified global case . 42

2.3.2 Complex Steerable Pyramid . 43

2.3.3 Local Phase Shift is Local Translation 46

2.3.4 Our Method . 47

2.3.5 Bounds . 50

2.3.6 Sub-octave Bandwidth Pyramids 52

2.4 Amplifying the Right Signal . 55

2.5 Results . 57

2.5.1 A Big World of Small Motions 59

2.5.2 Comparison with Linear Eulerian Video Magnification 60

7

8 TABLE OF CONTENTS

2.5.3 Controlled Experiments . 63

2.5.4 Motion Attenuation . 63

2.6 Discussion and Limitations . 66

3 Riesz Pyramids for Fast Phase-Based Motion Magnification 69

3.1 Introduction . 69

3.2 Background . 72

3.2.1 Local Phase and Quadrature Pairs 72

3.2.2 Riesz Transform . 73

3.2.3 Quaternion Representation of the Riesz Transform 74

3.3 Riesz Pyramids . 79

3.3.1 Approximate Riesz Transform . 80

3.3.2 Spatial Decomposition . 82

3.4 Motion Magnification with the Riesz Pyramid 84

3.4.1 Temporal Filtering of Quaternionic Phase 85

3.4.2 Spatial Smoothing . 86

3.4.3 Amplification . 87

3.5 Results . 87

3.6 Discussion and Limitations . 92

4 Noise Analysis and Applications in Science and Engineering 95

4.1 Introduction . 96

4.2 Related Work . 101

4.3 Method . 102

4.3.1 Phase-Based Motion Estimation 103

4.3.2 Noise Analysis . 105

Sensor Noise Estimation . 113

TABLE OF CONTENTS 9

4.3.3 Suppressing Magnification of Noise 114

4.4 Results . 116

4.4.1 Validation of Motion Estimation 117

4.4.2 Validation of Noise Analysis . 122

4.4.3 Phase-Based Motion Magnification vs. Advecting Color Values . 123

4.4.4 Mammalian Tectorial Membrane 125

4.4.5 Metamaterials . 127

4.5 Discussion and Limitations . 129

5 Geometric Deviation Magnification 133

5.1 Introduction . 133

5.2 Related Work . 136

5.3 Method . 137

5.3.1 Overview . 137

5.3.2 Deviations from a Parametric Shape 138

5.3.3 Canonical Stripe Representation 141

5.3.4 Synthesis . 143

5.3.5 User Interaction . 144

5.4 Results . 147

5.4.1 Synthetic Evaluation . 154

5.4.2 Controlled Experiments . 157

5.5 Discussion and Limitations . 157

5.6 Anti-aliasing filter . 160

6 Conclusion 163

A Filter Taps and Design for Riesz Pyramids and Pseudocode 167

A.1 Replacement for Laplacian Pyramid . 167

10 TABLE OF CONTENTS

A.2 Approximating the Riesz Transform . 172

A.3 Pseudocode . 175

B Analytic Derivation of Motion Covariance 185

B.1 Noise on Complex Steerable Pyramid Coefficients 186

B.2 Variance and Covariance of Local Phase 187

B.3 Covariance Matrix of Estimated Motions 189

Bibliography 191

List of Figures

1.1 Amplifying deviations from models. On the left side, the deviations from

perfect stationarity of apparently static videos are amplified to reveal

the breathing of a baby and the swaying of a crane. On the right side,

geometric deviations from a perfect line are amplified to reveal that the

house’s roof is sagging. 32

2.1 Motion magnification of a crane imperceptibly swaying in the wind. (a)

Top: a zoom-in onto a patch in the original sequence (crane) shown

on the left. Bottom: a spatiotemporal XT slice of the video along the

profile marked on the zoomed-in patch. (b-c) Linear [89] and phase-based

motion magnification results, respectively, shown for the corresponding

patch and spatiotemporal slice as in (a). The previous, linear method

visualizes the crane’s motion, but amplifies both signal and noise and

introduces artifacts for higher spatial frequencies and larger motions,

shown by the clipped intensities (bright pixels) in (b). In comparison,

our new phase-based method supports larger magnification factors with

significantly fewer artifacts and less noise (c). The full sequences are

available in the supplemental video. 36

11

12 LIST OF FIGURES

2.2 Amplifying intensity variations can approximate spatial translation. This

effect is demonstrated here on a 1D signal, but equally applies to 2D. This

input signal is shown at two time instants: I(x, 0) = f(x) at time 0 and

I(x, t) = f(x + δ) at time t. The first-order Taylor series expansion of

I(x, t + 1) around x approximates the translated signal. The temporal

bandpass is amplified and added to the original signal to generate a larger

translation. In this example, the amplification factor α is 1, amplifying

the motion by 100%. (Reproduced from Wu et al. 2012 [89]) 38

2.3 Phase-based motion magnification is perfect for Fourier basis functions

(sinusoids). In these plots, the initial displacement is δ(t) = 1. 42

2.4 Increasing the phase of complex steerable pyramid coefficients results in

approximate local motion of the basis functions. A complex steerable

pyramid basis function (a) is multiplied by several complex coefficients

of constant amplitude and increasing phase to produce the real part of a

new basis function that is approximately translating (b). 44

2.5 Using the local phase of complex steerable pyramid coefficients to am-

plify the motion of a moving step edge. Two frames from a video of a

subtly translating step edge (a) are transformed to the complex steerable

pyramid representation by projecting onto basis functions (b). The phase

between the resulting complex coefficients (c) is computed and amplified

(d). Only the coefficient corresponding to exactly one location and scale

is shown; this processing is done to every coefficient. The new coeffi-

cients are used to shift the basis functions (e) and a reconstructed video

is produced in which the motion between the two step edges is evident. 47

LIST OF FIGURES 13

2.6 For general non-periodic structures, the phase-based method can support

amplification factors of around four times as high as the linear method

and does not suffer from intensity clipping artifacts (a). For large am-

plification, the different frequency bands break up due to the higher

frequency bands having smaller windows (b). 49

2.7 Comparison between linear and phase-based Eulerian motion magnifica-

tion in handling noise. (a) A frame in a sequence of IID noise. In both

(b) and (c), the motion is amplified by a factor of 50, where (b) amplifies

changes linearly, while (c) uses the phase-based approach. 50

2.8 A comparison between octave and sub-octave bandwidth pyramids for

motion magnification. Each color in the idealized frequency response

represents a different filter. (a) The original steerable pyramid of Por-

tilla and Simoncelli [64]. This pyramid has octave bandwidth filters and

four orientations. The impulse response of the filters is narrow (rows

2− 3), which reduces the maximum magnification possible (rows 4− 5).

(b-c) Pyramid representations with two and four filters per octave, re-

spectively. These representations are more over-complete, but support

larger magnification factors. 53

2.9 Isolating different types of spatial motions by temporal filtering. A pipe

was struck with a hammer and a frame from the input high-speed video

is shown (a). The motions at several frequencies were magnified to iso-

late different modal shapes of the pipe. In b-f, a frame is shown from

each of the motion magnified videos showing the modal shapes. Below,

the the theoretically-derived modal shapes are shown in red overlayed,

for comparison, over a perfect circle in dotted black. (Video and idea

courtesy of Justin Chen.) . 56

14 LIST OF FIGURES

2.10 Our phase-based approach manipulates motion in videos by analyzing

the signals of local phase over time in different spatial scales and orien-

tations. We use complex steerable pyramids to decompose the video and

separate the amplitude of the local wavelets from their phase (a). We

then temporally filter the phases independently at at each location, ori-

entation and scale (b). Optionally, we apply amplitude-weighted spatial

smoothing (c) to increase the phase SNR, which we empirically found

to improve the results. We then amplify or attenuate the temporally-

bandpassed phases (d), and reconstruct the video (e). This complex

steerable pyramid shown has two scales and two orientations (the rela-

tive difference in size between the pyramid levels is smaller in this figure

for clarity of the visualization). 58

2.11 A big world of small motions. Representative frames from videos in

which we amplify imperceptible motions. The full sequences and results

are available on the project website. 59

2.12 Comparison of our result on the camera sequence (d) with the result of

Wu et al. [89] (a), denoised by two state-of-the-art video denoising algo-

rithms: VBM3D [14] (b) and motion-based denoising by Liu and Free-

man [52] (c). The denoising algorithms cannot deal with the medium

frequency noise, and are computationally intensive. The full videos and

similar comparisons on other sequences are available in the supplemen-

tary material. 61

LIST OF FIGURES 15

2.13 A controlled motion magnification experiment to verify our framework.

(a) A hammer strikes a metal structures which then moves with a damped

oscillatory motion. (b) A sequence with oscillatory motion of amplitude

0.1 pixels is magnified 50 times using our algorithm and compared to

a sequence with oscillatory motion of amplitude 5 pixels (50 times the

amplitude). (c) A comparison of acceleration extracted from the video

with the accelerometer recording. (d) The error in the motion signal we

extract from the video, measured as in (c), as function of the impact

force. Our motion signal is more accurate as the motions in the scene

get larger. 64

2.14 Motion attenuation stabilizes unwanted head motions that would other-

wise be exaggerated by color amplification. The full sequence is available

in the supplemental video. 65

2.15 Motion magnification can cause artifacts (cyan insets and spatiotemporal

timeslices) in regions of large motion such as those in this sequence of

a boy jumping on a platform (a). We can automatically remove such

artifacts by identifying regions where the phase change exceeds our bound

or a user-specified threshold (b). When the boy hits the platform, the

time slice (purple highlights) shows that the subtle motions due to impact

with the platform are magnified in both cases. 68

16 LIST OF FIGURES

3.1 Motion magnification of sinusoidal instabilities in fluid flow during the

transition from laminar flow to turbulent flow. The input (a) is motion-

magnified using the linear method of Wu et al. [89] (b) and two phase-

based methods, first with an eight orientation octave-bandwidth com-

plex steerable pyramid [85] (c), and second with our new Riesz pyramid

(d). The quality of the video produced using our new representation

(d) is comparable to that produced using the complex steerable pyramid

method (c), but is approximately four times faster to compute.

Frames and slices in time along the yellow line from the input and pro-

cessed sequences are shown. Notice that both (c) and (d) do not have the

intensity clipping artifacts and limited amplification of (b). The running

time of each method is shown under its caption, based on a MATLAB

implementation. 70

3.2 The input image sub-band (a), its Riesz transform (b-c) and the orien-

tation (d), quadrature pair (e) and phase (f). 75

3.3 The motion between the input (a) and a copy shifted to the left by one

half pixel is magnified without and with the quaternion representation

of the Riesz pyramid. First, the phase difference of φ (b) is spatially

denoised and then used to magnify the second frame (c). In the bottom

row, the difference in the quantities φcos() and φsin() (d-e) are spatially

denoised and then used to amplify the second frame (f). In (b,d,e), low

amplitude regions are masked in yellow, middle gray corresponds to a

difference of zero and only a single sub-band is shown. 76

LIST OF FIGURES 17

3.4 Three equivalent representations of the Riesz pyramid. The input is a

circle with a sharp edge (a). In (b), the input is decomposed into multi-

ple spatial sub-bands using an invertible transform, and an approximate

Riesz transform is taken of each band to form the Riesz pyramid. At each

scale, the three channels can be thought of as being components in Carte-

sian coordinates. In (c), they are expressed in cylindrical coordinates to

show the sub-band, its quadrature pair and the local orientation. In (d),

they are expressed in spherical coordinates to show the local amplitude,

local orientation and local phase. Note the discontinuity in the orienta-

tion, quadrature pair and phase, which is due to the fact that orientation

wraps around from 0 to π. In all three representations, there is a lowpass

residual, of which we do not take the Riesz transform. The orientation

and phase are not meaningful in regions of low amplitude (masked out

in yellow). 79

3.5 The first channel of the Riesz transform of a pyramid level’s transfer

function (a) is compared to the first channel of our approximation of the

Riesz transform (b). One dimensional slices along the yellow lines of (a)

and (b) are shown in (c). If our approximation was perfect, (a) and (b)

would be identical and the lines in (c) would coincide. 81

18 LIST OF FIGURES

3.6 Different spatial decompositions for our new algorithm. In the top row,

the frequency response of a level of the Laplacian pyramid (a), a fre-

quency domain pyramid (b), and our new spatial domain pyramid (c).

In the middle row, a one-dimensional cross section of their impulse re-

sponses (d) and windows (e). In the bottom row, a synthetic Gaussian

shifted with our technique using a Laplacian pyramid, the frequency do-

main pyramid and our new pyramid for two amplification factors (f-g).

The time in milliseconds to build and collapse a 960 × 540 image in

MATLAB is shown underneath the frequency response of each pyramid. 83

3.7 A processing pipeline for motion magnification with the Riesz pyramid.

A region of interest (highlighted in green) of an input (a) is decom-

posed using a Laplacian-like pyramid (only one level shown). The Riesz

transform of this level is taken to produce the Riesz pyramid (b). The

quaternion norm is used to compute the amplitude (c, top row) and the

quaternion logarithm is used to produce the quaternionic phase (c, bot-

tom rows). The quaternionic phase is spatio-temporally filtered (d) to

isolate motions of interest and then this quantity is used to phase-shift

the input Riesz pyramid level to produce a motion magnified subband

(e). These subbands can then be collapsed to produce a motion magnified

video (not shown). 84

3.8 Representative frames from videos in which we amplify imperceptible

motions. The full sequences and results are available in the supplemen-

tary materials. 89

LIST OF FIGURES 19

3.9 A comparison of our new method versus previous Eulerian video magnifi-

cation methods on a synthetic oscillating Gaussian, in which the ground

truth amplified motion is known. The logarithm of the RMSE is shown

in color for the linear method (a), for the complex steerable pyramid

phase-based method (b) and for our new phase-based method (c). We

also show slices of the RMSE vs. amplification (d) and RMSE vs. noise

(e) for the three methods. 89

3.10 A frame from our real-time demo using Riesz Pyramids. A wine glass is

filmed in with a video camera while a nearby speaker plays its resonant

frequency (449.1Hz) at it. The induced vibrations are too small and too

fast to be seen with the naked eye. Filming with very short exposure

times (0.4ms) leads to temporal aliasing which makes the fast vibration

look like one occurring at 1.2 Hz. When this is motion magnified, the os-

cillations of the wine glass are visible on the right in the motion magnified

video. 91

3.11 An example of an advantage of the complex steerable pyramid over the

Riesz pyramid on a synthetic sequence. The texture in (a) is the sum of

four sinusoids with the same wavelength, but different orientations (18◦,

72◦, 108◦, 162◦). The texture and a copy shifted to the right by 0.1 pixels

are motion-magnified by 30 times using an eight orientation complex

steerable pyramid (b), a two orientation complex steerable pyramid (c)

and the frequency domain Riesz pyramid (d). Notice how the texture in

(b) is more similar to the original (a) in comparison to (c) and (d). The

full sequences are available in the supplementary material. 93

4.1 Sources of unwanted and spurious tiny motions in video. In this chapter,

we focus on spurious tiny motions caused by sensor noise. 98

20 LIST OF FIGURES

4.2 Magnification of spatially smoothed and temporally filtered noise can

look like a real signal. A synthetic 300-frame video was created by repli-

cating a single frame 300 times and adding independent noise to each

frame (a). The result was motion magnified 600x in a temporal band of

40-60Hz (b). Timeslices from the same parts of each video are shown on

the right for comparison. The source frame is of an acoustic metamate-

rial (filmed in the Bertoldi lab at Harvard University [87] and discussed

in Sec. 4.4.5). 99

4.3 Using a probabilistic simulation to compute the noise covariance of the

motion estimate. A single frame from an input video is replicated and

simulated, but realistic noise is added (b) to produce a synthetic video

with no motions and only noise (c). Optical flow is estimated in this video

(d) and the sample variances and sample covariance of the vertical and

horizontal components of the motion are computed to give an estimate

of how much noise is in the motion estimate (e). The input frame is of an

acoustic metamaterial (filmed in the Bertoldi lab at Harvard University

[87] and discussed in Sec. 4.4.5). 108

4.4 Variances and covariance of estimated motion are approximately con-

stant vs. motion size. This means our noise covariance estimation, which

assumes that the motions are zero, is also accurate for small non-zero mo-

tions. The motion between a synthetic frame (a) and slightly translated

versions (not shown) at the marked point in red is computed 4000 times

for several different translation amounts. Each time a different, but in-

dependent noise is added to the frames. The sample covariance (b) and

variances (c-d) are shown as a function of motion size. (c) and (d) are

on the same color scale. 111

LIST OF FIGURES 21

4.5 Estimating sensor noise from a nearly static video. A frame from a

video is shown (a). The variance of pixel intensities over times is then

computed (b). Pixels with strong spatial gradients (edges) are computed

(c). The remaining pixels are used to compute a noise level function

mapping input intensity to noise variance. 112

4.6 Validation of our motion estimation on real data. A frame from the

recorded video (a) and the experimental setup (b). Overlayed plots

of the displacements of a cantilevered beam, computed using our mo-

tion estimation technique and by integrating laser vibrometer velocity

measurements (c-e). (Experiment performed with Justin G. Chen, Oral

Buyukozturk and colleagues; data taken from [11].) 118

4.7 An evaluation of our optical flow estimation method and NCORR [5] on

a synthetic dataset of images. Frames from real videos (a) were warped

using motion fields (b) of various motion size and spatial scale. Our

optical flow estimation method and NCORR are used to estimate the

motion field and the average relative error is displayed for both methods

as a function of motion size and spatial scale. Both methods are only

accurate for spatially smooth motion fields. Our method is twice as

accurate for spatially smooth, sub-pixel motion fields. NCORR is more

accurate for larger motions. 120

22 LIST OF FIGURES

4.8 Validation of our noise estimation on real data. In a real video (c), there

are no motions in the frequency band 600 to 700 Hz (a). The variance of

our motion estimate is entirely due to noise and serves as ground truth

(f). Estimates of the noise variance using our Monte Carlo simulation

using two different noise models (b) are shown in (d) and (g). The differ-

ence in decibels between the ground truth variances and the estimated

variances are shown in (e) and (h). All variances are of the motions

projected to the direction of most confidence. Textureless regions, where

the motion estimation is not meaningful, have been masked out in black. 121

4.9 Different ways to motion magnify videos. The input video (a) is motion

magnified 20x (0.5-3Hz) using phase-based motion magnification (b). Its

motions are also computed using our phase-based optical flow. The re-

sulting motion vectors are used to advect pixel colors (c). Similarly, the

motions are computed using NCORR [5]. A magnified version of the re-

sulting motion vectors is used to modify the phase in complex steerable

pyramid coefficients (d) and also used to advect pixel values (e). Note

the artifacts near the baby’s head and along the crib wall in (c) and (e). 124

LIST OF FIGURES 23

4.10 Exploring the mechanical properties of a mammalian tectorial membrane

(TM) with motion magnification and phase-based motion estimation. To

simulate the effect of sound, one side of the TM is vibrated while it is

stroboscopically filmed under a microscope (a). Frames and a time slice

from this video are shown in (d). The vertical displacement along the

blue line in (d) is shown for three frames (b). The power spectrum of the

motion signal in the direction of most confidence at the marked points in

(d) is shown with the computed noise floor (c). All nonconstant motions

above the noise floor are magnified 20x in the corresponding frames from

the motion magnified video are shown in (c). The blue line on top of the

TM in (b) is warped according to magnified motion vectors to produce

the orange and purple lines in (c). ((a) from Ghaffari et al. [36] and data

from Sellon et al. [69].) . 126

4.11 Motion magnification applied to a metamaterial with a forced vibration

and a comparison to simulation [87]. A probe forces a metameterial to

vibrate and the result is filmed. One frame from one of the input videos

is shown (a). The simulated displacements with a zero displacement

boundary condition on the side of the metameterial touching the table

is shown (b) for a 50Hz forcing and a 100Hz forcing. Frames from the

motion magnified video are shown in (c). They match the simulation

closely. Video filmed with the assistance of Donglai Wei and Pai Wang

in the Bertoldi Lab. 129

24 LIST OF FIGURES

4.12 Using our motion and noise estimates to suppress amplification of noisy

regions. The noise power, signal power and their ratio is shown (a-c).

The optimal Wiener filter coefficient for each time series is shown at

every pixel (d) and the result of doing plain motion magnification vs.

attenuating the motion signal by the Wiener filter coefficient is shown in

a single frame and timeslices (e-f). Video filmed with the assistance of

Donglai Wei and Pai Wang in the Bertoldi Lab. 130

5.1 Revealing the sagging of a house’s roof from a single image. A perfect

straight line marked by p1 and p2 is automatically fitted to the house’s

roof in the input image (a). Our algorithm analyzes and amplifies the

geometric deviations from straight, revealing the sagging of the roof in

(b). View II shows a consistent result of our method (d) using another

image of the same house from a different viewpoint (c). Each viewpoint

was processed completely independently. 134

LIST OF FIGURES 25

5.2 Outline of Geometric Deviation Magnification: a parametric shape (e.g.,

a line segment) is fitted to the input image (either automatically or with

user interaction). The region near the contour of the shape is sampled

and transformed into a canonical stripe representation. The alpha matte

of the stripe is then computed using [49] and then fed into the analysis

step. In this step, deviation from the fitted shape is computed: the

edge profiles S(pj) in the vertical direction are sampled for each location

pj along the stripe, and a model edge profile Sm is estimated; the 1D

translation between the edge profiles S(pj) and Sm is estimated to form

the deviation signal. The filtered deviation signal is then magnified by

a factor of α and used to generate a deformation field. The synthesized

image is rendered accordingly and reveals the spatial deviation from the

fitted shape. In this case, the periodic ripples of the sand dune ridge are

revealed. (Image courtesy of Jon Cornforth.) 135

5.3 Synthetic Example: (a) The input image, a horizontal edge in the mid-

dle of the image carries a 0.1 pixel sinusoidal perturbation, f(x) =

0.1 sin(2πωx). (b) Magnification of the ground truth perturbation by

a factor of 20. (c) Two edge profiles obtained by sampling the intensity

values in (b) along the green (A) and red (B) vertical lines, respectively.

The edge profiles are related by 1D translation. (d), the small perturba-

tion in the input (a) are revealed by our method. 141

5.4 Deviations of Saturn’s rings amplified without and with the aliasing post-

filter. Without it, there is a sinusoidal perturbation along the rings (b),

but our post-filter reveals that it is actually just spatial aliasing in the

input image (c). (Image courtesy of NASA.) 143

26 LIST OF FIGURES

5.5 Revealing the bending of a weighted steel barbell and a comparison of

our method with and without matting. An image stripe is taken from the

input image (a) and the deviation signal is overlayed on the image stripe

without matting (c) and with it (d). The deviations in the weightlifter’s

barbell are amplified without matting (e) and with matting (f). (Image

courtesy of Jay Smidt.) . 146

5.6 Elizabeth Tower (Big Ben) becomes the leaning tower of London. We

process the two images of the tower independently. Parallel vertical

lines in the input image are used to compute the vanishing point of the

input images (only crops of which are shown here). In (b), the user

specifies the lines that go through the vanishing point (marked in red)

and a region of interest (marked in semi-transparent yellow). Our method

computes the deviation from the fitted line, and synthesizes a new image,

in which the deviation is exaggerated. 147

5.7 Revealing the distortion and vibrations of a ball when it hits a table.

(a-b) two frames from the input video that correspond to the red and

green locations of the ball in (e), respectively. Our method computes

the deviation of the ball from a perfect circle in each of the frames in-

dependently. (c-d), the rendering of (a) and (b), respectively, where the

deviation is x10 larger. (e), the raw deviation signal, counterclockwise

along the ball from 0 to π. 149

5.8 Revealing the vibrations of a bubble from a single frame. An input frame

of two bubbles (a) was used to produce our magnification result (b) in

which the low frequency deviations of each bubble were amplified. The

shapes were automatically detected. No temporal information was used. 151

LIST OF FIGURES 27

5.9 Geometric Deviation Magnification independently applied to each frame

of a timelapse of Saturn’s moon interacting with its ring. Three frames

from the timelapse (b) are processed using our new deviation magnifica-

tion method (c) and using stabilization plus motion magnification (d).

The lines used to do the stabilization and the fitting are shown in (b).

The green arrows denotes the most salient feature after amplification.

The full sequence is in the supplementary material. (Images courtesy of

NASA.) . 152

5.10 Revealing the distortions in a background of straight lines caused by

heated air and sinusoidal instabilities of smoke flow in a single image. In

candle, the deviation from every straight line is amplified twenty times.

Both the amplified result and the overlayed vertical warping field are

shown. In smoke, a single line is fitted to the input and the result is

magnified three times. 153

5.11 A frame from our interactive demo showing a bookshelf buckling under

weight when deviations from a straight line are amplified. 154

5.12 Quantitative evaluation on synthetic data: (a), an example untextured

image and its amplified version. (b), the data includes images with lines

in different orientations, sharpness levels, noise levels and textures. (c),

the error as a function of additive Gaussian noise. (d), the mean absolute

error in the deviation signal computed by our method, as a function of

the orientation, for different sharpness levels. (e), the error w/ and w/o

matting for half-textured images (shown below). (f), the error w/ and

w/o matting for fully-textured images. 156

28 LIST OF FIGURES

5.13 Deviation from straight lines, controlled experiment. (a) The experimen-

tal setup, which is also the image used as an input to our framework.

The measurements from digital calipers between the two wooden boards

at each position marker and the deviation signal from our method are

shown (b). 158

5.14 Deviation from ellipses, controlled experiment. A sheet with ellipses on it

is draped over a table with a stick on it (a-b). The deviation from every

ellipse is automatically fitted (c) and then amplified by seven times (d)

revealing the unobserved location of the stick. 159

5.15 Causes of spatial aliasing and how to find the aliasing frequency. (a), a

continuous edge and its discretization (c); (b,d), the Fourier transforms

of (a,c) respectively. (d), replicas in the Fourier transform cause spatial

aliasing along the line L. 161

A.1 A signal processing diagram of our pyramid construction showing how

a lowpass and highpass filter can be recursively used with subsampling

to produce a sequence of critically sampled bandpassed images. The

blocks ↓ 2 and ↑ 2 denote downsampling and upsampling by a factor of

2 in both x and y. L and H denote linear shift invariant lowpass and

highpass filters respectively. 169

A.2 A comparison of several approximate Riesz transform for phase-based

motion magnification with and without spatial smoothing. A sinusoid (a)

and a shifted copy (b) are motion magnified 300 times. In the second and

third rows, we show the phase signal obtained with three different Riesz

transforms and the resulting motion magnified frames. In the fourth and

fifth rows, we show the spatially smoothed phase signals and the resulting

motion magnified frames. 174

LIST OF FIGURES 29

B.1 Noise model on phases. We take a frame from a synthetic video (a) and

build a single level of a complex steerable pyramid (b-c). For three co-

efficients (red, green and blue dots) with different amplitudes, we show

a point cloud of noisy coefficient values (d) and the corresponding his-

togram of phases (e). 187

30 LIST OF FIGURES

Chapter 1

Introduction

A traditional microscope takes a slide that has details that are too small to see with

the naked eye and, through the magic of optics, magnifies it hundreds of times to reveal

a beautiful world of bacteria, cells, pollen, crystals, and material structures. There is

another invisible and fascinating world to be visualized: that of tiny deviations from

perfect models. A baby lying in a crib and a construction crane appear to be perfectly

stationary and a house’s roof appears to be (and should be) a straight line. However,

these objects deviate slightly from their ideal models of perfect stillness and perfect

straightness. The baby’s chest moves because she is breathing, the construction crane

sways in the wind and the house’s roof is actually sagging (Fig. 1.1). In this dissertation,

we develop a deviation microscope: a tool that relies not on optics, but on computation

to amplify deviations from perfect stillness and perfect geometries to reveal minuscule

motions and subtle geometric imperfections in ordinary images and videos.

We focus on two types of perfect models: perfect stationarity in time and ideal

geometries in space. In the first case, we consider input videos that look entirely static

to the naked eye, and we use algorithms we have developed to output new videos of the

same scene, but where tiny invisible motions and changes over time have been magnified

so as to become visible. We can take videos where objects move by only a fraction of a

pixel (as small as 1/100th of a pixel) and magnify them until the motion is obvious and

spans several pixels. In the second case, we look at single images and find objects that

31

32 CHAPTER 1. INTRODUCTION

Ti
m

e

Space

Ti
m

e

Space

Input Video

Input Video
 Timeslice

Motion Magnified
x75 Timeslice

Chapters 2-4 Chapter 5

Deviations from Perfect Stationarity (Motions) Amplified

Input Video

Input Video
Timeslice

Motions Magnified
 x20 Timeslice

Input Image

Geometric Deviations x10

Time

Sp
ac

e

Time

Sp
ac

e

p1 p2

Deviations from Perfect
Geometry Amplified

Figure 1.1: Amplifying deviations from models. On the left side, the deviations from perfect
stationarity of apparently static videos are amplified to reveal the breathing of a baby and the
swaying of a crane. On the right side, geometric deviations from a perfect line are amplified to
reveal that the house’s roof is sagging.

look like ideal geometries, e.g. lines, circles and ellipses. We then produce new images,

in which the deviations of those objects from their corresponding geometries have been

magnified so as to become visible.

Magnification gives a visualization of tiny motions and subtle geometric deviations

that is distinct from quantitatively knowing the exact motions or geometric deviations

in a video. These quantitative numbers can be useful for many applications. However,

it is often difficult to interpret them, especially when they are computed densely for all

pixels or all ideal geometries in an image. Seeing the motions or geometric deviations

as if they are larger is easy to understand and can assist in interpreting a dense motion

field or a dense set of geometric deviations.

33

Magnifying Tiny Motions in Apparently Still Videos Subtle changes from perfect stillness

are caused by many phenomena and occur in many objects. These tiny motions are

surprisingly easy to process. In Chapter 2, we discuss previous methods of amplifying

these tiny motions. Then, we describe our new method to amplify them robustly and

accurately and show the utility of magnifying motions on examples from a wide variety

of fields. In Chapter 3, we discuss a way to make this processing extremely fast and

capable of running in real-time on modern laptops.

In Chapter 4, we discuss how magnifying tiny motions can be useful for scientists

and engineers. To this end, we add two new capabilities to augment motion magnifica-

tion: a quantitative readout of the tiny motions, so that they can be further analyzed

and a measure of the amount of expected noise in the motion signal. This measure

of noise allows us to distinguish when tiny motions are true signal and when they are

spurious caused by noise present in every video.

Magnifying Geometric Deviations Many objects in the world follow an ideal geometry,

such as a line, circle or ellipse. For example, buildings are usually designed to be straight

and in ideal conditions, bubbles tend to be perfect circles due to surface tension. In

reality, however, such flawless behavior hardly exists, and even when invisible to the

naked eye, objects depart from their idealized models. The building may start to sag

or tilt, and in the presence of gravity, the bubble may be slightly oval. In Chapter 5,

we discuss techniques to magnify these deviations that can be used to reveal interesting

and important information about a variety of objects and phenomena.

34 CHAPTER 1. INTRODUCTION

This dissertation is largely based on work that has appeared in ACM Transactions on

Graphics (Proceedings of SIGGRAPH 2013 and Proceedings of SIGGRAPH Asia 2015)

[84, 85] and the 2014 IEEE International Conference on Computational Photography

(ICCP) [86].

Chapter 2

Phase-Based Motion Magnification

In this chapter, we focus on magnifying subtle deviations from perfect stillness in almost

static videos. Such videos look like still images, but actually contain tiny color changes

and motions that if magnified, can reveal numerous and interesting phenomena. We

focus on the case of subtle motions in videos and present a new method of amplifying

tiny motions in videos that is robust, fast and accurate.

� 2.1 Introduction

A plethora of phenomena exhibit motions that are too small to be well perceived by the

naked eye and require computational amplification to be revealed [54, 89]. There are

two methods of revealing these subtle motions, whose difference is best described by a

fluid dynamics metaphor. In the Lagrangian perspective, the motion of fluid particles

is tracked over time, similar to observing a river flow from the moving perspective of

a boat. This is the approach taken by Liu et al. [55]; points in the scene are tracked

and then pixel colors are advected across the frame according to magnified motion

vectors. This method relies on accurate and dense motion estimation in videos, which

is challenging and computationally-intensive.

In contrast, the Eulerian perspective considers a fixed reference frame and charac-

terizes fluid properties over time at each fixed location, akin to an observer watching

the water from a bridge. Wu et al. [89] follow this approach by treating the time series

35

36 CHAPTER 2. PHASE-BASED MOTION MAGNIFICATION

(a) Source (b) Linear [Wu et al. 2012] (c) Phase-based (this paper)x
t

Figure 2.1: Motion magnification of a crane imperceptibly swaying in the wind. (a) Top: a zoom-
in onto a patch in the original sequence (crane) shown on the left. Bottom: a spatiotemporal
XT slice of the video along the profile marked on the zoomed-in patch. (b-c) Linear [89] and
phase-based motion magnification results, respectively, shown for the corresponding patch and
spatiotemporal slice as in (a). The previous, linear method visualizes the crane’s motion, but
amplifies both signal and noise and introduces artifacts for higher spatial frequencies and larger
motions, shown by the clipped intensities (bright pixels) in (b). In comparison, our new phase-
based method supports larger magnification factors with significantly fewer artifacts and less
noise (c). The full sequences are available in the supplemental video.

of intensity values at each pixel independently and amplifying temporal variations in

a frequency band of interest to produce a motion magnified video. Remarkably, this

simple method of looking at only color changes at each pixel can be used to manipulate

small motions because small motions and color changes are linked through a first-order

Taylor series expansion. This method is fast and robust eliminating the need for costly

flow computation. Unfortunately, because linear Eulerian video magnification [89] relies

on a first-order Taylor expansion, it supports only small magnification factors. It can

also significantly amplify noise when the magnification factor is increased (Fig. 2.1(b)).

In this chapter, we propose a new Eulerian technique to amplify and manipulate

small motions, based on complex-valued steerable pyramids [64, 75], and inspired by

phase-based optical flow [29, 34] and motion without movement [32]. Instead of ampli-

fying temporal variations in pixel intensity, we instead amplify local phase variations in

a complex steerable pyramid representation of the input video. This representation is

similar to a localized version of the Fourier transform. Using local phase to analyze and

Sec. 2.2. Linear Eulerian Video Magnification 37

manipulate motions is similar to modifying the phase of Fourier basis coefficients—sine

waves—to translate them. This change is only in representation, not in algorithm.

Manipulating local phase variations improves on the previous, linear Eulerian mag-

nification method [89] in two important aspects (Fig. 2.1): using local phase (a) achieves

larger magnifications, and (b) has substantially better noise performance. Because Wu

et al. [89] amplify temporal brightness changes, the amplitude of noise is amplified lin-

early. In contrast, the presented method modifies phases, not amplitudes, which does

not increase the magnitude of spatial noise. We demonstrate that the phase-based

method can achieve larger motion magnifications with fewer artifacts, which expands

the set of small-scale physical phenomena that can be visualized with motion magnifi-

cation techniques.

� 2.2 Linear Eulerian Video Magnification

The motion magnification technique most closely related to the one presented in this

chapter is linear Eulerian video magnification [67, 89]. We briefly review this method

here. Its core idea is to independently process the time series of color values at each

pixel. We do this by applying standard 1D temporal signal processing to each time

series to amplify a band of interesting temporal frequencies e.g. around 1Hz (60 beats

per minute) for color changes and motions related to heart-rate. The new resulting

time series at each pixel yield an output video where tiny changes that were impossible

to see in the input, such as the reddening of a persons face with each heart beat or the

subtle breathing motion of a baby, get magnified and become clearly visible.

The idea of applying temporal signal processing on pixel values is straightforward,

and has been explored in the past for regular videos [33, 63]. However, the results

have been limited because such processing cannot handle general spatial phenomena

such as large motions that involve complex space-time behavior across pixels. When

38 CHAPTER 2. PHASE-BASED MOTION MAGNIFICATION

0

(x)Space

In
te

n
si

ty

αB(x, t)

δ

B(x, t)

∼

αδ∼

f (x) f (x)δ f (x) ∂f (x)
∂x

δ

B(x, t) αf (x) + (1 +)B(x, t)

Figure 2.2: Amplifying intensity variations can approximate spatial translation. This effect is
demonstrated here on a 1D signal, but equally applies to 2D. This input signal is shown at
two time instants: I(x, 0) = f(x) at time 0 and I(x, t) = f(x + δ) at time t. The first-order
Taylor series expansion of I(x, t+1) around x approximates the translated signal. The temporal
bandpass is amplified and added to the original signal to generate a larger translation. In this
example, the amplification factor α is 1, amplifying the motion by 100%. (Reproduced from Wu
et al. 2012 [89])

a large motion occurs, color information travels across many pixels and a Lagrangian

perspective, in which motion vectors are computed, is required. One critical contribu-

tion of Eulerian video magnification is the observation that, in the special case of small

motions, Eulerian processing can faithfully approximate their amplification. Because

the motions involved are small, we can make first-order Taylor arguments to show that

linear, per-pixel amplification of color variations closely approximates a larger version of

the motion. We briefly formalize this in the case of 1D translational motion of a diffuse

object under constant lighting and then explain the limitations of this technique.

1D translation Consider a translating 1D image with intensity denoted by I(x, t) at

position x and time t. Because it is translating, we can express the image’s intensities

Sec. 2.2. Linear Eulerian Video Magnification 39

with a displacement function δ(t), such that I(x, t) = f(x − δ(t)) and I(x, 0) = f(x).

Fig. 2.2 shows the image at time 0 in black and at a later time translated to the right

in blue. The goal of motion magnification is to synthesize the signal

Î(x, t) = f(x− (1 + α)δ(t)) (2.1)

for some amplification factor α.

We are interested in the time series of color changes at each pixel:

B(x, t) := I(x, t)− I(x, 0). (2.2)

Under the assumption that the displacement δ(t) is small, we can approximate the first

term with a first-order Taylor series expansion about x, as

I(x, t) ≈ f(x)− δ(t)∂f(x)

∂x
. (2.3)

Because I(x, 0) = f(x), the color changes at x are

B(x, t) ≈ −δ(t)∂f(x)

∂x
. (2.4)

This is the first order approximation to the well known brightness constancy equation

in optical flow [42, 56]: the intensity variation at a pixel x is the negative of the product

between the displacement and the spatial gradient. This can be seen as a right triangle

in Fig. 2.2, whose legs are the temporal intensity variation (vertical edge marked B(x, t))

and the displacement (horizontal edge marked δ) and whose hypotenuse (diagonal edge

marked ∂f(x)
∂x) has slope equal to the image’s spatial derivative.

In our processing, we do not try to solve for δ(t). Instead, we amplify the color

change signal B(x, t) by α and add it back to I(x, t), resulting in the processed signal

40 CHAPTER 2. PHASE-BASED MOTION MAGNIFICATION

(in red in Fig. 2.2):

Ĩ(x, t) = I(x, t) + αB(x, t). (2.5)

Combining Eqs. 2.3, 2.4, and 2.5, we have

Ĩ(x, t) ≈ f(x)− (1 + α)δ(t)
∂f(x)

∂x
. (2.6)

As long as (1 +α)δ is not too large, we can use another first-order Taylor expansion to

relate the previous equation to motion magnification (Eq. 2.1). It is simply

Ĩ(x, t) ≈ f(x− (1 + α)δ(t)). (2.7)

This shows that this processing magnifies motions. The spatial displacement δ(t) be-

tween frames of the video times 0 and t, has been amplified by a factor of (1 + α).

Limitations of the Linear Approach Linear amplification relies on a first-order Taylor-

expansion, which breaks down when either the amplification factor is too large or the

input motion is too large. For overly large amplification factors, the magnified video

overshoots the white level and undershoots the black level of the video causing clipping

artifacts near edges where ∂2f(x)
∂x2

is large (Fig. 2.6a). If the input motion is too large, the

initial Taylor expansion is inaccurate (Eq. 2.3) and the output contains not magnified

motions, but instead ghosting artifacts.

A second limitation is that noise in the video is amplified as well. For example,

suppose the image I(x, t) has IID, additive white Gaussian noise n(x, t) of variance σ2.

The difference between the frame at time t and at time 0 will contain a noise term

n(x, t)− n(x, 0) (2.8)

that has noise variance 2σ2. This noise term will be amplified by a factor α and the

Sec. 2.3. Phase-Based Motion Processing 41

output video will have noise of variance 2α2σ2, a much larger amount than in the input

video (Fig. 2.7b).

In Wu et al. 2012, this amplification of noise variance was mitigated to some extent

by reducing the amplification of high spatial-frequency temporal variations, which are

mostly noise rather than signal. They did this by constructing a Laplacian pyramid of

the temporal variations and using a lower amplification factor for the higher frequency

levels, but this is not necessary and simply lowpassing the temporal variations spatially

produces comparable results.

� 2.3 Phase-Based Motion Processing

The appeal of the Eulerian approach to video magnification is that it independently

processes the time series of color values at each pixel and does not need to explicitly

compute motions. However, its reliance on first-order approximations limits its scope,

and its use of linear amplification increases noise power. In this chapter, we seek to

continue using the Eulerian perspective of motion analysis, processing independent time

series at fixed reference locations. But, we want to do so in a representation that better

handles motions and is less prone to noise.

In the case of videos that are global translations of a frame over time, there is a

representation that is exactly what we want: the Fourier series. Its basis functions

are complex-valued sinusoids that, by the Fourier shift theorem, can be translated

exactly by shifting their phase (Fig. 2.3a,c). However, using the Fourier basis would

limit us to only being able to handle the same translation across the entire frame,

precluding the amplification of complex spatially-varying motions. To handle such

motions, we instead use spatially-local complex sinusoids implemented by a wavelet-

like representation called the complex steerable pyramid [73, 75]. This representation

decomposes images into a sum of complex wavelets corresponding to different scales,

42 CHAPTER 2. PHASE-BASED MOTION MAGNIFICATION

In
te

ns
ity

Space (x)

0

Space (x)Space (x)

Frame 1 Frame 2 α = 1 α = 2 α = 3

(a) True Amplification (c) Phase-Based(b) Linear

Figure 2.3: Phase-based motion magnification is perfect for Fourier basis functions (sinusoids).
In these plots, the initial displacement is δ(t) = 1.

orientations and positions. Each wavelet has a notion of local amplitude and local phase,

similar to the amplitude and phase of a complex sinusoid (Fig. 2.4a). The key to our

new approach is to perform the same 1D temporal signal processing and amplification

described earlier on the local phase of each wavelet, which directly corresponds to local

motion as we discuss below.

� 2.3.1 Simplified global case

To provide intuition for what phase is and how it can be used to magnify motion, we

work through a simplified example in which one dimensional translation of an image is

magnified using the phase of global Fourier basis coefficients (Fig. 2.3.) This derivation

is closely related to the derivation of the Fourier Shift Theorem [61].

Specifically, again let image intensity I(x, t) be given by f(x− δ(t)) where δ(0) = 0.

The profile f(x) can be decomposed into a sum of complex coefficients times sinusoids

using the Fourier transform

f(x) =
∑
ω

Aωe
iφωe−iωx. (2.9)

Because the frames of I are translations of f , their Fourier transform is given by a phase

Sec. 2.3. Phase-Based Motion Processing 43

shift by ωδ(t):

I(x, t) =
∑
ω

Aωe
iφωe−iω(x−δ(t)) =

∑
ω

Aωe
i(φω+ωδ(t))e−iωx. (2.10)

where the phase of these coefficients becomes φω + ωδ(t). If we subtract the phase at

time 0 from the phase at time t, we get the phase difference

ωδ(t), (2.11)

which is proportional to the translation. Amplifying this phase difference by a factor α

and using it to shift the Fourier coefficients of I(x, t) yields

∑
ω

Aωe
iφω+(1+α)ωδ(t)e−iωx = f(x− (1 + α)δ(t)), (2.12)

a new image sequence in which the translations have been exactly magnified.

Phase-based magnification works perfectly in this case because the motions are

global and because the transform breaks the image into a representation consisting of

exact sinusoids (formally, the Fourier transform diagonalizes the translation operator.)

In most cases, however, the motions are not global, but local. This is why we break the

image into local sine waves using the complex steerable pyramid.

� 2.3.2 Complex Steerable Pyramid

The complex steerable pyramid [73, 75] is a complex, overcomplete linear transform. It

decomposes a single channel image I(x, y) into a set of coefficients that correspond to

basis functions that are simultaneously localized in position (x, y), spatial scale (r) and

orientation (θ). The image can be reconstructed by multiplying the coefficients by the

basis functions and summing.

The transform is best-described by its self-similar basis functions. Each one is a

(a) Single Complex Basis Function
Space (x)

Real Part

Imag. Part

In
te

ns
ity

(b) Varying Phase of Coefficient

Coefficient

Real

Imaginary

Complex Plane

Space (x)

In
te

ns
ity

Phase Change 0 π/6 π/2π/3 2π/3

Figure 2.4: Increasing the phase of complex steerable pyramid coefficients results in approximate
local motion of the basis functions. A complex steerable pyramid basis function (a) is multiplied
by several complex coefficients of constant amplitude and increasing phase to produce the real
part of a new basis function that is approximately translating (b).

Sec. 2.3. Phase-Based Motion Processing 45

translation, dilation or rotation of another. So, it is sufficient to look at just one, a one

dimensional version of which is shown in Fig. 2.4a. It resembles an oriented complex

sinusoid windowed by a Gaussian envelope. The complex sinusoid provides locality

in frequency while the windowing provides locality in space. Each basis function is

complex, consisting of a real, even-symmetric part (cosine) and an imaginary, odd-

symmetric part (sine). This gives rise to a notion of local amplitude and phase as

opposed to the global amplitude and phase of Fourier basis functions.

The basis functions are chosen so that when the pyramid is built and collapsed

without modification, the reconstructed image IR perfectly matches the input image

I. This requirement imposes conditions on the basis functions [73], which we derive

now. Because the basis functions corresponding to a single scale r and orientation θ are

translated copies of one another, the complex steerable pyramid can be implemented

by convolving the image I(x, y) with a basis function from each level Ψr,θ:

Lr,θ(x, y) = I(x, y) ∗Ψr,θ. (2.13)

These are the coefficients of the complex steerable pyramid representation. To recon-

struct the image, we convolve them with the basis functions and then sum over the

scales and orientations ∑
r,θ

Lr,θ ∗Ψr,θ = IR(x, y), (2.14)

where IR(x, y) is the reconstructed image. To ensure that IR = I, we need

IR(x, y) =
∑
r,θ

Lr,θ ∗Ψr,θ = I(x, y) ∗

∑
r,θ

Ψr,θ ∗Ψr,θ

 . (2.15)

46 CHAPTER 2. PHASE-BASED MOTION MAGNIFICATION

If we take the Fourier transform of both sides of this equation, we get

ÎR = Î
∑
r,θ

(
Ψ̂r,θ

)2
⇒
∑
r,θ

(
Ψ̂r,θ

)2
= 1 (2.16)

as the necessary and sufficient condition for perfect reconstruction of the complex steer-

able pyramid.

� 2.3.3 Local Phase Shift is Local Translation

The link between local phase shift and local translation has been studied before in

papers exploring phase-based optical flow [29, 35].

Here, we demonstrate how local phase shift approximates local translation for a

single basis function in a manner similar to the global phase-shift theorem of Fourier

basis functions. We model a basis function as a Gaussian window multiplied by a

complex sinusoid

e
−x2
(2σ2) e−iωx, (2.17)

where σ is the standard deviation of the Gaussian envelope and ω is the frequency of

the complex sinusoid. In the complex steerable pyramid, the ratio between σ and ω is

fixed because the basis functions are self-similar. Low frequency wavelets have larger

windows.

Changing the phase of the basis element by multiplying it by a complex coefficient

eiφ results in

e
−x2
(2σ2) e−iωx × eiφ = e

−x2
(2σ2) e−iω(x−φ/ω). (2.18)

The complex sinusoid under the window is translated, which is approximately a trans-

lation of the whole basis function by φ
ω (Fig. 2.4b).

Conversely, the phase difference between two translated basis elements is propor-

tional to translation. Specifically, suppose we have a basis element and its translation

Sec. 2.3. Phase-Based Motion Processing 47

(c) Complex Coefficients
(only one shown)

Complex Plane

Real

Imaginary

Real

Imaginary

(b) Project onto
Basis

Complex Steerable
Pyramid Basis

(a) Input Frames

Space (x)

In
te

ns
ity

Frame at Time 0

(f) Motion Magnified
Frames

(d) Amplify Phase
Difference

Real

Imaginary

¢Á= Á
1
− Á

0

®¢Á

(e) New Coefficient
 Times Basis

Frame at Time 1

Space (x)

In
te

ns
ity

Motion Magnified
Frame at Time 1

Space (x)

In
te

ns
ity

Space (x)

Space (x) Space (x)

Frame at Time N Motion Magnified
Frame at Time N

Á
1

Á
0

Á
N −

−

¢Á= Á
N
 − Á

0

®¢Á

Figure 2.5: Using the local phase of complex steerable pyramid coefficients to amplify the motion
of a moving step edge. Two frames from a video of a subtly translating step edge (a) are
transformed to the complex steerable pyramid representation by projecting onto basis functions
(b). The phase between the resulting complex coefficients (c) is computed and amplified (d).
Only the coefficient corresponding to exactly one location and scale is shown; this processing is
done to every coefficient. The new coefficients are used to shift the basis functions (e) and a
reconstructed video is produced in which the motion between the two step edges is evident.

by δ:

e
−x2
(2σ2) e−iωx, e

−(x−δ)2

(2σ2) e−iω(x−δ). (2.19)

The local phase of each element only depends on the argument to the complex expo-

nential and is ωx in the first case and ω(x − δ) in the second. The phase difference is

then ωδ, which is directly proportional to the translation.

Local phase shift can be used both to analyze tiny translations and synthesize larger

ones.

� 2.3.4 Our Method

The observation that local phase differences can be used to manipulate local motions

motivates our pipeline. We take an image sequence, project each frame onto the complex

48 CHAPTER 2. PHASE-BASED MOTION MAGNIFICATION

steerable pyramid basis and then independently amplify the phase difference between

all corresponding basis elements. This is identical to the linear amplification pipeline

except that we have changed the representation from intensities to local spatial phases.

To illustrate the pipeline, consider again an image sequence I(x, t), in which the

frame at time 0 is f(x) and the frames at time t are translations f(x− δ(t)) (Fig. 2.5a).

In our first step, we project each frame onto the complex steerable pyramid basis

(Fig. 2.5b), which results in a complex coefficient for every scale r, orientation θ and

spatial location x, y and time t. Because the coefficients are complex, they can be

expressed in terms of amplitude Ar,θ and phase φr,θ as

Ar,θ(x, y, t)e
iφr,θ(x,y,t). (2.20)

In Fig. 2.5c, we show a coefficient at a specific location, scale and orientation in the

complex plane at time 0 and at time 1.

Because the the two frames are slight translations of each other, every coefficient has

a slight phase difference. This is illustrated in Fig. 2.5c, in which the coefficients have

roughly the same amplitude but different phases. The next step in the basic version of

our processing is therefore to take the phase difference between the coefficients in the

video and that of a reference frame, in this case the frame at time 0:

∆φr,θ(x, y, t) = φr,θ(x, y, t)− φr,θ(x, y, 0). (2.21)

This phase difference is then amplified by a factor α as shown in Fig. 2.5d. This

amplification yields a new set of coefficients for each frame, in which the amplitudes

are the same, but the phase differences are larger. We can reconstruct the new frames

using these coefficients by multiplying them by the basis functions (Fig. 2.5e) and then

summing the real part to get new frames, in which the translations—and therefore the

Sec. 2.3. Phase-Based Motion Processing 49

Space (x)

In
te
n
si
ty

0

1

(a) α = 6 (b) α = 14

Frame 1 Frame 2 True Magnification Linear Phase-Based

Space (x)

In
te
n
si
ty

0

1

Space (x) Space (x)

In
te

ns
ity

Figure 2.6: For general non-periodic structures, the phase-based method can support amplifica-
tion factors of around four times as high as the linear method and does not suffer from intensity
clipping artifacts (a). For large amplification, the different frequency bands break up due to the
higher frequency bands having smaller windows (b).

motions in the video—are revealed.

Amplifying phase differences rather than pixel intensity differences has two main

advantages: (a) it can support larger amplification factors, and (b) noise amplitude

does not get amplified. In Fig. 2.6, we show the two different methods being used to

amplify the motions of a Gaussian bump. Amplifying raw pixel differences results in

overshoot and undershoot causing the signal to appear as pure white or pure black.

In contrast, amplifying phase differences allows us to push the Gaussian bump much

farther. At very high amplification levels, the different spatial scales of the bump break

apart because the high frequency components cannot be pushed as far as the lower

frequency components.

In Fig. 2.7, we show the effect of both methods on a video, which consists of IID

Gaussian noise. Unlike the linear method that increases the power of the noise, the

phase based method preserves the noise level preventing objectionable artifacts from

making their way into the motion magnified output. For these reasons, we found that

amplifying phase differences rather than pixel differences is a better approach for mag-

nifying small motions.

50 CHAPTER 2. PHASE-BASED MOTION MAGNIFICATION

(a) Input (b) Linear (c) Phase-based

Figure 2.7: Comparison between linear and phase-based Eulerian motion magnification in han-
dling noise. (a) A frame in a sequence of IID noise. In both (b) and (c), the motion is amplified
by a factor of 50, where (b) amplifies changes linearly, while (c) uses the phase-based approach.

� 2.3.5 Bounds

As we move an image feature by phase-shifting each complex pyramid filter covering that

feature, we eventually reach a limit beyond which we can’t move the feature because

of the limited spatial support of each pyramid filter (Fig. 2.5(b) and Fig. 2.8(1D

Wavelets)). We can use the size of the windows to bound the amount by which we can

motion magnify an image feature.

As an approximate analytic model of an image feature moved by the localized filters

of the steerable pyramid, we consider the case of a single Dirac under uniform translation

over time. As in Sec. 2.3.3, we assume it is moved by phase shifting Gabor filters,

complex sinusoids modulated by a Gaussian window function. As the Dirac is phase-

shifted, it is attenuated by the Gaussian window of the Gabor filter. Therefore, we

bound the maximum phase shift such that the Dirac is only attenuated by a small

amount.

As described in Eq. 2.17, a Gabor filter is given by

e−
x2

2σ2 e−iωx, (2.22)

Sec. 2.3. Phase-Based Motion Processing 51

where σ is the standard deviation of the Gaussian window and ω is the peak frequency

the filter corresponds to. Typically, σ depends on the frequency ω (self-similar wavelets).

The impulse response of a Dirac function shifted by δ(t) pixels (not to be confused with

the Dirac function) at time t is

Sω(x, t) = e−(x−δ(t))2/(2σ2)e2πiω(x−δ(t)) (2.23)

Note that the spatial Gaussian envelope (the left term on the RHS of Eq. 2.23) does

not affect the phase.

We again assume δ(0) = 0. To magnify the motions between the object at time t

and time 0, we look at the phase difference between these times, yielding

Bω(x, t) = 2πω0δ(t). (2.24)

Then, the magnified phase difference for magnifying the motion by α is

2πω0αδ(t). (2.25)

This phase difference corresponds to a shift of the Dirac by an additional αδ(t) pixels.

We need to bound the shift αδ(t) such that the amplified shift approximates well the

true shifted signal. We use one standard deviation of the Gaussian window as our

bound. This maintains roughly 61% of the amplitude (Fig. 2.8 (1D Wavelets)), and so

we have

αδ(t) < σ. (2.26)

In the octave-bandwidth steerable pyramid of Portilla and Simoncelli [64] (Fig. 2.8a),

there is approximately one period of the sinusoid under the Gaussian envelope. That is,

4σ ≈ 1
ω0

, which gives the bound αδ(t) < σ = 1
4ω0

. By equating the spatial wavelength

52 CHAPTER 2. PHASE-BASED MOTION MAGNIFICATION

λ = 1
ω0

, we get

αδ(t) <
λ

4
. (2.28)

From Eq. 2.28, we see that the motions of the low spatial frequencies can be mag-

nified more than those of the high spatial frequencies. Indeed, from Eq. 2.24, phase

changes between frames will be much greater for the high frequency components than

for the low frequency components. While derived for an impulse image feature moved

by Gabor filters, we find the bound (and its extension below for sub-octave bandwidth

pyramids) to be valid for both synthetic examples (Fig. 2.6) and natural videos (Fig. 2.1,

Fig. 2.8).

Exceeding the bound in Eq. 2.29 manifests as artifacts or blur, as not all image

pyramid components are present in their proper ratios to reconstruct the desired trans-

lated feature. This is illustrated in Fig. 2.6b, in which a Gaussian function magnified

using our approach breaks up.

� 2.3.6 Sub-octave Bandwidth Pyramids

We see, therefore, that the bound in Eq. 2.28 is directly related to the spatial support

of the filters. The smaller the filters in the frequency domain the larger their support

is in the spatial domain, which allows us to shift the signals underneath their windows

further. In the limit of a having a filter for every frequency band, the representation

becomes equivalent to the Fourier transform and motion magnification is achieved via

the shift theorem. However, we then lose the ability to measure or synthesize any

spatial variation in the amount of motion. We found a good compromise between

localization and magnification ability when using pyramid filters about two times as

wide (in the sinusoidally varying spatial direction) as those described in Portilla and

Simoncelli [64]. They specify their steerable pyramid filters as being self-similar and

Frequency (ωx)

Fr
eq

ue
nc

y
(ω

y)

Space (x)

Sp
ac

e
(y

)

Im
pu

ls
e

re
sp

on
se

Id
ea

liz
ed

 fr
eq

. r
es

po
ns

e
M

ot
io

n
m

ag
ni

fic
at

io
n

1D
 sy

nt
he

tic
2D

 n
at

ur
al

 v
id

eo
s

2D
 w

av
el

et
s

1D
 w

av
el

et
s

(a) 4 orientations, octave
bandwidth, 18 Filters
(12x over-complete)

(b) 8 orientations, half-
octave bandwidth, 82 filters

(33x over-complete)

(c) 8 orientations, quarter-
octave bandwidth, 162 filters

(56x over-complete)

Compactness Larger motion magnification

Space (pixels)

Space (pixels)

In
te

ns
ity

In
te

ns
ity

−30 0 30

0

−30 0 30

0

−30 0 30

0

−10 0 10

0

−10 0 10

0

−10 0 10

0

Figure 2.8: A comparison between octave and sub-octave bandwidth pyramids for motion mag-
nification. Each color in the idealized frequency response represents a different filter. (a) The
original steerable pyramid of Portilla and Simoncelli [64]. This pyramid has octave bandwidth
filters and four orientations. The impulse response of the filters is narrow (rows 2− 3), which
reduces the maximum magnification possible (rows 4 − 5). (b-c) Pyramid representations with
two and four filters per octave, respectively. These representations are more over-complete, but
support larger magnification factors.

54 CHAPTER 2. PHASE-BASED MOTION MAGNIFICATION

having octave bandwidth (Fig. 2.8a), and we extend their representation to sub-octave

bandwidth pyramids (Fig. 2.8b-c).

A simple way to accomplish this is to scale the filters in log space. This method

works well for a half-octave bandwidth pyramid. In this case, there are 2 periods

under the Gaussian envelope of the wavelet. Thus, 4σ ≈ 2
ω0

, and the bound on the

amplification (Eq. 2.28) becomes

αδ(t) <
λ

2
. (2.29)

This bound improves over the one derived in Wu et al. [89] using a Taylor series ap-

proximation by a factor of 4.

There is a trade-off between the compactness of the representation and the amount

of motion-magnification we can achieve. The 4-orientation, octave-bandwidth pyramid

of Portilla and Simoncelli (Fig. 2.8a) is over-complete by a factor of 12 (each orientation

contributes a real and imaginary part), and can process several frames per second, but

limits the amount of motion-magnification that can be applied. On the other hand,

an 8-orientation half-octave pyramid (Fig. 2.8b) supports larger amplification, but is

over-complete by a factor of 33.

Improved Radial Windowing Function for Sub-octave Bandwidth Pyramids At a larger

number of filters per octave (≥ 3 in our experiments), the above scheme produces filters

which are very sharp in the frequency domain and have noticeable ringing artifacts

(shown in the 1D wavelet plot of Fig. 2.8b).

They define their filters in terms of independent radial and angular windowing

functions. For quarter-octave and larger pyramids, we leave the angular windowing

function unchanged and propose a different radial windowing function, given by

cos6(log2(r))I[−π/2,π/2](log2(r)). (2.30)

Sec. 2.4. Amplifying the Right Signal 55

This function has two nice properties: (a) it is smoother, more similar to a Gaussian,

and does not introduce ringing in the primal domain, and (b) squared copies scaled by

a power of π
7 sum to a constant factor, so that the transform is invertible and we get

perfect reconstruction (Eq. 2.16). An example quarter-octave pyramid generated with

this windowing function in shown in Fig. 2.8c.

� 2.4 Amplifying the Right Signal

Maximizing the signal-to-noise ratio of the local phase changes we amplify is the key to

good performance. We improve SNR by temporally and spatially filtering the variations

to remove components that correspond to noise and keep those that correspond to signal.

The temporal filtering also gives a way to isolate a signal of interest as different motions

often occur at different temporal frequencies. A baby’s squirming might be at a lower

temporal frequency than her breathing.

Narrowband linear filters provide a good way to improve signal-to-noise ratios for

motions that occur in a narrow range of frequencies, such as respiration and vibrations.

These filters can also be used to isolate motions in an object that correspond to different

frequencies. For example, a pipe vibrates at a preferred set of modal frequencies, each

of which has a different spatial pattern of vibration. We can use video magnification to

reveal these spatial patterns by amplifying the motions only corresponding to a range

of temporal frequencies. A single frame from each motion magnified video is shown in

Fig. 2.9, along with the theoretically expected shape [83]. They match closely.

In addition to temporal filtering, spatially smoothing the signal almost always im-

proved signal-to-noise ratios of the motion signal. This is because objects tend to move

coherently in local image patches and any deviation from this is likely noise. Because

the phase signal is more reliable when the amplitude of the complex steerable pyramid

56 CHAPTER 2. PHASE-BASED MOTION MAGNIFICATION

(a) Input (20,000 FPS) (b) x20 (460-472Hz) (c) x100 (1310-1325Hz) (d) x800 (2500-2550Hz) (e) x4000 (4000-4200Hz) (f) x4000 (5900-6100Hz)

Theoretically-Derived
Modal Shapes

[Wachel et al. 1990]

Figure 2.9: Isolating different types of spatial motions by temporal filtering. A pipe was struck
with a hammer and a frame from the input high-speed video is shown (a). The motions at
several frequencies were magnified to isolate different modal shapes of the pipe. In b-f, a frame
is shown from each of the motion magnified videos showing the modal shapes. Below, the the
theoretically-derived modal shapes are shown in red overlayed, for comparison, over a perfect
circle in dotted black. (Video and idea courtesy of Justin Chen.)

coefficients is higher (Fig. B.1), we perform an amplitude-weighted Gaussian blur:

((∆φ)A) ∗Kρ

A ∗Kρ
(2.31)

where Kρ is a Gaussian kernel given by exp(−x2+y2

2ρ2
) and the indices of A and φ have

been suppressed for readability. We applied this processing to all of our motion magni-

fication videos with ρ equal to 2 pixels in each level.

Because oversmoothing can turn even white noise into a nice-looking signal, it be-

comes reasonable to ask whether the motions we are amplifying are indeed real. We

have done many experiments comparing the visual motion signal with that recorded

by an accelerometer or laser vibrometer and the signals always match up, validating

that the motions are indeed real [11–13, 85]. These experiments are discussed more in

Chapter 4. In addition, there are many videos where the motion is spatially coherent at

a scale beyond that imposed by spatial smoothing (e.g. the pipes in Fig. 2.9) providing

further evidence for the correctness of the amplified videos.

Finally, we can only recover motions that occur at frequencies less than the Nyquist

Sec. 2.5. Results 57

frequency of the capturing device. If the motions occurs too quickly, only an aliased

version of them gets amplified. In the special case that the motions occur at a single

temporal frequency, aliasing can actually be useful. It makes such motions appear

slower, which makes it possible to visualize fast vibrations like those in a resonating

wine glass in real-time (Fig. 3.10). However, in general we will not be able to recover a

meaningful signal if the frames are temporally undersampled.

Pipeline with Filtering To clarify the role of spatial and temporal filtering in our

pipeline, we present it again with the example of a real-image (Fig. 2.10). We compute

the local phase changes over time at every spatial scale and orientation of a steerable

pyramid (Fig. 2.10a). Then, we temporally bandpass these phases to isolate specific

temporal frequencies relevant to a given application and remove any temporal DC com-

ponent (Fig. 2.10). To synthesize magnified motion, we multiply the bandpassed phases

by an amplification factor α. We then use these amplified phase differences to magnify

(or attenuate) the motion in the sequence by modifying the phases of each coefficient

by this amount for each frame (Fig. 2.10d). Finally, the modified complex steerable

pyramid is collapsed to produce the motion magnified video (Fig. 2.10e).

� 2.5 Results

Our algorithm allows users to see small motions without excessive noise or compu-

tational cost, as well as remove motions that may distract from an underlying phe-

nomena of interest. We show several applications of our algorithm in this section.

Please refer to the original project websites for the full video sequences and results

(http://people.csail.mit.edu/nwadhwa/phase-video/).

Unless mentioned otherwise, our processing was done using a half-octave, complex

steerable pyramid with eight orientations. We found this to be a good tradeoff between

speed and quality in our results. We computed the filter responses in the frequency

http://people.csail.mit.edu/nwadhwa/phase-video/

Decomposition

Input Output

Te
m

po
ra

l f
ilt

er
in

g

Ph
as

e
de

no
is

in
g

(o
pt

io
na

l)

R
ec

on
st

ru
ct

io
n

eix
α

(b) (c) (d) (e)

High-pass residual

Low-pass residual

eix
α

eix
α

eix
α

(a)

Sc
al

e
1

Sc
al

e
2

Orientation 1
(Quadrature pair)

Orientation 2

Orientation 1

Orientation 2
Amplitude Phase

Figure 2.10: Our phase-based approach manipulates motion in videos by analyzing the signals
of local phase over time in different spatial scales and orientations. We use complex steerable
pyramids to decompose the video and separate the amplitude of the local wavelets from their
phase (a). We then temporally filter the phases independently at at each location, orientation
and scale (b). Optionally, we apply amplitude-weighted spatial smoothing (c) to increase the
phase SNR, which we empirically found to improve the results. We then amplify or attenuate
the temporally-bandpassed phases (d), and reconstruct the video (e). This complex steerable
pyramid shown has two scales and two orientations (the relative difference in size between the
pyramid levels is smaller in this figure for clarity of the visualization).

Sec. 2.5. Results 59

womantrees eye

throatcar engine
Figure 2.11: A big world of small motions. Representative frames from videos in which we
amplify imperceptible motions. The full sequences and results are available on the project website.

domain. The processing was done in YIQ color space and only the luminance (Y)

channel was processed.

� 2.5.1 A Big World of Small Motions

The world is full of subtle and small motions that are invisible to the naked eye. Our

phase-based approach allows pushing motion magnification further than before, to re-

veal imperceptible phenomena, not previously visualized, in clarity and detail.

In eye (Fig. 2.11), we were able to magnify subtle, involuntary, low amplitude (10-

400 micron) movements in the human eye and head such as microsaccades [66]. This

video was taken with a high speed camera at 500 Hz. A one second (500 frames)

sequence was processed with an ideal bandpass filter with passband between 30−50 Hz

and the motions were amplified 150x. A spatial mask was applied to the phase shifts

60 CHAPTER 2. PHASE-BASED MOTION MAGNIFICATION

to emphasize the motion around the iris. Such a detection system may have medical

applications, as the frequency content of ocular microtremor was shown to have clinical

significance [7].

Structures are design to sway in the wind, but their motion is often invisible. In

crane, we took a video of a construction crane on a uniform background during a windy

day. In the original video, the superstructure does not appear to move, however when

amplifying low-frequency motions in the video within 0.2− 0.4 Hz 150x, the swaying of

the crane’s mask and undulation of its hook become apparent.

Trees and woman (Fig. 2.11) demonstrate ordinary videos also contain changes at

different frequencies over time that we cannot normally perceive. In trees, motions

of lower temporal frequency correspond to larger structures (heavy branches), while

motions of higher temporal frequency correspond to smaller structures (leaves). A

simple interface allows the user to sweep through the frequency domain and examine

temporal phenomena in a simple and intuitive manner.

We can also use our technique to reveal information about mechanical parts in run-

ning cars. In car engine, we filmed a car engine in an idling car. We amplified motions

corresponding to twice the engine’s RPM as measured by the dashboard tachometer

revealing the engine’s jumping with every combustion within the engine.

Finally, when a person sings or talks, they use their larynx (voice box) to mod-

ulate air within the the throat to produce certain pitches and sounds. In throat, we

filmed a person humming at around 110Hz. We amplified motions corresponding to

this passband and revealed hidden motions on the person’s neck.

� 2.5.2 Comparison with Linear Eulerian Video Magnification

The main differences between the phase-based approach and the linear approach are

summarized in Table 2.1. In particular, the new method supports larger amplification

Sec. 2.5. Results 61

(a) Linear [89] (b) (a) denoised by [14]

(c) (a) denoised by [52] (d) Phase-based

Figure 2.12: Comparison of our result on the camera sequence (d) with the result of Wu et
al. [89] (a), denoised by two state-of-the-art video denoising algorithms: VBM3D [14] (b) and
motion-based denoising by Liu and Freeman [52] (c). The denoising algorithms cannot deal with
the medium frequency noise, and are computationally intensive. The full videos and similar
comparisons on other sequences are available in the supplementary material.

factors and gives a fundamentally better way of handling noise for Eulerian motion

magnification. To demonstrate that, we compared the results from this work with those

from Wu et al. [89]. Several comparisons are available in Fig. 2.1 and the project website.

To illustrate that shifting phases is better than directly modifying pixel intensities, we

did not spatially-smooth the phase signal in these comparisons.

On all the sequences we tested, we found the proposed approach to perform better.

62 CHAPTER 2. PHASE-BASED MOTION MAGNIFICATION

In particular, the magnified motions in the phase-based results (e.g. the respiratory

motions of the baby and the vibrations of the guitar strings) appear crisper, and contain

significantly fewer artifacts and noise.

We also compared the phase-based results with noise removal processing not sug-

gested in the Wu et al. paper: preceding and following the linear magnification process-

ing by video denoising. We tested several denoising algorithms, namely NL-means [8],

VBM3D [14], and the recent motion-based denoising algorithm by Liu and Freeman [52].

We tuned the denoising methods so as to produce the best result on each sequence. We

achieved the overall best performance with VBM3D applied to the motion-magnified

video (comparisons with all the denoising methods in pre- and post-processing are

available in the supplementary material). We found that in some cases (e.g. guitar)

denoising the video before magnification in fact kills the low-amplitude motion signal

we are after. For the low-noise baby and guitar sequences, the denoised results were

visually comparable to that of the phase-based method, although achieved at a higher

computational cost, 17 times slower. For the higher-noise camera and eye sequences,

the denoised Wu et al. result looks significantly worse than the phase-based results, as

the denoising algorithms cannot do much with the medium frequency noise (Fig. 2.12).

Linear
[89]

Phase-based
(This chapter)

Decomposition Laplacian pyramid Complex steerable pyramid

Over-complete 4/3 2k/(1− 2−2/n)
Exact for Linear ramps Sinusoids
Bounds (1 + α)δ(t) < λ/8 αδ(t) < λn/4
Noise Magnified Translated

Table 2.1: The main differences between the linear approximation of Wu et al. [89] and our
approach for motion magnification. The representation size is given as a factor of the original
frame size, where k represents the number of orientation bands and n represents the number of
filters per octave for each orientation.

Sec. 2.5. Results 63

� 2.5.3 Controlled Experiments

At the miniature scales of motion we are after, one might ask: are the signals we pick

out and amplify real (the actual motion signals in the scene)? Would our magnified

motions resemble the motions in the scene had they actually been actually larger? To

answer these questions, we conducted two controlled experiments.1 In the first, we

recorded ground truth motion data along with a (natural) video (structure, Fig. 2.13).

We induced small motions in a metal structure, and affixed an accelerometer to it to

capture its vibrations. To induce the motion we used an impact hammer with a sensor

at its tip allowing us to record the exact amount of force applied. We then recorded

the structure using a standard DSLR video camera at 60 frames per second, along with

the accelerometer and impact hammer data. We applied our transform to every frame

and recorded the phase changes between the Nth frame and the first frame in one level

of the pyramid oriented in the direction of the motion for a salient region of pixels

near the accelerometer. These phase changes corresponded to displacement. To recover

acceleration, we took a second derivative of Gaussian filter. Once scaled and aligned,

the resulting signal matched the data from the accelerometer very closely 2.13(c). We

also took two different sequences of the structure, one in which the amplitude of the

oscillatory motion was 0.1 pixels and another in which it was 5 pixels (50x larger, from

a harder hammer hit). We magnified the former 50 times and found the result to be

visually comparable to the latter (Fig. 2.13(b)).

� 2.5.4 Motion Attenuation

Our phase-based formulation also lends itself naturally to the attenuation of motions

in videos, which allows us to remove low-amplitude, short-term motions while larger

amplitude motions continue to pass through. Motion attenuation is achieved by setting

1Justin G. Chen helped perform these experiments.

Hammer
Accelerometer

Metal structure

Source

Motion-magnified 50x (our result)

Induced force 50x (“ground truth”)

(a) Experimental setup (b) Spatiotemporal slices

x

t

0.5 1 1.5 2 2.5
−0.5

0

0.5

Time (seconds)

A
cc

el
er

at
io

n
 (

m
/s

2
)

Phase signal
Accelerometer

(a) (c) Acceleration comparison

5 10 15 20 25 30

70

90

110

130

150

Impact Force (Newtons)

L
1

 e
rr

o
r

(b) (d) Error vs. force

Figure 2.13: A controlled motion magnification experiment to verify our framework. (a) A
hammer strikes a metal structures which then moves with a damped oscillatory motion. (b)
A sequence with oscillatory motion of amplitude 0.1 pixels is magnified 50 times using our
algorithm and compared to a sequence with oscillatory motion of amplitude 5 pixels (50 times
the amplitude). (c) A comparison of acceleration extracted from the video with the accelerometer
recording. (d) The error in the motion signal we extract from the video, measured as in (c), as
function of the impact force. Our motion signal is more accurate as the motions in the scene
get larger.

Sec. 2.5. Results 65

Source

Color-amplified [Wu et al. 2012]

Color-amplified [Wu et al. 2012]
After motion cancellation

x
t

Source frame

Figure 2.14: Motion attenuation stabilizes unwanted head motions that would otherwise be ex-
aggerated by color amplification. The full sequence is available in the supplemental video.

the amplification factor α to a negative value in the range [−1, 0), where α = −1

zeros-out all the phase changes over time within the desired frequency band, effectively

canceling out the motions within that band. The result is not the same as a constant

frame as the coefficient amplitudes are still evolving over time. This is similar to motion

denoising [68] and video de-animation [2], but can be done efficiently in our approach

(when the motions in the scene are small enough).

We apply motion attenuation for two applications: turbulence removal and color

amplification (Fig. 2.14). Atmospheric turbulence can cause far-away objects to appear

blurry and it is desirable to lessen its effect [65]. In a video of the moon moving

through the night sky, it manifests as low-mid frequency jitters. To remove it, we pass

a temporal window over the video (we used a window of 11 frames), transformed to our

representation, and set the phases in each spatial scale and orientation of the center

66 CHAPTER 2. PHASE-BASED MOTION MAGNIFICATION

frame to the corresponding median phase of the transformed frames within the temporal

window. This effectively shifts pixels in order to compensate for the turbulent motions.

Since the magnification method of Wu et al. [89] amplifies color changes and motions

jointly, small motions of the face become much larger, visible when amplifying the color

changes corresponding to the pulse, which may not be desirable. By canceling the

motions as a pre-process to their algorithm, we are able to remove those motions from

their results (Fig. 2.14).

� 2.6 Discussion and Limitations

Lagrangian approaches to motion magnification (e.g. [54]) are complementary to the

Eulerian approaches proposed in this chapter. Such methods can amplify the motion in

a video arbitrarily, but rely on accurate optical flow estimates, image segmentation, and

inpainting. Such processing is difficult to do well and requires long computation times.

In addition, Wu et al [89] showed (Section 5 and Appendix A in their paper) that for

moderate magnification and noisy inputs, the Eulerian approach performs better than

Lagrangian. The phase-based method significantly reduces the sensitivity to noise of

Eulerian video magnification over that of Wu et al., as well as increases its supported

range of amplification, which further expands the regime where it performs better than

Lagrangian approaches. Since the main contribution of this chapter is in an improved

Eulerian approach for motion processing, comparisons were done with the state-of-the-

art Eulerian method.

While the analysis of Wu et al. [89] is exact in the case of linear ramps in space, the

phase-based approach is exact for sinusoidal waves (Fig. 2.3), since such signals contain

only a single spatial frequency. However, both methods rely on spatial pyramids, where

each level is band limited. We argue that such spatially bandpassed images are better

approximated by sinusoidal waves than linear ramps.

Sec. 2.6. Discussion and Limitations 67

Our half-octave bandwidth pyramid representation, in which the windowing function

of the wavelets in the primal domain is larger, extends the magnification capability of

Wu et al. [89] by a factor of 4, and pyramids with more filters per octave may improve on

it by even larger factors. While this allows us to magnify motions further, the wavelets

are also more likely to span multiple motions as their support get larger, which may

corrupt the phase signal and eventually lead to artifacts in the results. Currently, the

user can select the desired representation based on the motions in the scene and the

available computational resources. The crane sequence lends itself to improvements

from a quarter-octave pyramid because the background is so smooth and in most of the

scene, there is only one motion.

If the input video has large motions, than the bandpassed phase will not reflect

the true motion in the scene and the motion magnified video will suffer from artifacts

in the regions of large motion (Fig. 2.15(a)). To mitigate this, we can automatically

detect regions where phase exceeds our bound (or some user-specified threshold) and

set the amplification to be zero in these regions. To increase robustness, we spatiotem-

porally lowpass the absolute value of the phase and compare the result to a threshold

to determine which regions have large motions.

Finally, for sequences in which the phase signal is noisy, parts of the image in the

magnified video may appear to move incoherently. Understanding when this is the case

and suppressing magnification in such cases is discussed in the chapter 4.

(a) Motion magnified sequence (b) Large motions unmagnifiedx
t

Figure 2.15: Motion magnification can cause artifacts (cyan insets and spatiotemporal times-
lices) in regions of large motion such as those in this sequence of a boy jumping on a platform
(a). We can automatically remove such artifacts by identifying regions where the phase change
exceeds our bound or a user-specified threshold (b). When the boy hits the platform, the time slice
(purple highlights) shows that the subtle motions due to impact with the platform are magnified
in both cases.

Chapter 3

Riesz Pyramids for Fast

Phase-Based Motion Magnification

In the previous chapter, we introduced a new method of amplifying tiny motions in

videos. It is capable of revealing a wide variety of phenomena, but it is slow to compute

because of the overcompleteness of the representation used. In this chapter, we show

how a change in representation can make motion magnification capable of running in

real-time with only a slight loss in quality.

� 3.1 Introduction

Manipulating the local phase in coefficients of a complex steerable pyramid decompo-

sition of an image sequence is an effective, robust method of amplifying small motions

in video (Chapter 2), but complex steerable pyramids are very overcomplete (21 times)

and costly to construct, requiring either a large number of filter taps or a frequency

domain construction where care must be taken to avoid spatial wrap-around artifacts

[64, 74]. The overcompleteness and high cost of implementing the complex steerable

pyramid make current phase-based video magnification slow to compute.

In this chapter, we present a new image pyramid representation, the Riesz Pyra-

mid, that is suitable for Eulerian phase-based video magnification, but is much less

overcomplete than the complex steerable pyramid. Our new representation produces

69

Space

Ti
m
e

Space

Ti
m
e

Space

Ti
m
e

Space

Ti
m
e

(a) Input (b) Linear (Wu et al. 2012)
11.7 seconds

(c) CSP (Wadhwa et al. 2013)
92.3 seconds

(d) Riesz Pyramid (this paper)
25.7 seconds

Figure 3.1: Motion magnification of sinusoidal instabilities in fluid flow during the transi-
tion from laminar flow to turbulent flow. The input (a) is motion-magnified using the linear
method of Wu et al. [89] (b) and two phase-based methods, first with an eight orientation octave-
bandwidth complex steerable pyramid [85] (c), and second with our new Riesz pyramid (d). The
quality of the video produced using our new representation (d) is comparable to that produced
using the complex steerable pyramid method (c), but is approximately four times faster
to compute. Frames and slices in time along the yellow line from the input and processed
sequences are shown. Notice that both (c) and (d) do not have the intensity clipping artifacts
and limited amplification of (b). The running time of each method is shown under its caption,
based on a MATLAB implementation.

Sec. 3.1. Introduction 71

motion-magnified videos of comparable quality to those produced using a complex steer-

able pyramid, but the videos can be processed in one quarter of the time, making it

more suitable for real-time or online processing (Figure 3.1).

The Riesz pyramid is constructed by first breaking the input image into non-oriented

sub-bands using an efficient, invertible replacement for the Laplacian pyramid, and then

taking an approximate Riesz transform of each band [9, 25]. This processing is done en-

tirely in the spatial domain, which gives an easy way of avoiding the spatial wrap-around

artifacts present in the frequency domain implementation of the eight-orientation com-

plex steerable pyramid used in the previous chapter. Building and collapsing the Riesz

pyramid is efficiently implemented because of shared computation between bands, sym-

metry of the filters, and because the Riesz transform is approximated by two three-tap

finite difference filters. Concretely, it uses less than half the number of real multiplies

required for the spatial domain implementation of the two-orientation real steerable

pyramid proposed by Simoncelli and Freeman [74] (this is the smallest possible real

steerable pyramid, and computing the imaginary part of the pyramid would require

additional processing).

The key insight into why our new representation can be used for motion magnifi-

cation is that the Riesz transform is a steerable Hilbert transformer and allows us to

compute a quadrature pair that is 90 degrees out of phase with respect to the dominant

orientation at every pixel. This allows us to phase-shift and translate image features

only in the direction of the dominant orientation at every pixel rather than a sam-

pling of orientations like in the complex steerable pyramid. Felsberg and Sommer [25]

introduced the Riesz transform to the signal processing community and Unser et al. ex-

tended it to a multiresolution framework [81]. Our representation extends Unser et al.

Their framework is not focused on speed and is implemented entirely in the frequency

domain, while the Riesz pyramid we propose is implemented in the spatial domain. In

72 CHAPTER 3. RIESZ PYRAMIDS FOR FAST PHASE-BASED MOTION MAGNIFICATION

addition, we gain further speedups by approximating the Riesz transform using two

three-tap finite difference filters, whereas Unser et al. opt to use the ideal frequency

domain version of the Riesz transform, which is slower to compute.

In summary, we present a new representation that can be used for video magnifica-

tion that is (a) less overcomplete than even a two-orientation octave-bandwidth complex

steerable pyramid, (b) is implemented in the spatial domain, which gives an easy way to

avoid spatial wrap-around artifacts associated with frequency domain implementations

of filters, (c) is implemented with efficient, compact linear filters, and (d) supports real-

time phase-based video magnification. We present comparisons with both the linear

and phase-based video magnification techniques presented in the previous chapter. We

also provide a real-time implementation.

� 3.2 Background

� 3.2.1 Local Phase and Quadrature Pairs

Phase-based video magnification relies on the ability to manipulate the local (spatial)

phase of image sub-bands. The local phase can be used to edit local motions in a manner

analogous to shifting an image using global phase via the Fourier shift theorem.

The local phase of a one-dimensional image sub-band is computed by first comput-

ing the sub-band’s quadrature pair, a 90 degree phase-shifted version of the sub-band

related to it by the Hilbert transform. The sub-band and its quadrature pair form

the real and imaginary part of a complex number, whose argument is the local phase.

We can manipulate this quantity to shift the sub-band arbitrarily. For example, the

quadrature pair of cos(x) is sin(x), its local phase is x and

cos(x− φ) = Real(e−iφ(cos(x) + i sin(x))) (3.1)

Sec. 3.2. Background 73

is an arbitrary translation of cos(x).

Two dimensional images can be analyzed in this way using the complex steerable

pyramid, an invertible filter bank, which first breaks the image into sub-bands cor-

responding to different scales and orientations to form the real part of the pyramid.

Then, the imaginary part of the pyramid is formed by taking the Hilbert transform of

each sub-band along its orientation. The complex steerable pyramid must break the

image into at least two orientations because the Hilbert transform is fundamentally a

one dimensional transform and in two dimensions is only well-defined with respect to a

preferred orientation. The fact that there must be multiple orientations is the reason

why the complex steerable pyramid is so overcomplete.

� 3.2.2 Riesz Transform

The Riesz transform is the natural rotation-invariant, two-dimensional generalization

of the one-dimensional Hilbert transform [25]. It can be viewed as a steerable Hilbert

transformer that gives a way to compute a quadrature pair of a non-oriented image

sub-band that is 90 degrees phase-shifted with respect to the dominant orientation at

every point. That is, it allows for phase analysis of non-oriented image sub-bands.

The Riesz transform has been applied in the past for image processing applications

such as segmentation of ultrasound images [4] and demodulation of fringe patterns in

interferometric images [46].

Following Unser et al. [81], in two dimensions, the Riesz transform is a pair of filters

with transfer functions

− i ωx‖~ω‖ ,−i
ωy
‖~ω‖ . (3.2)

If they are applied to the image sub-band I in Fig. 3.2(a), the result is the pair of filter

responses, (R1, R2) in Fig. 3.2(b-c). The input I and Riesz transform (R1, R2) together

form a triple (the monogenic signal [25]) that can be converted to spherical coordinates

74 CHAPTER 3. RIESZ PYRAMIDS FOR FAST PHASE-BASED MOTION MAGNIFICATION

to yield the local amplitude A, local orientation θ and local phase φ using the equations

I = A cos(φ), R1 = A sin(φ) cos(θ), R2 = A sin(φ) sin(θ). (3.3)

The Riesz transform can be steered to an arbitrary orientation, θ0, by multiplication

by a rotation matrix  cos(θ0) sin(θ0)

− sin(θ0) cos(θ0)


 R1

R2

 . (3.4)

When the Riesz transform is steered to the local dominant orientation θ (Fig. 3.2(d)),

the result is a pair whose first component Q is

Q = A sin(φ), (3.5)

a quadrature pair of the input signal that is 90 degrees phase-shifted with respect to the

local dominant orientation (Fig. 3.2(e)). The local phase φ (Fig. 3.2(f)) can be viewed

as the phase of the complex number

Aeiφ = I + iQ (3.6)

whose real and imaginary part are the input sub-band and quadrature pair.

� 3.2.3 Quaternion Representation of the Riesz Transform

In the formulation described in the previous section, we explained how the Riesz trans-

form is a steerable Hilbert transformer. However, the phase defined in that section

suffers from a sign ambiguity (Eq. 3.6). Specifically, both φ, θ and −φ, θ+π are equally

valid values for the phase and orientation (both satisfy Eq. 3.4). This can cause prob-

lems when the Riesz transform is used in video magnification (Fig. 3.3). To avoid this

Sec. 3.2. Background 75

(a) Input (b) Riesz 1 (c) Riesz 2

(d) Orientation (e) Quad. Pair (f) Phase
0 π/2 π π0−π

Figure 3.2: The input image sub-band (a), its Riesz transform (b-c) and the orientation (d),
quadrature pair (e) and phase (f).

ambiguity, we use a formulation which treats the triple (I,R1, R2) as the real, i and j

components of a quaternion. Then, instead of filtering and amplifying phase, we filter

and amplify the quaternionic generalization of phase,

φ cos(θ), φ sin(θ). (3.7)

These quantities are invariant to whether the phase and orientation are φ, θ or−φ, θ+π.

Quaternions Quaternions are a generalization of the complex numbers, in which there

are three imaginary units, denoted i, j and k, so that each quaternion is characterized

by four numbers, one real and three imaginary. Quaternion multiplication is associa-

tive and distributive with addition and can therefore be fully defined by the following

(a) Input (b) Phase differ-
ence

(c) Amplified with
(b)

(d) φ cos(θ) differ-
ence

(e) φ sin(θ) differ-
ence

(f) Amplified with
(d,e)

Figure 3.3: The motion between the input (a) and a copy shifted to the left by one half pixel
is magnified without and with the quaternion representation of the Riesz pyramid. First, the
phase difference of φ (b) is spatially denoised and then used to magnify the second frame (c). In
the bottom row, the difference in the quantities φcos() and φsin() (d-e) are spatially denoised
and then used to amplify the second frame (f). In (b,d,e), low amplitude regions are masked in
yellow, middle gray corresponds to a difference of zero and only a single sub-band is shown.

Sec. 3.2. Background 77

property of the imaginary units:

− 1 = i2 = j2 = k2 = ijk. (3.8)

Specifically, multiplication is given by

(q1 + iq2 + jq3 + kq4)(r1 + ir2 + jr3 + kr4) =

(q1r1 − q2r2 − q3r3 − q4r4) +

i(q1r2 + q2r1 + q3r4 − q4r3) +

j(q1r3 − q2r4 + q3r1 + q4r2) +

k(q1r4 + q2r3 − q3r2 + q4r1).

(3.9)

Note that multiplication is noncommutative.

For a quaternion q = q1 + iq2 + jq3 + kq4, its conjugate q∗, norm ‖q‖ and inverse

q−1 are defined as

q∗ =q1 − iq2 − jq3 − kq4, (3.10)

‖q‖ =
√
q2

1 + q2
2 + q2

3 + q2
4, (3.11)

q−1 =q∗/‖q‖2, (3.12)

where the third definition follows from the first two. The exponential of a quaternion

q = q1 + v (where v = iq2 + jq3 + kq4) is defined by its power series,

eq =

∞∑
n=0

qn

n!
= eq1

(
cos(‖v‖) +

v

‖v‖ sin(‖v‖)
)
. (3.13)

The inverse of this function is

log(q) = log(‖q‖) +
v

‖v‖acos

(
q1

‖q‖

)
. (3.14)

78 CHAPTER 3. RIESZ PYRAMIDS FOR FAST PHASE-BASED MOTION MAGNIFICATION

In the case of a unit quaternion, where ‖q‖ = 1, this simplifies to

v

‖v‖acos(q1). (3.15)

This is the imaginary part of the logarithm of a quaternion and is analogous to the

phase of a complex number which is computed in the same way (Aeiφ has phase φ

equal to imag(log(Aeiφ)). We refer to Eq. 3.15 as the quaternionic phase to distinguish

it from the local phase φ in the non-quaternionic formulation of the Riesz pyramid.

Now that we have defined quaternions, we can represent the triple (I,R1, R2) as a

quaternion r with the original subband I being the real part and the two Riesz transform

components (R1, R2) being the imaginary i and j components of the quaternion

r = I + iR1 + jR2 (3.16)

or if we use Eq. 3.3, we can write this as

r = A cos(φ) + iA sin(φ) cos(θ) + jA sin(φ) sin(θ). (3.17)

Rather then solving for the local amplitude A, phase φ and orientation θ, we instead

use the quaternionic phase we defined earlier. That is, we can express the amplitude

and quaternionic phase (Fig. 3.7(c)) as

A = ‖r‖

iφ cos(θ) + jφ sin(θ) = log(r/‖r‖)
(3.18)

The second quantity is computed by applying Eq. 3.15 to the specific case of normalized

Riesz pyramid coefficients and is invariant to whether the local phase and orientation

are φ and θ or the antipode −φ and θ+π. In the remainder of this chapter, we use this

Sec. 3.3. Riesz Pyramids 79

R
ie

sz
 P

yr
am

id

Subband (I) Riesz 1 (R1) Riesz 2 (R2) Subband (I) Orientation (θ)
Quadrature

Pair (Q) Amplitude (A) Orientation (θ) Phase (φ)

(a) Input (b) Riesz Pyramid
(Cartesian Coordinates)

(c) Riesz Pyramid
(Cylindrical Coordinates)

(d) Riesz Pyramid
(Spherical Coordinates)

−π 0 π0 π/2 π 0 π/2 π

Figure 3.4: Three equivalent representations of the Riesz pyramid. The input is a circle with
a sharp edge (a). In (b), the input is decomposed into multiple spatial sub-bands using an
invertible transform, and an approximate Riesz transform is taken of each band to form the
Riesz pyramid. At each scale, the three channels can be thought of as being components in
Cartesian coordinates. In (c), they are expressed in cylindrical coordinates to show the sub-band,
its quadrature pair and the local orientation. In (d), they are expressed in spherical coordinates
to show the local amplitude, local orientation and local phase. Note the discontinuity in the
orientation, quadrature pair and phase, which is due to the fact that orientation wraps around
from 0 to π. In all three representations, there is a lowpass residual, of which we do not take
the Riesz transform. The orientation and phase are not meaningful in regions of low amplitude
(masked out in yellow).

quaternion representation of the Riesz transform to define and use the Riesz pyramid.

� 3.3 Riesz Pyramids

The Riesz pyramid uses the Riesz transform to do phase analysis on all scales of an

input image by first decomposing the image into multiple sub-bands, each of which

corresponds to a different spatial scale, and then taking the Riesz transform of each

sub-band (Fig. 3.4). An ideal version of the Riesz pyramid can be built in the fre-

quency domain using octave (or sub-octave) filters similar to the ones proposed in the

previous chapter and the frequency domain Riesz transform [25]. This can be used to

magnify motions in videos faster than a two orientation complex steerable pyramid, but

it requires the use of costly Fourier transforms to construct, making it unsuitable for

online processing. To remedy this and gain further speedups, we approximate the ideal

frequency domain Riesz transform with an approximate Riesz transform given by two

80 CHAPTER 3. RIESZ PYRAMIDS FOR FAST PHASE-BASED MOTION MAGNIFICATION

finite difference filters, which is significantly more efficient to compute. To avoid using

the Fourier transform in the initial spatial decomposition, we also introduce a new non-

oriented pyramid implemented in the spatial domain, similar to the Laplacian pyramid

[9] but with wider filters that support a wider range of motion editing. We describe the

approximate Riesz transform and the spatial decomposition in the following sections.

� 3.3.1 Approximate Riesz Transform

In image pyramids, each sub-band is a critically sampled spatially bandpassed signal

with most of the sub-band’s energy concentrated in a frequency band around ‖~ω‖ = π
2

(the Nyquist frequency is at ωx = ωy = π). As a result, we can approximate the Riesz

transform with the three tap finite difference filters [0.5, 0,−0.5] and [0.5, 0,−0.5]T .

These filters have frequency response

− i sin(ωx) ≈ −i ωx‖ωx‖
,−i sin(ωy) ≈ −i

ωy
‖ωy‖

, (3.19)

when ωx, ωy ≈ π
2 . This is similar to the frequency response of the Riesz transform

(Fig. 3.5). That is, these filters change the phase of the band by 90 degrees in the x and

y directions respectively while not changing the amplitude substantially. For images,

rather than image sub-bands, these three-tap filters are a better approximation to the

derivative. This is because images have most of their spectral content concentrated

at low frequencies. When ω ≈ 0, we have −i sin(ω) ≈ −iω, which is the frequency

response of the derivative operator.

In Appendix A.2, we provide a way to generate higher-tap approximations to the

Riesz transform using a technique similar to one Simoncelli proposed to find derivative

filter taps [71]. In practice, we found that using two three-tap filters to approximate the

Riesz transform gave motion magnification results that were comparable to using higher-

tap approximations or the frequency domain implementation of the Riesz transform.

Frequency (ωx)

F
re
q
u
en
cy

(ω
y
)

Frequency (ωx)

F
re
q
u
en
cy

(ω
y
)

(a) Riesz transform of band (b) Our approximation

0

1

Frequency (ωx)

M
ag
n
it
u
d
e

Approximate Riesz Transform
Ideal

(c) Comparison of 1D slices in yellow

Figure 3.5: The first channel of the Riesz transform of a pyramid level’s transfer function (a) is
compared to the first channel of our approximation of the Riesz transform (b). One dimensional
slices along the yellow lines of (a) and (b) are shown in (c). If our approximation was perfect,
(a) and (b) would be identical and the lines in (c) would coincide.

82 CHAPTER 3. RIESZ PYRAMIDS FOR FAST PHASE-BASED MOTION MAGNIFICATION

� 3.3.2 Spatial Decomposition

Prior to applying the Riesz transform, we decompose the image into non-oriented sub-

bands using an invertible image pyramid. For the purposes of computational perfor-

mance, we avoid the Fourier transform, eliminating the choice of a frequency domain

construction (Fig. 3.6b). A compact space-domain image pyramid we could use is the

Laplacian pyramid [9] (Fig. 3.6(a)). However, this pyramid has a very narrow impulse

response, which limits the maximum amplification the pyramid can support (Fig. 3.6d-

g). To remedy this problem, we design a self-inverting pyramid similar to the Laplacian

pyramid but with wider impulse response (Fig. 3.6c). Simoncelli and Freeman [73]

showed that such a pyramid can be constructed from a lowpass and highpass filter pair

that satisfy certain properties. Rather than using the symmetric, but nonseparable low-

pass and highpass filter taps provided by Simoncelli and Freeman, we design our own

pyramid using a similar technique to theirs. Our filters use fewer taps than Simoncelli

and Freeman and have additional structure imposed on them, which makes them very

efficient to implement when the lowpass and highpass filters are jointly applied to the

same input as they are when building the pyramid [51].

As a result, building the proposed pyramid requires a total of 30 multiplies per pixel

per scale. Collapsing the pyramid requires applying the symmetric lowpass and highpass

filter to separate bands and then summing the results for a total of 42 multiplies per

pixel per scale. This results in a total cost of 72 multiplies per pixel per scale or 96

multiplies per pixel to build and collapse the pyramid. The approximate Riesz transform

adds 2 multiplies per pixel per scale or 3 multiplies per pixel for a total of 99 multiplies

per pixel.

The taps of our filters and more details on the design and implementation techniques

can be found in Appendix A.1. A comparison between our new pyramid, a frequency-

domain pyramid and the Laplacian pyramid, is given in Fig. 3.6.

(a) Laplacian
Time: 30ms

(c) New Pyramid
Time: 54ms

Laplacian
Frequency
New Pyr.

00

(d) Impulse Response (e) Window of Filters

Input
Ground Truth
Laplacian
Frequency
New Pyr.

In
te

ns
ity

(f) Magnified x20 (g) Magnified x50

(b) Frequency
Time: 93ms

0 0

Frequency (ω)x Frequency (ω)x Frequency (ω)x

F
re

q
u
en

cy
(ω

) y

Space ()x Space ()x

Space ()x Space ()x

Figure 3.6: Different spatial decompositions for our new algorithm. In the top row, the frequency
response of a level of the Laplacian pyramid (a), a frequency domain pyramid (b), and our
new spatial domain pyramid (c). In the middle row, a one-dimensional cross section of their
impulse responses (d) and windows (e). In the bottom row, a synthetic Gaussian shifted with
our technique using a Laplacian pyramid, the frequency domain pyramid and our new pyramid
for two amplification factors (f-g). The time in milliseconds to build and collapse a 960 × 540
image in MATLAB is shown underneath the frequency response of each pyramid.

84 CHAPTER 3. RIESZ PYRAMIDS FOR FAST PHASE-BASED MOTION MAGNIFICATION

Riesz Transform

Q
ua

te
rn

io
n

O
pe

ra
tio

ns
 (N

or
m

 a
nd

 L
og

)

(a) Input (b) Level of Riesz Pyramid

Sp
at

io
-te

m
po

ra
l F

ilt
er

in
g

A
m

pl
ifi

at
io

n,
 Q

ua
te

rn
io

n
Ex

po
ne

nt
ia

tio
n

(c) Amplitude and Phase (d) Filtered Phase (e) Magnified Subband

La
pl

ac
ia

n-
Li

ke
 P

yr
am

id

Figure 3.7: A processing pipeline for motion magnification with the Riesz pyramid. A region
of interest (highlighted in green) of an input (a) is decomposed using a Laplacian-like pyramid
(only one level shown). The Riesz transform of this level is taken to produce the Riesz pyramid
(b). The quaternion norm is used to compute the amplitude (c, top row) and the quaternion
logarithm is used to produce the quaternionic phase (c, bottom rows). The quaternionic phase
is spatio-temporally filtered (d) to isolate motions of interest and then this quantity is used to
phase-shift the input Riesz pyramid level to produce a motion magnified subband (e). These
subbands can then be collapsed to produce a motion magnified video (not shown).

� 3.4 Motion Magnification with the Riesz Pyramid

To perform motion magnification with the Riesz pyramid, we break the input image into

subbands using our replacement for the Laplacian pyramid and take the approximate

Riesz transform of each pyramid level (Fig. 3.7b). Then, we use the processing described

in Sec. 3.2.3 to compute the quaternionic phase of each pyramid level as a function of

time and position (Fig. 3.7c). We apply temporal and spatial filtering to the phases,

magnify them and use the magnified phases to phase shift the Riesz pyramid coefficients

(Fig. 3.7d-e). The real part of this pyramid is collapsed to produce the motion magnified

video.

Below, we describe the filtering the quaternionic phase and the phase-shifting of

Riesz pyramid coefficients in more detail.

Sec. 3.4. Motion Magnification with the Riesz Pyramid 85

� 3.4.1 Temporal Filtering of Quaternionic Phase

While the quaternionic phase resolves the sign ambiguity in filtering φ(x, y, t) directly,

it is still a wrapped quantity. That is, iφ cos(θ) + jφ sin(θ) and i(φ+ 2π) cos(θ) + j(φ+

2π) sin(θ) correspond to the same value. Therefore, instead of filtering the quaternionic

phase directly, we instead use a technique by Lee and Shin [47] to filter a sequence of

unit quaternions. This technique is tantamount to phase unwrapping the quaternionic

phases in time and then performing LTI filtering. We use it to LTI filter the Riesz

pyramid coefficients at each pixel in each scale in time and then in a subsequent step

we spatially smooth the pixel values with an amplitude weighted blur to improve SNR.

We will also make the assumption that the local orientation at any pixel is roughly

constant in time and approximately locally constant in space.

Suppose at a single location (x, y) in a single scale ωr, the normalized Riesz pyramid

coefficients are

r1, r2, . . . , rn (3.20)

where rm = cos(φm) + i sin(φm) cos(θm) + j sin(φm) sin(θm), the most general form of

a unit quaternion with no k component.

In ordinary complex phase unwrapping, we would take the principle value of the dif-

ference between successive terms and then do a cumulative sum to give an unwrapped

sequence in which the difference between two successive terms was always in the in-

terval (−π, π]. We do the same thing here. We compute the principle value of the

phase difference between successive coefficients by dividing them and then taking the

logarithm.

log(r1), log(r2r
−1
1), . . . , log(rnr

−1
n−1) (3.21)

The terms rmr−1
m−1 will in general have nonzero k component (Eq. 3.9). However, if

we make the assumption that θm = θ + ε, that is that the local orientation is roughly

86 CHAPTER 3. RIESZ PYRAMIDS FOR FAST PHASE-BASED MOTION MAGNIFICATION

constant over time at every pixel, the k term will be close to zero. More explicitly,

rmr−1
m−1 = cos(φm − φm−1)

+ i sin(φm − φm−1) cos(θ)

+ j sin(φm − φm−1) sin(θ) +O(ε)

(3.22)

which, ignoring the O(ε) term, has logarithm

i([φm − φm−1]) cos(θ) + j([φm − φm−1]) sin(θ) (3.23)

where the bracketed terms are taken modulo 2π.

The second step is perform a cumulative sum of Eq. 3.21

φ1u, (φ1 + [φ2 − φ1])u, . . . ,

(
φ1 +

n∑
l=2

[φl − φl−1]

)
u (3.24)

where u = i cos(θ)+j sin(θ). If we let φ′m = φ1+
∑m

l=2[φl−φl−1], we can more compactly

write this series as

iφ′m cos(θ) + jφ′m sin(θ) (3.25)

At every pixel, we perform temporal filtering on this quantity to isolate motions of

interest.

� 3.4.2 Spatial Smoothing

We perform a spatial amplitude weighted blur with Gaussian kernel Kρ with standard

deviation ρ on the i and j components of the temporally filtered signal to further

increase SNR

i
Aφ′ cos(θ) ∗Kρ

A ∗Kρ
+ j

Aφ′ sin(θ) ∗Kρ

A ∗Kρ
(3.26)

Sec. 3.5. Results 87

where A is the amplitude of the Riesz pyramid coefficients. If we use our assumption

that the orientation does not change substantially in the support of Kρ, then we can

move cos(θ) and sin(θ) outside of the convolution in Eq. 3.26 to get.

i cos(θ)φ′′ + j sin(θ)φ′′ (3.27)

where φ′′ =
Aφ′∗Kρ
A∗Kρ .

� 3.4.3 Amplification

We motion amplify a Riesz pyramid coefficient in the same way we would phase-shift

a complex number. First, we perform a quaternion exponentiation on the filtered and

amplified (by α) quaternionic phase (Eq. 3.27) to produce a unit quaternion

cos(αφ′′) + i sin(αφ′′) cos(θ) + j sin(αφ′′) sin(θ) (3.28)

We then multiply this unit quaternion by the original coefficient I + iR1 + jR2 in the

Riesz pyramid. We only need the real part of the result, which by Eq. 3.9 is equal to

I cos(αφ′′)−R1 sin(αφ′′) cos(θ)−R2 sin(αφ′′) sin(θ) (3.29)

This gives the coefficients of a real Laplacian-like pyramid for every frame, in which

the motions have been magnified, which can then be collapsed to produce a motion

magnified video (Fig. 3.7(e)).

� 3.5 Results

Phase-based video magnification with our new representation allows users to produce

high-quality motion-magnified videos in real-time. We show several applications of our

88 CHAPTER 3. RIESZ PYRAMIDS FOR FAST PHASE-BASED MOTION MAGNIFICATION

Video Resolution (h× w × t) Wu et al. [89] Wadhwa et al.[85] 2 Orient. CSP Riesz (Freq.) Riesz (Space)
Type Linear Phase Phase Phase Phase
Domain Space Frequency Frequency Frequency Space

Crane 280× 280× 220 6.0 43.0 15.9 13.6 10.1
Guitar 432×192×300 7.9 60.5 23.5 20.4 14.9
Baby 960×540×300 35.6 325.9 95.7 101.6 75.4
Camera 512×384×1000 46.6 375.7 140.3 122.5 91.5
Violin 480×360×300 12.7 115.8 43.1 34.9 29.3
Balance 272×384×300 7.7 72.7 30.7 23.6 18.3
Smoke 240×600×300 11.7 92.3 32.5 30.6 25.7
Column 200×1056×600 41.7 259.7 95.3 90.8 76.5

Table 3.1: Running times (in seconds) of comparable MATLAB implementations of phase-
based motion magnification, the Riesz pyramid, and several variants of the complex steerable
pyramid. All phase-based methods were run with spatial phase denoising of the same value of
ρ. Video read and write times were not included. As specified in Wadhwa et al. [85], we use
an eight orientation octave bandwidth pyramid (Col. 4). We also present their method using
the smallest possible complex steerable pyramid, a two orientation octave bandwidth pyramid
(Col. 5). “Domain” (third row) specifies whether the pyramid was constructed in the spatial or
frequency domains. For each sequence, the fastest phase-based method is highlighted in bold.

algorithm in this section. For all of our results, we used the approximate Riesz transform

(Sec. 3.3.1) with the new spatial domain pyramid (Sec. 3.3.2). We converted the videos

to YIQ colorspace and only processed the luma channel.

A vibrating string on its own makes only a very quiet sound. As a result, stringed

musical instruments are constructed so that the string vibrates a soundboard or a

hollow resonating chamber that produces almost all of the audible sound. In violin, the

G string of a violin is played by a bow and the resulting vibrations were recorded by

a high speed camera at 3000 FPS. This high speed video reveals the intricate motions

of the string. However, motion amplification with our new representation reveals the

invisible vibrations of the soundboard and tailpiece. We suppress amplification near

the string in our result.

A man holding a weight struggles to maintain balance, but in a 300 frame per second

high speed video, balance, this struggle is not clearly apparent. When we amplify the

motions ten times in a passband between 1.0-8.0Hz, the man’s struggle becomes visible

and we see all the work he is doing to hold the weight.

Sec. 3.5. Results 89

(a) violin (b) balance (c) column

Figure 3.8: Representative frames from videos in which we amplify imperceptible motions. The
full sequences and results are available in the supplementary materials.

A
m

pl
ifi

ca
tio

n

0.02 0.040 0.02 0.040 0.02 0.040

200

100

0

1e-1

1e-2

3e-2

Noise (σ) Noise (σ) Noise (σ)
(a) Linear [16] (b) CSP [15] (c) Riesz Pyr.

Linear (= 20)
CSP (= 20)
Riesz (= 20)
Linear (= 50)
CSP (= 50)
Riesz (= 50)

,
,

,

,
,

,

Linear (= 0)
CSP (= 0)
Riesz (= 0)
Linear (= 0.02)
CSP (= 0.02)
Riesz (= 0.02)

<
<
<
<
<
<

0 0.02 0.040 10050 150
Amplification (,) Noise (σ)

R
M

SE

0

0.4

0.2

(d) RMSE vs. Amplification (e) RMSE vs. Noise

Figure 3.9: A comparison of our new method versus previous Eulerian video magnification
methods on a synthetic oscillating Gaussian, in which the ground truth amplified motion is
known. The logarithm of the RMSE is shown in color for the linear method (a), for the complex
steerable pyramid phase-based method (b) and for our new phase-based method (c). We also
show slices of the RMSE vs. amplification (d) and RMSE vs. noise (e) for the three methods.

When laminar flow becomes turbulent, there is a transition region in which sinu-

soidal instabilities grow before eventually becoming unstable and turbulent [78]. In

smoke, we reveal these sinusoidal instabilities by applying motion magnification to a

column of incense smoke transitioning from laminar to turbulent flow (Fig. 3.1).

Chen et al. [11] used local phase to compute the mode shape of a cantilever beam

struck by a hammer from video. We obtained this sequence, column (Fig. 3.8(d)), and

used motion amplification to visualize the mode shapes by amplifying the motions in the

90 CHAPTER 3. RIESZ PYRAMIDS FOR FAST PHASE-BASED MOTION MAGNIFICATION

video along narrow temporal bands. These mode shapes correspond to the theoretically

derived ones.

Comparisons with Previous Techniques In Fig. 3.1 and the supplementary materials,

we present several comparisons between phase-based motion magnification using the

Riesz pyramid and using the complex steerable pyramid [85] on natural videos. The

Riesz pyramid yields results that are comparable in quality to those produced with the

complex steerable pyramid, but much faster. To verify this quantitatively, we tested

phase-based video magnification with our new representation and the eight orientation

complex steerable pyramid and linear video magnification on a sequence of a synthetic

oscillating Gaussian, in which the ground truth motion magnified sequence is known.

We computed the RMSE of these techniques as a function of amplification factor α

and spatiotemporal image noise σ (Fig. 3.9). For all amplification factors and noise

levels, the RMSE for our new representation is very close to that of phase-based video

magnification with the complex steerable pyramid, and substantially better than the

linear method [89].

In Table 1, we display the running times of comparable MATLAB implementations

of linear video magnification and phase-based video magnification using 8 and 2 ori-

entation complex steerable pyramids, the Riesz pyramid implemented in the frequency

domain (Fig. 3.6b) and the Riesz pyramid implemented in the spatial domain (Fig. 3.6c).

Using the spatial-domain Riesz pyramid yields the fastest phase-based method, produc-

ing results four to five times faster than the 8 orientation complex steerable pyramid

used in the previous chapter. It is 20% to 80% faster than even the two orientation

complex steerable pyramid. The spatial-domain Riesz pyramid is also faster than the

frequency domain implementation, demonstrating the additional speedup that our ap-

proximate Riesz transform and spatial-domain decomposition provide.

Sec. 3.5. Results 91

Figure 3.10: A frame from our real-time demo using Riesz Pyramids. A wine glass is filmed in
with a video camera while a nearby speaker plays its resonant frequency (449.1Hz) at it. The
induced vibrations are too small and too fast to be seen with the naked eye. Filming with very
short exposure times (0.4ms) leads to temporal aliasing which makes the fast vibration look like
one occurring at 1.2 Hz. When this is motion magnified, the oscillations of the wine glass are
visible on the right in the motion magnified video.

Real Time Implementation We created a C++ implementation of phase-based video

magnification with the Riesz pyramid using OpenCV and QT. We can process a live

640 × 400 pixel video at 40 frames per second on a laptop with four cores and 16GB

RAM (the algorithm uses only a single CPU core). Because all of the operations are

compact linear filters or element-wise operations, a parallelized or GPU implementation

could further increase the speed. In our real time implementation, we use a Laplacian

pyramid in which the image is blurred and downsampled with a 5× 5 Gaussian kernel

(Fig. 3.6a) as the spatial decomposition because it is efficiently implemented in OpenCV.

In Fig. 3.10, we show a frame from our real time interface. In it, we amplify the invisible

oscillations of a wine glass when its resonant frequency is played at it.

92 CHAPTER 3. RIESZ PYRAMIDS FOR FAST PHASE-BASED MOTION MAGNIFICATION

� 3.6 Discussion and Limitations

Sub-octave pyramids: In the previous chapter, we proposed using half- and quarter-

octave bandwidth pyramids to increase the amount by which motions can be shifted.

Since our new representation focuses on speed, we concentrated on comparing our

technique to an octave-bandwidth complex steerable pyramid since it is the faster among

these decompositions. It is possible that our algorithm could be improved further

by using non-oriented versions of these sub-octave bandwidth pyramids as the spatial

decomposition in the Riesz pyramid.

Pros and cons w.r.t. the complex steerable pyramid: Even though it is computationally

more expensive, the complex steerable pyramid could have advantages over the Riesz

pyramid in some scenarios. For example, the Riesz pyramid may have trouble at points

where there is not a single dominant orientation, as demonstrated in Fig. 3.11. The in-

put image is a sum of four sinusoids of the same wavelength, but of different orientations.

Thus, the entire image consists of points that do not have a single dominant orienta-

tion. Neither the Riesz pyramid nor the two orientation complex steerable pyramid can

properly motion-magnify this image. However, a complex steerable pyramid with eight

orientations can better separate this complex texture into one dimensional sinusoids,

which can then be motion-magnified more accurately (Fig. 3.11(b)). In general, we

would expect the Riesz pyramid to perform similarly to the two orientation complex

steerable pyramid as the latter is also not capable of separating two orientations at a

single point unless they are exactly horizontal and vertical.

Limitations The approximate Riesz transform does not maintain the power of an input

signal like the ideal Riesz transform does, which can cause minor artifacts. That is, a

signal like cos(x) might get mapped to ((1 + ε) sin(x), 0) where ε 6= 0. As a result, the

phase signal may not be exactly x, but rather x plus an order ε term that might vary

(a) Input (b) CSP8

(c) CSP2 (d) RP

Figure 3.11: An example of an advantage of the complex steerable pyramid over the Riesz
pyramid on a synthetic sequence. The texture in (a) is the sum of four sinusoids with the same
wavelength, but different orientations (18◦, 72◦, 108◦, 162◦). The texture and a copy shifted
to the right by 0.1 pixels are motion-magnified by 30 times using an eight orientation complex
steerable pyramid (b), a two orientation complex steerable pyramid (c) and the frequency domain
Riesz pyramid (d). Notice how the texture in (b) is more similar to the original (a) in comparison
to (c) and (d). The full sequences are available in the supplementary material.

94 CHAPTER 3. RIESZ PYRAMIDS FOR FAST PHASE-BASED MOTION MAGNIFICATION

with location x+O(ε)f(x). This causes different parts of the sinusoid to get magnified

slightly differently causing some minor artifacts. The spatial smoothing step (Sec. 3.4.2)

can be used to smooth out these spatial inconsistencies and reduce the artifacts. More

details are given in Appendix A.2.

Our new representation also still suffers from some limitations of the Eulerian motion

magnification framework. For example, in the violin sequence, there are some artifacts

near the vibrating string no matter which motion magnification method is used. This

is because these motions are relatively large and so are not well-characterized by an

Eulerian framework.

Chapter 4

Noise Analysis and Applications in

Science and Engineering

In the previous chapters, we described methods to magnify tiny motions in videos

revealing numerous subtle phenomena, such as the breathing motions of a baby and

the swaying of a construction crane. However, because the motions were so small,

we needed to spatially blur and temporally filter them to get adequate signal-to-noise

ratios. While this blurring and filtering boosts SNR, it can also shape random noise

present in every video into a seemingly realistic and visually sensible signal. In this

chapter, we provide tools to determine when a motion magnified signal is caused by

noise and therefore spurious.

The increased certainty of what is being amplified makes motion magnification a

tool scientists and engineers can use. We also describe a way to convert local phase

variations that underpin phase-based motion magnification into optical flow, a 2D es-

timate of how much pixels in the scene are moving. These numbers make it possible

to perform quantitative experiments with tiny motions extracted from video data. We

apply our technique to problems in biology and engineering. And we show how both the

qualitative and quantitative descriptions of tiny motions may play a role in scientific

discovery.

95

96 CHAPTER 4. NOISE ANALYSIS AND APPLICATIONS IN SCIENCE AND ENGINEERING

� 4.1 Introduction

Small motions have scientific and engineering importance. They may correspond to

small net forces and can reveal subtle processes. They can indicate dynamics that

might otherwise be undetectable, potential precursors to larger displacements. Small

motions are often in a linear response regime, and can show the physical response

eigenmodes and their temporal eigenvalues. The spatial pattern of small motions can

show mechanisms or identify excitation patterns that may occur at a larger spatial

scale.

Unfortunately, despite their importance, small motions by their nature are often

too small to see. The solution is motion magnification, a technique described in the

previous chapters. It is a tool that functions like an ordinary microscope, but instead

of making small things bigger, it makes small motions bigger. It takes as input a nearly

static video and outputs a new video, in which the motions have been re-rendered to

be larger.

To make motion magnification applicable to scientific problems, it must be aug-

mented in two ways. First, there needs to be a quantitative output describing the size

and direction of the motions that are occurring in a video. Second, there needs to be a

quantification of how noise affects the tiny motion signal in a video. This quantification

can be used to disambiguate true tiny motions from spurious ones due to noise present

in every video.

Quantitative Readout of Motions As described in chapter 2, phase-based motion mag-

nification works by first decomposing every frame of an image sequence into different

spatial scales and orientations using a complex steerable pyramid filter bank. Each band

of this representation has a notion of local amplitude and local phase. In phase-based

motion magnification, the temporal local phase changes in each band are amplified to

magnify the motions (Sec. 2.3).

Sec. 4.1. Introduction 97

However, the phase changes can also be used to estimate the motion at every pixel.

They provide information about a component of motion approximately perpendicu-

lar to the orientation of the corresponding level of the pyramid. Phase changes over

multiple orientations can provide enough information to estimate the 2-dimensional

motion within the image [29]. However, the reliability of this information depends on

the amount of image content the corresponding pyramid level has (e.g. a constant

color region of an image will have zero-response in all levels and completely unreliable

phases). It can be quantified by the amplitude of the pyramid levels, which we use as

the weights in a weighted-least squares problem that combines the information across

levels to produce an estimate of the horizontal and vertical motions at every pixel in

the video.

This motion estimate combined with motion magnification provides an easy-to-

understand and fully quantitative description of phenomena involving tiny motions. We

focus on using the complex steerable pyramid rather than the Riesz pyramid because of

its superior ability to separate complex textures into accurately analyzable sub-bands

(discussed in Sec. 3.6).

Sources of Noise There are many factors that can cause spurious or unwanted tiny

motions in a video, some of which are shown in Fig. 4.1. Subtle camera or object

motions due to footsteps or earthquakes can cause real, but unwanted tiny motions.

Atmospheric turbulence can cause the path of light to bend inducing apparent tiny

motions in a video similar to how heated air on a hot day causes visible shimmering

[38, 70, 91]. Many lights that draw power from the grid flicker in response to the grid’s

AC current. This flickering can cause subtle color changes in a video, which subtly

affect local phase changes; it may be necessary to eliminate temporal frequencies that

correspond to AC power or to use lights powered with DC current to get reasonable

results.

Object Motions
 Earthquakes
 Building Vibrations
 Footsteps

Sensor Noise
 Electrical noise (read noise)
 Discrete nature of light (shot noise)
 Digitization (quantization noise)

Atmospheric Turbulence
 Nearby heat sources
 Camera far-away

Flickering Lights
 AC Power
 Dimmers (Pulse-width modulation)

Camera Motions
 Bad tripod
 Handshake

This Chapter

Figure 4.1: Sources of unwanted and spurious tiny motions in video. In this chapter, we focus
on spurious tiny motions caused by sensor noise.

Sec. 4.1. Introduction 99

(a) Synthetic video with noise and without motions

(b) Motions magnified x600 (40-60Hz)

Time

Time

Time

Time

Figure 4.2: Magnification of spatially smoothed and temporally filtered noise can look like a
real signal. A synthetic 300-frame video was created by replicating a single frame 300 times
and adding independent noise to each frame (a). The result was motion magnified 600x in a
temporal band of 40-60Hz (b). Timeslices from the same parts of each video are shown on the
right for comparison. The source frame is of an acoustic metamaterial (filmed in the Bertoldi
lab at Harvard University [87] and discussed in Sec. 4.4.5).

The sources of spurious or unwanted motions described in the previous paragraph

can be lessened through the use of good experimental methodologies: using sturdy

tripods, eliminating heat sources in the optical path and using non-flickering light

sources. However, one source of spurious tiny motions that is not possible to com-

pletely eliminate and fundamentally limits the size of motions we can unveil is sensor

noise. This noise is due to both electrical noise in the camera and the quantum na-

ture of light, in which the number of photons arriving at camera’s sensor varies across

exposures even if the underlying scene irradiance doesn’t change.

Sensor noise is usually zero-mean, roughly independent across space and is well-

100 CHAPTER 4. NOISE ANALYSIS AND APPLICATIONS IN SCIENCE AND ENGINEERING

modeled as signal-dependent Gaussian noise [40, 53, 58]. However, despite being roughly

independent across space, it can cause spurious tiny motions, which when temporally

filtered and spatially blurred look like plausible motion signals. This is demonstrated in

Fig. 4.2, in which a synthetic video with no motions is produced by replicating a single

frame 300 times and then adding realistic, independent noise to each replica. When the

synthetic video is motion magnified, several structures appear to be moving (Fig. 4.2b).

We detect when motions are spurious in this and other videos by measuring the

expected amount of noise on each motion vector; motions smaller than the noise level

are likely spurious. We measure noise by treating each motion vector as a 2D random

variable. Its distribution, specifically the covariance matrix of the horizontal and verti-

cal components, gives us a way to quantify the amount of noise in the motion estimate.

We estimate the covariance matrices of the motion vectors at each pixel by creating

a simulated video with zero motion in which all the changes in pixel color are due to

noise. Then, we estimate the motions in this video, which should be zero, and use the

sample covariance at every pixel as our measure of noise. We show, via both real and

synthetic experiments, that the covariance matrices computed as a result of this simu-

lation, accurately reflect the amount of noise present in the motion signal in textured

regions of the video when the motions are non-zero, but small.

Knowing quantitatively both the amount of motion and the amount of noise allows

us to compute signal-to-noise ratios of the motions at every pixel. This can be used as

both a measure of confidence in the result and a way to suppress the magnification of

spurious motions that are due to noise by using a Wiener filter. It also lets us gracefully

handle the aperture problem [27]; components of the motion that are not possible to

detect due to insufficient image content have high noise variances. Using our noise

model, we found that in a typical video taken with a good camera (specifically the

Phantom V10), the smallest motion we can reliably detect is on the order of 1/100th

Sec. 4.2. Related Work 101

of a pixel.

� 4.2 Related Work

Motion Estimation Visualizing tiny motions is a useful tool in understanding them.

However, in many cases, knowing the quantitative amount by which objects move is also

desired for experiments. In 3D scenes, objects or parts of objects will move according

to some 3D trajectory ~X(t). When the object is filmed with a video camera, this

trajectory will get projected to a 2D path ~x(t) = (u(t), v(t)). In discrete time, this 2D

path between two frames of a video is known as optical flow.

Estimating 2D motions or optical flow is a widely studied problem in computer

vision, with many possible solutions [3, 27–29, 35, 42, 56, 76]. Techniques that look at

the local phase difference between complex wavelet representations of image sequences

are most closely related to phase-based motion magnification [28–30, 35]. Fleet and

Jepson demonstrated that contours of constant phase in space-time follow objects as

they move [29]. Some authors have also proposed probabilistic models of optical flow

[27, 72], which is related to our goal of computing the covariance of an optical flow

estimate.

When an image region has insufficient texture, it may not be possible to determine

optical flow completely [27]. This is known as the aperture problem. For example, when

looking at only a local region of an image, it is not possible to tell if an edge is moving

in a direction parallel to it. Similarly, it is not possible to tell how a flat, textureless

region is moving in any direction.

We use ideas from Fleet and Jepson’s work [29] to estimate motions. The aperture

problem is implicitly handled in our noise handling. The covariance matrix will be very

large in directions in which we cannot estimate the motions.

102 CHAPTER 4. NOISE ANALYSIS AND APPLICATIONS IN SCIENCE AND ENGINEERING

Noise Models The most widely used noise model in image processing and computer

vision is additive white Gaussian noise (AWGN) [8, 15, 92], in which every pixel is

assumed to be distributed as a Gaussian random variable with constant standard de-

viation and mean proportional to the scene irradiance. This model is easy to analyze,

but in reality, the number of photons collected at a sensor well is a Poisson-distributed

random variable with variance equal to its mean. Noise variance at a pixel therefore

depends on a pixel’s intensity [40, 53, 58].

To handle this, we use a noise model, in which each pixel has independent Gaussian-

distributed noise, but the variance of the noise at a pixel with mean intensity I is a

function f(I) of the mean intensity. Liu et al. [53] refer to this function f as a noise

level function and we do the same.

Noise Estimation Estimating the noise level function from a single image is an un-

derconstrained problem and requires some assumptions be made about the underlying

image [53, 92]. However, estimating it from multiple images of the same scene is over-

constrained and is a solved problem [41]. If multiple images of the the same scene are

available, then the differences in brightness are largely due to noise. Therefore, the

sample variance across the multiples images can be used to estimate the noise level.

� 4.3 Method

Our goal is to use local phase changes in the video to provide a quantitative estimator

V of the 2D motion vectors at every pixel and compute the covariance matrix of this

estimator ΣV . This covariance matrix gives us a measure of how sensor noise affects

both our quantitative motion estimate and motion magnification. We use it to put error

bars on these quantities or compute signal-to-noise ratios. We also use Wiener filtering

to suppress motion magnification in regions whose apparent motions are mostly due to

noise.

Sec. 4.3. Method 103

� 4.3.1 Phase-Based Motion Estimation

In phase-based motion magnification (Sec. 2.3.4), we project every frame of the input

video onto the complex steerable pyramid basis. Each frame is transformed into a set

of subbands corresponding to different spatial scales r and orientations θ, each of which

has a local amplitude Ar,θ(x, y, t) and local phase φr,θ(x, y, t). Then, the local phase

variations

∆φr,θ(x, y, t) := φr,θ(x, y, t)− φr,θ(x, y, 0) (4.1)

are amplified independently in every subband. In this section, instead of amplifying

the local phase variations, we use them to compute quantitative motion vectors. We

assume that every pixel is characterized by the motions of a single object, quantitatively

described by the 2D vector V (x, y, t) = (u(x, y, t), v(x, y, t)) that we seek to compute.

Fleet and Jepson have shown that contours of constant phase in subbands provide

a good approximation to the motion field in a video [29]. We make a similar phase

constancy assumption, in which the following equation relates the phase of the frame

at time 0 to the phase of future frames:

φr,θ(x, y, 0) = φr,θ(x− u(x, y, t), y − v(x, y, t), t). (4.2)

This is similar to the brightness constancy assumption from optical flow [42, 56], but

with local phase replacing brightness as the quantity that is constant under translation.

We use a Taylor series approximation on the right-hand side of this equation around

(x, y) to get

∆φr,θ =

(
∂φr,θ
∂x

,
∂φr,θ
∂y

)
· (u, v) +O(u2, v2), (4.3)

where arguments have been suppressed and O(u2, v2) represents higher-order terms in

the Taylor expansion. Since we are only interested in small motions, higher order terms

104 CHAPTER 4. NOISE ANALYSIS AND APPLICATIONS IN SCIENCE AND ENGINEERING

are negligible and the local phase variations are essentially equal to only the linear term:

∆φr,θ =

(
∂φr,θ
∂x

,
∂φr,θ
∂y

)
· (u, v). (4.4)

Typically, the spatial gradients of the local phase,
(
∂φr,θ
∂x ,

∂φr,θ
∂y

)
, will be roughly con-

stant, close to the peak tuning frequency of the corresponding subband’s filter [28]. This

frequency is a 2D vector oriented orthogonal to the direction the subband selects for,

which means that the local phase changes only gives us information about the motions

perpendicular to this direction.

In a single oriented subband, Eq. 4.4 is underconstrained. However, if we assume

that the motion is the same in every subband, we can combine constraints across a subset

of the levels to overconstrain the problem. Were there no noise, all these constraints

would be equally valuable. However, subbands with low amplitude Ar,θ have much

noisier local phase variations. They are roughly normally distributed with variance

approximately proportional to the inverse amplitude squared (Fig. B.1 and Eq. B.13).

To take this into account, we estimate the motion using weighted least squares with

weights equal to the amplitude squared, so that reliable constraints are weighted more

heavily1. For every pixel at location (x, y) and time t, the result is an objective function

of the form

arg minu,v
∑
i

A2
ri,θi

((
∂φri,θi
∂x

,
∂φri,θi
∂y

)
· (u, v)−∆φri,θi

)2

, (4.5)

where arguments have been suppressed for readability. This optimization problem can

be solved exactly [45] and its solution V , our motion estimate, is

V = (XTWX)−1(XTWY), (4.6)

1Were the local phase variations uncorrelated and exactly Gaussian, this would give the unbiased,
linear estimator with the least variance [45].

Sec. 4.3. Method 105

where X is a N × 2 matrix consisting of the spatial gradients of the local phases, Y is

an N × 1 matrix of the temporal local phase variations and W is a diagonal N × N

weighting matrix of the squared amplitudes. That is,

X =


∂
∂xφr1,θ1

∂
∂yφr1,θ1

...
...

∂
∂xφrN ,θN

∂
∂yφrN ,θN

 , Y =


∆φr1,θ1

...

∆φrN ,θN

 and W =



A2
r1,θ1

0 . . . 0

0
. . .

...

...
. . . 0

0 . . . 0 A2
rN ,θN


.

(4.7)

We solve such an optimization problem at every pixel in every frame, yielding a time

series of displacement values from a reference frame at time 0 at every location (x, y).

Spatial Smoothing or Temporal Filtering In phase-based motion magnification, we also

apply spatial smoothing and temporal filtering to the local phase variations to boost

SNR. We add these steps to our processing to ensure that our estimated motion vector

field is comparable to the motion magnified video. To replicate spatial smoothing with

a filter kernel K, we assume the motion field is constant in a small window around each

pixel the size of the support of K. We add additional constraints from neighboring

pixels, weighted by both their amplitude squared and the corresponding value in K, to

the objective described in Eq. 4.5. To handle temporal filtering, we replace the local

phase variations (Eq. 4.1) with temporally filtered local phase variations.

� 4.3.2 Noise Analysis

In our motion estimation pipeline, we transform frames of a noisy input video into

the complex steerable pyramid representation. Because the resulting coefficients are

noisy, their local phase is noisy. Since our motion estimate uses these noisy local

phases, it too is noisy. Therefore, sensor noise, random fluctuations in pixel value cause

random fluctuations in the estimated motions. The amount of noise present in the

106 CHAPTER 4. NOISE ANALYSIS AND APPLICATIONS IN SCIENCE AND ENGINEERING

motion vectors affects our ability to recover tiny motions and we seek to quantify it

by computing its variance and standard deviation. Motions smaller than the standard

deviation are likely spurious.

We model the estimated motion as the sum of a true motion (the result in the ab-

sence of sensor noise) and a noise term. We quantify the noise level by estimating the

covariance matrix of the noise term at every pixel. This requires knowing the distribu-

tion of the motion estimate as sensor noise varies, which requires multiple samples of

the motion estimate in which the true motions are constant. This is difficult to obtain

from a real video because the true motions between pairs of frames are not known and

can vary over time. To solve this problem, we create a stochastically simulated noisy

video in which the true motions are known to be exactly zero. That is, a single frame

of the input video is replicated and realistic, independent noise is added to each replica.

We compute the sample covariance over time of the estimated motion vectors in this

simulated video. As long as the noise model is realistic, the sample covariance matrix

is accurate estimate of noise level in a real motionless video.

We show analytically and empirically that even though the sample covariance matrix

was computed for a simulated video with no motions, it is accurate for videos with sub-

pixel small motions at points where there is some image texture or edges. This means

that it is possible to quantify the effect of noise on the motion estimate using just a

single frame of the input video. This seems counterintuitive because motion implicitly

relies on multiple frames of the video. However, in the special case of small motions,

the frames are almost identical and it is possible to estimate noise from just one. A

big factor in how sensor noise affects the noise of motion vectors is image content, i.e.

higher contrast areas will have lower noise levels. For small motions, this is computable

from just a single frame.

At points in the image where there is no image content (textureless regions), our

Sec. 4.3. Method 107

covariance estimate is large (> 1px2), but only approximately accurate. Since recovering

motions at these points is nearly impossible, this accuracy is acceptable. In the case of

a simplified noise model, we trace the effect of noise in the motion estimation pipeline

and analytically derive what the covariance matrix should be in Appendix B.

Monte Carlo Simulation We assume that the noise level function f of the video is known.

If it is not known, it can be estimated from the input video or a calibration video taken

with the same camera settings (Sec. 4.3.2). We perform a simulation to compute the

sample covariance of the motion estimate. We create a motionless synthetic video with

independent noise added to every frame and compute the sample covariance over time.

We take a single frame I(x, y, 0) from the input video (Fig. 4.3a) and replicate it N

times, treating the replicas as frames of the synthetic video. For each replica, indexed by

time t, we simulate independent Gaussian noise nG(x, y, t) of unit variance and multiply

it by the square root of the noise level function f evaluated at I(x, y, 0) (Fig. 4.3b). We

add this to the replica to create the noisy motionless video (Fig. 4.3c)

IS(x, y, t) := I(x, y, 0) +
√
f(I(x, y, 0))nG(x, y, t). (4.8)

We estimate the motions in IS (Fig. 4.3d) using our technique with spatial smooth-

ing, but without temporal filtering, which we handle in a later step. This results in a set

of 2D motion vectors V (x, y, t). Because the input video has no motions, all variations

in V over time are entirely due to noise. We quantify the variations by computing the

sample covariance matrix over the time dimension, given by

ΣV =
1

N − 1

∑
t

(
V (x, y, t)− V̄ (x, y)

) (
V (x, y, t)− V̄ (x, y)

)T
(4.9)

where V̄ (x, y) is the mean over t of the motion vectors. This results in a 2×2 symmetric

matrix at every point, with only three unique components. In Fig. 4.3e, we show these

108 CHAPTER 4. NOISE ANALYSIS AND APPLICATIONS IN SCIENCE AND ENGINEERING

(a) Single Frame from
Input Video

(c) Simulated Video with Noise, but no Motion
(Noise contrast-enhanced x80)

(e) Empirical Noise Variance of Optical Flow

Tim
e

Tim
e

(b) Simulated Spatiotemporal Noise
(Contrast-enhanced x80)

+ =

(d) Phase-Based Motion Estimation of (c)

Tim
e

1px right
1px upward

0 px2

0.3 px2

-0.1 px2

0.1 px2

0.0 px2

Covariance

Horizontal Flow Variance Vertical Flow Variance

Figure 4.3: Using a probabilistic simulation to compute the noise covariance of the motion
estimate. A single frame from an input video is replicated and simulated, but realistic noise
is added (b) to produce a synthetic video with no motions and only noise (c). Optical flow is
estimated in this video (d) and the sample variances and sample covariance of the vertical and
horizontal components of the motion are computed to give an estimate of how much noise is in
the motion estimate (e). The input frame is of an acoustic metamaterial (filmed in the Bertoldi
lab at Harvard University [87] and discussed in Sec. 4.4.5).

components, the variances of the horizontal and vertical components of the motion and

their covariance.

The temporal filter reduces the elements of the covariance matrix. We take its effect

into account by considering its impulse response T (t). Oppenheim and Schafer [61]

show that a signal with IID noise of variance σ2 has variance
∑

t T (t)2σ2 after temporal

filtering. Therefore, when a temporal filter is used, we multiply the covariance matrix

by
∑

t T (t)2.

We now show analytically and empirically that this estimated noise covariance is

valid when the motion estimate is non-zero, but small. In the previous section, the

motion estimate V was given by the solution to a weighted least squares problem,

Sec. 4.3. Method 109

V = (XTWX)−1XTWY (Eq. 4.6). To simplify notation, let B = (XTWX)−1XTW ,

the parts of the equation that don’t depend on time. Then, the flow estimate is

V = BY. (4.10)

where the elements of Y are the local phase changes over time.

We first show that if the motions in the scene are small (u(x, y, t), v(x, y, t) << 1px)

and there is some image content at the point, it is reasonable to assume that Y is

stochastic and that B is fixed. B depends on the local phase gradients and amplitudes

of the complex steerable pyramid representation of the video. We show that both of

these quantities are much less noisy than the temporal phase changes in Y .

We first demonstrate that the local phase gradients are much less noisy than the

local phase changes. We look at the linearization of phase equation again (Eq. 4.4) with

noise terms added to the phase variations (nt) and phase gradient (nx, ny):

∆φr,θ + nt = (u, v) ·
(
∂φr,θ
∂x

+ nx,
∂φr,θ
∂y

+ ny

)
. (4.11)

The total noise term in this equation is nt + unx + vny. The noise terms nt, nx and ny

are of the same order of magnitude. Since u and v are less than 1px, the predominant

source of noise is from nt and the effects of nx and ny are negligible. As long as some of

the amplitudes of the complex steerable pyramid are large (i.e. there is image texture

at the point), B will be stable as sensor noise varies. Therefore, we model Y , which

consists of temporal phase differences, as stochastic and B as fixed.

We split Y into the sum of its mean Y0 and variance, a multivariate Gaussian random

variable, denoted as S, that has zero-mean and variance that depends only on image

110 CHAPTER 4. NOISE ANALYSIS AND APPLICATIONS IN SCIENCE AND ENGINEERING

noise and local image content (Appendix. B). Then, the flow estimate is

V = BY0︸︷︷︸
True flow

+ BS︸︷︷︸
Noise Term (Covariance Matrix)

(4.12)

The noise term doesn’t depend on the value of the true flow BY0. Therefore, the

covariance matrix we compute via our simulation is valid even when the motions are

non-zero, but small. In the appendix, we show that the noise term depends only on

local image content. Our analysis is slightly inaccurate for components of the variance

that are very large. Such components correspond to points where the amplitudes of the

pyramid representation are low and noisy. However, for these points, all that matters is

that the variance is large (∼ 1px2) and the motions are not recoverable in that direction.

When the variance is smaller, our analysis is accurate.

We also performed a synthetic experiment in Fig. 4.4. We computed the sample

covariance matrix of the motions between a frame and translated versions of it. The

covariance matrix is approximately constant for motion sizes less than a pixel. There

are small variations of around 5% due to the random nature of the simulation. For

larger motions of size greater than one pixel, the covariance matrix is within 15% of

the covariance matrix computed when the frame doesn’t move at all.

Direction of Most Confidence We can rotate the covariance matrix to compute the

directions of most and least confidence, denoted by the unit vectors DM and DLM

respectively [43]. If we project the motion vector V onto these directions, we get

components of the motion VM := V DT
M and VL := V DT

L that we are most confident

of (has least variance) and least confident of (has most variance), respectively. This

procedure is useful when the motion is computed at a 1D structure, such as an edge

in the video. In such cases, we will only be able to reliably recover one dimension

of the motion due to the aperture problem. Rotating the covariance matrix allows

0.001 0.01 10 0.1 0.001 0.01 10 0.1

0.001 0.01 10 0.1

0.001

0.01

1

0

0.1

0.001

0.01

1

0

0.1

0.001

0.01

1

0

0.1

1e-5 px2

-1e-5 px2

0 px2

2e-5 px2

1e-5 px2

1.5e-5 px2

(a) Synthetic Frame (b) Covariance
Horizontal Motion (px)

Ve
rti

ca
l M

ot
io

n
(p

x)

Horizontal Motion (px)

Ve
rti

ca
l M

ot
io

n
(p

x)

Horizontal Motion (px)

Ve
rti

ca
l M

ot
io

n
(p

x)

(c) Horizontal Variance (d) Vertical Variance

Figure 4.4: Variances and covariance of estimated motion are approximately constant vs. motion
size. This means our noise covariance estimation, which assumes that the motions are zero,
is also accurate for small non-zero motions. The motion between a synthetic frame (a) and
slightly translated versions (not shown) at the marked point in red is computed 4000 times for
several different translation amounts. Each time a different, but independent noise is added to
the frames. The sample covariance (b) and variances (c-d) are shown as a function of motion
size. (c) and (d) are on the same color scale.

112 CHAPTER 4. NOISE ANALYSIS AND APPLICATIONS IN SCIENCE AND ENGINEERING

(a) Frame from Input Video

0

0.2

0.4

0.6

0.8

1

1.2

1.4

×10
-5

(b) Temporal Variance

(c) Edges marked in yellow removed

0 0.2 0.4 0.6 0.8 1

Mean Intensity

0

0.2

0.4

0.6

0.8

1

1.2

1.4

N
o

is
e
 V

a
ri
a
n

c
e

×10 -5

(d) Estimate of Noise Level Function

Figure 4.5: Estimating sensor noise from a nearly static video. A frame from a video is shown
(a). The variance of pixel intensities over times is then computed (b). Pixels with strong spatial
gradients (edges) are computed (c). The remaining pixels are used to compute a noise level
function mapping input intensity to noise variance.

us to separate the reliable part of the motion from the unreliable part, whereas the

horizontal and vertical components might both be noisy in the case of a diagonal edge.

The variance in the direction of most confidence also gives us a noise floor. Its square

root roughly tells us the magnitude of the smallest motion we can hope to recover at a

pixel.

Sec. 4.3. Method 113

Sensor Noise Estimation

We estimate the amount of noise present in the input video. As mentioned in the related

work (Sec. 4.2), we use a Gaussian signal-dependent noise model, in which the noise

at each pixel is independent, but has variance that is a function f(I) of intensity. We

estimate this noise level function f .

At each pixel, we compute the temporal sample variance of its intensities (Fig. 4.5b).

Were the intensity changes solely due to noise, this sample variance would be an unbi-

ased estimate of the noise variance at that pixel and we could use the sample variances

at all the pixels to estimate f . However, even in a nearly static video, subtle motions

can cause intensities to vary, causing the sample variance to be an overestimate of the

noise variance. We solve this problem by observing that subtle motions do not cause

substantial temporal changes in regions of the image with low spatial gradients. To

show this, suppose that the video has observed intensities I(x, y, t) that are the sum of

its noiseless, true intensities I0(x, y, t) and a Gaussian noise term n(x, y, t). That is

I(x, y, t) = I0(x, y, t) + n(x, y, t). (4.13)

Under the assumption that the subtle motions (u(x, y, t), v(x, y, t)) cause brightness

values to translate, we have

I0(x, y, t) = I0(x− u(x, y, t), y − v(x, y, t), 0). (4.14)

Because the motions are small, we ignore higher order terms and linearize this around

(x, y) to show that the intensity variations are given by

I0(x, y, t) ≈ I0(x, y, 0)− ∂I0

∂x
u(x, y, t)− ∂I0

∂y
v(x, y, t). (4.15)

114 CHAPTER 4. NOISE ANALYSIS AND APPLICATIONS IN SCIENCE AND ENGINEERING

This is similar to the linearization of brightness constancy [42, 56] and tells us that

in smooth flat regions where the spatial gradients of I0 are small, the sequence I0 is

roughly constant over time and the sample variance of I will be mostly due to the noise

term n.

Therefore, when estimating the noise level function, we ignore pixels where the

spatial gradient magnitude, computed using derivative of Gaussian filters, is higher

than a threshold (Fig. 4.5c). We then divide the intensity range into bins and for each

bin, we compute the mean sample variance of the non-ignored pixels in that bin. This

result is our estimate of the noise level function f mapping intensity values to variances

(Fig. 4.5d). If low gradient regions span a large enough range of intensities, then it is

possible to estimate f(I) from the input video. Otherwise, it may be necessary to take

a calibration video of a paper with patches of varying brightness (such as in Fig. 4.5a)

with the same camera and camera settings and use that video to estimate the noise

level function f .

� 4.3.3 Suppressing Magnification of Noise

If the motions in a video are of size close to our estimated noise floor, they are probably

spurious and we should suppress their magnification. We do this by computing a spatial

attenuation map telling us how much to amplify motions. Pixels with low signal-to-noise

ratios (SNR) should get amplified less than pixels with high SNR. Formally, we derive

a Wiener filter in which we compute the optimal constant p with which to multiply

the noisy motion signal to get the mean squared error optimal estimate of the true,

noiseless signal [88]. The values of p at each pixel form the desired spatial attenuation

map.

At a specific pixel, we look at the observed motion signal o(t) in the direction of most

confidence, so that it is 1D. This observation is the sum of a true noiseless motion signal

Sec. 4.3. Method 115

s(t) and noise n(t), with standard deviation σ2
n, computable with our noise analysis.

That is,

o(t) = s(t) + n(t). (4.16)

We model the signal s(t) as the product of a univariate Gaussian random variable P

that is uncorrelated with the noise and a non-stochastic function s0(t) that has average

unit power, i. e. 1
M

∑
t s0(t)2 = 1, where M is the number of samples in time. The

mean squared error function function we seek to minimize is

arg minpE

[
1

M

∑
t

(po(t)− s(t))2

]
. (4.17)

This can be solved explicitly:

arg minpE

[
1

M

∑
t

(po(t)− s(t))2

]
= (4.18)

arg minpE

[
1

M

∑
t

(p− 1)2s(t)2 + 2(p− 1)ps(t)n(t) + p2n(t)2

]
(4.19)

arg minp(p− 1)2P 2 + p2σ2
n = (4.20)

P 2

σ2
n + P 2

. (4.21)

The equality between Eq. 4.19 and Eq. 4.20 follows because the signal and noise are

uncorrelated by assumption and the noise has zero-mean. The solution to this objective

(Eq. 4.21) is the ratio of signal power P 2 to total power of the observation P 2 +σ2
n and

is close to one when signal power is much larger than noise and close to zero otherwise.

We showed how to estimate the noise power σ2
n in the previous section. Since P 2 is not

known in advance, we estimate it by taking the observation power and subtracting the

116 CHAPTER 4. NOISE ANALYSIS AND APPLICATIONS IN SCIENCE AND ENGINEERING

noise power σ2
n. That is, we estimate P 2 by

max(
1

M

∑
o(t)2 − σ2

n, 0). (4.22)

We perform this analysis for the time-series of displacements in the direction of

most confidence at every pixel to produce an attenuation map. We then modify motion

magnification by multiplying this map by the local phase variations in every level of the

complex steerable pyramid to produce a motion magnified video in which noisy regions

are not motion magnified.

� 4.4 Results

We validate the accuracy of our motion estimate and our noise analysis on both real and

synthetic data and compare it to NCORR, a digital image correlation package [5]. We

also show that phase-based motion magnification generally works better than advecting

pixel color values according to magnified motion vectors. And finally, we demonstrate

the utility of motion magnification and our new capabilities, a quantitative estimate

of the motions and an analysis of noise, on applications in biology and mechanical

engineering.

To compute motions, we use a four orientation complex steerable pyramid. We use

only the two highest frequency scales of the complex steerable pyramid. We found this to

be a good trade-off between resolution of the motion field (low frequency levels are lower

resolution) and accuracy (using more levels increases the information used). Because

we use high frequency scales, the phase differences can exceed π if the motion is greater

than 2-3 pixels in size. To prevent artifacts due to phase wrap-around, we unwrap the

phases in time. This solution works as long as the frame-to-frame motions are less than

2-3 pixels in size, which is the case for every video presented in this dissertation. We

also detect regions of local phase that don’t follow our phase constancy assumption

Sec. 4.4. Results 117

(Eq. 4.2) using a method proposed by Fleet et al. [30]. As suggested by them, we reject

regions where the amplitude changes too rapidly or the spatial gradient of the local

phase is too far from the peak frequency of the corresponding filter.

� 4.4.1 Validation of Motion Estimation

We validate the accuracy of our motion estimation with two experiments: one with real

data, in which we obtain ground truth motions using a laser vibrometer, and one with

synthetic data, in which the ground truth motions are known. In both experiments, we

use a Gaussian blur with standard deviation 3px as our spatial smoothing weighting

function and we do not employ temporal filtering.

In the first experiment, a cantilevered beam was hit with a hammer to induce subtle

vibrations in it. We simultaneously recorded a 5000 FPS video of the beam with a high-

speed camera and measured its horizontal velocities with a laser vibrometer (Fig. 4.6b).

The beam had an accelerometer mounted on it (Fig. 4.6a), but we did not use it to

record motion. We used our motion estimation method to compute the horizontal

displacement of a point on the left side of the accelerometer from the video. After

manually aligning this signal to the ground truth integrated laser vibrometer data, we

were able to compare the two signals (Fig. 4.6c-e). The two methods agree remarkably

well with mean absolute difference of only 0.012 mm, 5% of the maximum motion

amplitude. Even the higher order modes are well-aligned.

In our second experiment, we created a synthetic dataset of image pairs with known

ground truth motion between them. We took natural images from the frames of real

videos (Fig. 4.7a) and warped them according to known motion fields using cubic b-

spline interpolation [80]. Sample motions fields, shown in Fig. 4.7b, were produced by

Gaussian blurring IID Gaussian noise. We used Gaussian blurs with standard deviations

(SD), ranging from zero (no filtering) to infinite (a constant motion field). We also varied

(a) Frame from Input Video (b) Experimental Setup

1.4 1.9 2.4 2.9

Time (s)

-0.2

0

0.2

D
is

p
la

c
e

m
e

n
t

(m
m

)

Optical Flow Integrated Laser Vib.

(c) Displacement signal on Left Side of Accelerometer

1.5 1.55 1.6 1.65

Time (s)

-0.2

0

0.2

D
is

p
la

c
e

m
e

n
t

(m
m

)

(d) Zoom-in of (c)

2.4 2.45 2.5 2.55

Time (s)

-0.2

0

0.2

D
is

p
la

c
e

m
e

n
t

(m
m

)

(e) Zoom-in of (c)

Figure 4.6: Validation of our motion estimation on real data. A frame from the recorded video
(a) and the experimental setup (b). Overlayed plots of the displacements of a cantilevered beam,
computed using our motion estimation technique and by integrating laser vibrometer velocity
measurements (c-e). (Experiment performed with Justin G. Chen, Oral Buyukozturk and col-
leagues; data taken from [11].)

Sec. 4.4. Results 119

the root-mean-square (RMS) amplitude of the motion fields from 0.001px to 3px. For

each set of motion field parameters, we sampled five different noise patterns to produce

a total of 155 motion fields. This gives us a way to test the accuracy of our motion

estimate as a function of the motion’s spatial coherence and amplitude. We did not

add noise to the image pairs, so that we could test the accuracy of our algorithm rather

than its sensitivity to noise.

We use this synthetic dataset to compare the accuracy of our motion estimation

algorithm to NCORR [5], a digital image correlation software package used by some

mechanical engineers [90]. For each image pair, we compute the mean absolute difference

between the estimated and ground truth motion fields. Then, for each set of motion

field parameters, we average the mean absolute differences across image pairs and divide

the result by the RMS motion amplitude to make the errors comparable over motion

sizes. The result is the average relative error as a percentage of RMS motion amplitude

(Fig. 4.7c).

Both NCORR and our method assume that the motion field is reasonably smooth

and perform best when the motions are spatially coherent (filter standard deviations

greater than 10 px) with relative errors under 10%. Our method assumes that the

motions are small, e.g. when we linearize phase constancy (Eq. 4.4). This is reflected

in this experiment; our method performs best for sub-pixel motions (5% relative error).

NCORR has twice the relative error (10%) for the same motion fields. NCORR has

surprisingly low error when the motions are of constant integer size.

The relative errors reported in Fig. 4.7c are computed over all pixels including those

that are in smooth regions where the aperture problem makes it difficult to estimate

the motions. If we restrict the error metric to only take into account pixels at edges

and corners, the average relative errors for small (< 1px), spatially coherent (filter SD

> 10px) motions drops by a factor of 2.5 for both methods.

(a) Frames from Real Videos

(c) Average Relative Errors

RMS Motion Size (px) RMS Motion Size (px)
0.001 0.01 1 30.1

B
lu

r S
D

 (p
x)

0

1

3

10

30

100

Constant
0.001 0.01 1 30.1

100%

10%

1%

NCORR DIC Ours

(b) Motion Fields are Gaussian Blurred Gaussian Noise

3

0

-3
SD of 3px SD of 30px Constant (Infinite SD)

Figure 4.7: An evaluation of our optical flow estimation method and NCORR [5] on a synthetic
dataset of images. Frames from real videos (a) were warped using motion fields (b) of various
motion size and spatial scale. Our optical flow estimation method and NCORR are used to
estimate the motion field and the average relative error is displayed for both methods as a
function of motion size and spatial scale. Both methods are only accurate for spatially smooth
motion fields. Our method is twice as accurate for spatially smooth, sub-pixel motion fields.
NCORR is more accurate for larger motions.

-60 dB

-45 dB

-30 dB

0 250 500 750 1000
Frequency (Hz)

A
cc

el
er

at
io

n
(m

/s
2)

1e-7

1e-4

1e-1
1.5e-5

0.5e-5

1.0e-5

00 0.5 1.0
Intensity

N
oi

se
 V

ar
ia

nc
e

(a) Acceleration of Structure (b) Noise vs. Intensity

No Motions in 600-700Hz Band

(c) Frame from Input Video

(f) Ground Truth Variance
(600-700Hz)

(d) Estimated Variance w/
Constant Noise Model

(Baseline)

(g) Estimated Variance w/
Signal-Dependent Noise Model

(Our Model)

(e) Error in (d)

(h) Error in (g)

Away from Camera
Vertical Horizontal

Signal-Dependent Noise
Constant Noise

Accelerometer

-60 dB

-45 dB

-30 dB

-60 dB

-45 dB

-30 dB

-5 dB

0 dB

5 dB

-5 dB

0 dB

5 dB

Figure 4.8: Validation of our noise estimation on real data. In a real video (c), there are no
motions in the frequency band 600 to 700 Hz (a). The variance of our motion estimate is entirely
due to noise and serves as ground truth (f). Estimates of the noise variance using our Monte
Carlo simulation using two different noise models (b) are shown in (d) and (g). The difference
in decibels between the ground truth variances and the estimated variances are shown in (e) and
(h). All variances are of the motions projected to the direction of most confidence. Textureless
regions, where the motion estimation is not meaningful, have been masked out in black.

122 CHAPTER 4. NOISE ANALYSIS AND APPLICATIONS IN SCIENCE AND ENGINEERING

� 4.4.2 Validation of Noise Analysis

We performed an experiment to validate our noise analysis and to demonstrate the

advantages of using a signal-dependent noise model over a constant variance noise model

(Sec. 4.2). Specifically, we filmed a cantilevered beam and used a mounted accelerometer

to show that it was not moving in the temporal band spanning 600 to 700 Hz (Fig. 4.8a-

c). Because there are no motions in this band, any motions we detect are due to noise

and we can get a ground truth measurement of the covariance matrix by computing

the estimated motions’ sample covariance over time in this band. In Fig. 4.8f, we show

a component of the covariance matrix, specifically the variance of the motions in the

direction of most confidence. Textureless regions, where we cannot measure the motions

accurately, have been masked out.

We use our Monte Carlo simulation to estimate the covariance matrix using both a

constant noise variance model (not our method) and a signal-dependent variance model

(our method). We show the same component (variance of motions in direction of most

confidence) of the covariance matrix for each noise model in Fig. 4.8d and Fig. 4.8g,

respectively. Both methods produce results that are comparable to the ground truth

noise variance. However, if we take the difference between the log of the estimated

variances and the log of the ground truth variances (Fig. 4.8e,h), we see that the signal-

dependent noise model is more accurate than the constant variance noise model. The

constant variance noise model overestimates noise in the black areas of the input image.

As a consequence, the predicted covariance is higher than the ground truth covariance

in areas near the black background. (Fig. 4.8e). The signal-dependent noise model

has errors that are less than 1 dB on average, demonstrating the accuracy of our noise

estimation technique.

We also validate our noise analysis on the synthetic example we presented at the

beginning of this chapter (Fig. 4.2). In that example, we created a video where all

Sec. 4.4. Results 123

motions were spurious. We estimated the motions and noise covariance matrix at all

pixels. The motion estimate in the direction of most confidence is within three standard

deviations of zero at 97.8% of the pixels in the video. This means that almost all of the

motions are non-zero by chance and that our noise analysis correctly identifies them as

spurious.

� 4.4.3 Phase-Based Motion Magnification vs. Advecting Color Values

Because we now compute motion vectors, it is natural to ask whether we can produce

motion magnified videos by simply advecting pixel color values according to magnified

motion vectors. In this section, we show that phase-based motion magnification (Chap-

ter 2) produces higher-quality videos than the just-described algorithm, regardless of

whether our own motion estimate or NCORR [5] is used (Fig. 4.9).

To show this, we take an apparently still video of an infant (Fig. 4.9a) and mo-

tion magnify it (20x, 0.5-3Hz) in four ways. First, we magnify the baby’s breathing

motions using phase-based motion magnification, in which local phase variations are

computed, amplified and then used to phase-shift complex steerable pyramid coefficients

(Fig. 4.9b). In our second method, we instead use our phase-based motion estimation to

compute motion vectors, magnify them and then advect pixel color values accordingly

(Fig. 4.9c). We performed the advection by creating a triangular mesh with a vertex

at the advected location of each pixel, assigning each vertex the pixel’s original color

and then using barycentric interpolation to color in the triangular faces. This technique

also reveals the baby’s breathing motion, but it produces very visible artifacts in regions

where the motion estimate is noisy and inaccurate, such as the baby’s hair or the crib

walls. Pixels in these regions are pushed too far.

To confirm that advecting pixel color values causes these artifacts, we replace our

phase-based motion estimate algorithm with NCORR [5]. We use NCORR’s motion

Advecting Pixel Color ValuesModifying Complex Steerable Pyramid

Analyzing
Phase

Using
NCORR

(b) Phase-Based Motion Magnification (c) Phase-Based Optical Flow used to Advect Pixel Colors

(d) NCORR DIC used to Modify Phases (e) NCORR DIC used to Advect Pixel Colors

(a) Input Video

Time Time

Time Time

Time

Figure 4.9: Different ways to motion magnify videos. The input video (a) is motion magnified
20x (0.5-3Hz) using phase-based motion magnification (b). Its motions are also computed using
our phase-based optical flow. The resulting motion vectors are used to advect pixel colors (c).
Similarly, the motions are computed using NCORR [5]. A magnified version of the resulting
motion vectors is used to modify the phase in complex steerable pyramid coefficients (d) and also
used to advect pixel values (e). Note the artifacts near the baby’s head and along the crib wall
in (c) and (e).

Sec. 4.4. Results 125

estimates to magnify the video in two different ways. First, we use the motion vectors

to phase-shift coefficients in a complex steerable pyramid representation of each frame.

As suggested by the linearization of the phase constancy equation (Eq. 4.4), we phase-

shift each coefficient by the dot-product of the magnified motion vector and the spatial

gradient of the local phase (Fig. 4.9d). This video is nearly artifact-free and looks

almost identical to the one produced using phase-based motion magnification (Fig. 4.9b)

suggesting that phase-shifting complex steerable pyramid coefficients produces better

results than advecting pixel color values. Second, we use NCORR’s motion vectors

to advect pixel color values in the same manner as described before (Fig. 4.9e). The

same kind of artifacts occur in smooth regions, where the motion estimate cannot be

accurately computed due to the aperture problem.

A possible reason for the improved synthesis in the complex steerable pyramid rep-

resentation is that it has an implicit notion of when components of the motion estimate

will be inaccurate. The coefficients in smooth regions and in orientations parallel to

edges, where components of the motion are inaccurate, have low-amplitude. Even if

they are phase-shifted excessively, they don’t substantially affect the motion-magnified

result. In addition, the complex steerable pyramid basis functions are bounded and can

only shift image features so far (Sec. 2.3.5).

� 4.4.4 Mammalian Tectorial Membrane

Motion magnification has been used to understand the mechanical properties of the

mammalian tectorial membrane (TM), helping lead to the recent discovery of its impor-

tance in frequency selectivity during hearing [69]. The mammalian tectorial membrane

is a hydrogel that overlies hair cells in the inner ear. When sound waves enter the

ear, they mechanically travel through it until they reach the inner ear or cochlea. The

final mechanical step in this process is a transmission of energy through the tectorial

126 CHAPTER 4. NOISE ANALYSIS AND APPLICATIONS IN SCIENCE AND ENGINEERING

Frame 5

Frame 10

(a) Experimental Setup
[Ghaffari et al. 2007]

(b) Vertical Displacement along
Marked Curved Lines in (d)

(d) Frames from Input Video
with Time Slice

(e) Frames from 20x Motion Magnified
Video with Time Slice

Space along Marked Curved Lines in (d)

0

-0.2

0.2

Ve
rti

ca
l D

is
pl

ac
em

en
t (

μm
)

Time Time

Frame 5

Frame 10

Frame 5 Frame 10Frame 7

(c) Power Spectrum vs. Noise Floor of
Motions at Marked Points in (d)

Po
w

er
 (d

B
)

10

-20

-50

Normalized Frequency Normalized Frequency
0 0.5 1

Signal Power Noise PowerMicroscope Objective

Vibrating
Support

Piezoelectric
vibrator

Artificial
endolymph

Stationary
Support

longitudinal (l)

ra
di

al
(r)

TM

0 0.5 1

20 μm

Figure 4.10: Exploring the mechanical properties of a mammalian tectorial membrane (TM)
with motion magnification and phase-based motion estimation. To simulate the effect of sound,
one side of the TM is vibrated while it is stroboscopically filmed under a microscope (a). Frames
and a time slice from this video are shown in (d). The vertical displacement along the blue line
in (d) is shown for three frames (b). The power spectrum of the motion signal in the direction
of most confidence at the marked points in (d) is shown with the computed noise floor (c). All
nonconstant motions above the noise floor are magnified 20x in the corresponding frames from
the motion magnified video are shown in (c). The blue line on top of the TM in (b) is warped
according to magnified motion vectors to produce the orange and purple lines in (c). ((a) from
Ghaffari et al. [36] and data from Sellon et al. [69].)

membrane to hair cells that convert the mechanical energy into electrical energy that

the brain can interpret.

Sellon et al. [69] performed experiments, in which they took tectorial membranes

from mutated mice exhibiting different phenotypes in frequency selectivity. They placed

the membranes on two supports and then vibrated the left side to simulate the hearing

process in the inner ear (Fig. 4.10a). The membranes were filmed stroboscopically to

make their fast motions appear slower. However, the videos were difficult to interpret

because the motions were too small to see. Frames and a time slice from one of the

Sec. 4.4. Results 127

videos they took are shown in Fig. 4.10d. We use our motion estimate to compute

motion vectors at every point on the membrane. In Fig. 4.10b, we plot the vertical

displacement of the top of the membrane from its mean location. This quantitatively

shows the shape of the traveling wave for several frames. We also use our noise analysis

to determine which temporal frequencies are above the noise floor. This is shown in

plots of the noise floor and power spectrum of the motions at a few points (Fig. 4.10c).

We then amplified all nonconstant motions above the noise floor by twenty times. In

practice, this was roughly everything above the DC component and less than half the

Nyquist frequency. The result is shown in Fig. 4.10e, in which the shape of the traveling

wave moving through the membrane is revealed.

In Sellon et al. [69], the authors used optical flow estimation from the videos to show

that the tectorial membranes from mice with different mutations have different traveling

waves shapes with differing numbers of nodes and decay rates. Motion magnification

made it possible for the authors to interpret these numbers and assisted in determining

whether the waves were radial or longitudinal. The different shapes of the traveling

waves coupled with the different mice phenotypes allowed Sellon et al. to determine

that the TM plays an important role in hearing frequency selectivity.

In other experiments, Sellon et al. reported using motion magnification to reject

data. Small tears in the membrane caused strange modes of wave propagation. Motion

magnification allowed the authors to identify these quickly and discard the torn samples.

� 4.4.5 Metamaterials

Acoustic metamaterials are artificially structured composites of materials that have the

special property that forcing vibrations within a range of temporal frequencies, the

bandgap, are dramatically attenuated as they travel. Recently, a class of metamaterials

was introduced in which the bandgap is tunable at use-time [87] (Fig. 4.11a). This can

128 CHAPTER 4. NOISE ANALYSIS AND APPLICATIONS IN SCIENCE AND ENGINEERING

be useful in making things like acoustic on and off switches.

Verifying that the metamaterial is designed properly is difficult. Evidence of the

successful attenuation of vibration at a single location can be shown with a mounted

accelerometer or a spot laser vibrometer. Mounting a bank of accelerometers onto the

metamaterial to densely measure its vibrations is tedious and could affect its dynamics.

The laser vibrometer is only able to measure the vibrations at the edges of the meta-

material. Visually verifying the attenuation with the naked eye is not possible because

the motions are too small to see.

Motion magnification and the techniques described in this chapter are the natural

solution to this problem. To demonstrate this, we conducted an experiment with a

metamaterial designed by Wang et al. [87]. We placed a forcing probe next to the

metamaterial and vibrated it at 50Hz, a frequency outside of the bandgap, and 100Hz,

a frequency at the center of the bandgap. We took two 500 FPS videos, one for each

case. A frame from the 50Hz video is shown in Fig. 4.11a.

We motion magnified each video in a 20Hz band of frequencies centered on its

corresponding forcing frequency. The motion magnified videos (Fig. 4.11c) show that

in the 50Hz case, the metamaterial moves a lot, allowing the vibrations to pass. In the

100Hz case, the motions dramatically attenuate with distance from the forcing probe,

showing that the metamaterial is working properly. The motion magnified videos are

also well-correlated with finite element analysis simulations of the metamaterial under

the forcings (Fig. 4.11b).

We use our motion estimation and noise analysis to further analyze the video of

the metamaterial forced at 100Hz. We compute the signal power, the noise power and

the signal-to-noise ratio (SNR) for every pixel in the local direction of most confidence

(Fig. 4.12a-c). This allows us to confirm quantitatively that the motions attenuate as

they propagate through the metamaterial.

Sec. 4.5. Discussion and Limitations 129

(a) Frame from one
input video (500 FPS)

(b) Simulated motions of metamaterial (c) Frames from motion
magnified videos

50 Hz Forcing

100 Hz Forcing

(40-60Hz), x80

(90-110 Hz), x250

Metamaterial

Max. Displacement0

Forcing

Figure 4.11: Motion magnification applied to a metamaterial with a forced vibration and a
comparison to simulation [87]. A probe forces a metameterial to vibrate and the result is filmed.
One frame from one of the input videos is shown (a). The simulated displacements with a zero
displacement boundary condition on the side of the metameterial touching the table is shown (b)
for a 50Hz forcing and a 100Hz forcing. Frames from the motion magnified video are shown in
(c). They match the simulation closely. Video filmed with the assistance of Donglai Wei and
Pai Wang in the Bertoldi Lab.

Some regions of the motion magnified video look similar to the synthetic example

presented earlier in this chapter, in which we motion magnified a noisy, motionless video

(Fig. 4.2). This suggests that some of the motions in this video are spurious. To handle

this, we use our technique for suppressing the magnification of noise (Sec. 4.3.3). We

use the signal and noise powers to compute an attenuation map (Fig. 4.12d), multiply

it by the local phase variations in every level of the complex steerable pyramid and

amplify. Areas with spurious motions where the SNR is low, such as the structures on

the right or bottom of the video, no longer get amplified (Fig. 4.12e,f).

� 4.5 Discussion and Limitations

In our analysis, we only model sensor noise. While we have demonstrated this is an

important source of errors and is worth understanding, other sources of noise could also

-60

-50

-40

-30

-20

-10

-60

-50

-40

-30

-20

-10

-10

0

10

20

30

0

0.2

0.4

0.6

0.8

1

dB

Time Time

dB

dB

(a) Noise Power (b) Signal Power

(c) Signal-to-Noise Ratio (d) Attenuation Map

(e) Motions Magnified x250 (90-110Hz)
without Weiner Filtering

(f) Motions Magnified x250 (90-110Hz)
with Weiner Filtering

-10 dB

-20 dB

-30 dB

-40 dB

-50 dB

-60 dB

-10 dB

-20 dB

-30 dB

-40 dB

-50 dB

-60 dB

30 dB

20 dB

10 dB

0 dB

-10 dB

1

0.8

0.6

0.4

0.2

0.0

Figure 4.12: Using our motion and noise estimates to suppress amplification of noisy regions.
The noise power, signal power and their ratio is shown (a-c). The optimal Wiener filter co-
efficient for each time series is shown at every pixel (d) and the result of doing plain motion
magnification vs. attenuating the motion signal by the Wiener filter coefficient is shown in a
single frame and timeslices (e-f). Video filmed with the assistance of Donglai Wei and Pai
Wang in the Bertoldi Lab.

Sec. 4.5. Discussion and Limitations 131

affect our motion analysis or visualization of tiny motions. Atmospheric turbulence

could make it difficult to see motions of objects that are very far from the camera. Other

sources of unwanted motions like subtle camera motions could also be problematic, but

it might be possible to separate them from interesting subtle motions if they occur in

different temporal bands.

We don’t model video compression in our analysis of sensor noise. When a video

is compressed, its noise characteristics change and this could affect the accuracy of our

noise estimation. However, cameras that produce uncompressed videos are getting more

common. In addition, our processing would still be useful in designing a physical motion

microscope consisting of a camera and a computer, in which motion magnification is

applied before video compression.

132 CHAPTER 4. NOISE ANALYSIS AND APPLICATIONS IN SCIENCE AND ENGINEERING

Chapter 5

Geometric Deviation Magnification

In this chapter, we focus on another type of ideal model: elementary geometries, such

as lines, circles or ellipses in space. Many objects, such as buildings, planets, bubbles

and more, appear to take the shape of these ideal geometries in images. However, the

deviations between these objects and their ideal geometries is often very interesting.

At first glance, this problem seems similar to magnifying tiny motions in videos. Can

you just look at the color changes (or local phase changes) along the ideal geometry

and amplify them? It turns out that this simple processing no longer works because

the changes in these quantities along the contour of an object in space are often due to

much more than just geometric deviations. They also arise because of things like texture

variations and illumination changes. We describe our solution to this problem and our

method of amplifying geometric deviations in single images. We also demonstrate the

usefulness of this algorithm on a wide array of challenging, natural images.1

� 5.1 Introduction

Many phenomena are characterized by an idealized geometry. For example, in ideal

conditions, a soap bubble will appear to be a perfect circle due to surface tension,

buildings will be straight and planetary rings will form perfect elliptical orbits. In real-

1This chapter is largely reproduced from our SIGGRAPH Asia 2015 paper Deviation Magnification:
Revealing Departures from Ideal Geometries with co-authors Tali Dekel, Donglai Wei, Frédo Durand
and William T. Freeman.

133

134 CHAPTER 5. GEOMETRIC DEVIATION MAGNIFICATION

(a) Input Image (b) Our Result
View I View II (for verfication only)

Views processed independently by Deviation Magnification

(c) Input Image (d) Our Result
p2

p1

p2p1

Figure 5.1: Revealing the sagging of a house’s roof from a single image. A perfect straight line
marked by p1 and p2 is automatically fitted to the house’s roof in the input image (a). Our
algorithm analyzes and amplifies the geometric deviations from straight, revealing the sagging
of the roof in (b). View II shows a consistent result of our method (d) using another image
of the same house from a different viewpoint (c). Each viewpoint was processed completely
independently.

ity, however, such flawless behavior hardly exists, and even when invisible to the naked

eye, objects depart from their idealized models. In the presence of gravity, the bubble

may be slightly oval, the building may start to sag or tilt, and the rings may have slight

perturbations due to interactions with nearby moons. We present Geometric Deviation

Magnification, a tool to estimate and visualize such subtle geometric deviations, given

only a single image as input. The output of our algorithm is a new image in which the

deviations from ideal are magnified. Our algorithm can be used to reveal interesting

and important information about the objects in the scene and their interaction with the

environment. Fig. 5.1 shows two independently processed images of the same house, in

which our method automatically reveals the sagging of the house’s roof, by estimating

its departure from a straight line.

Our approach is to first fit ideal geometric models, such as lines, circles and ellipses,

to objects in the input image, and then look at the residual from the fit, rather than the

fit itself. This residual is then processed and amplified to reveal the physical geometric

departure of the object from its idealized shape. The methods described in the previous

chapters follow the same paradigm, but magnify small motions over time, revealing

deviations from perfect stationarity in nearly still video sequence. Here, however, we

Sec. 5.1. Introduction 135

Input Image

(3) Analysis (4) Synthesis

Synthesize Magnified Image

Generate Deformation FieldSampling edge profiles orthogonal to L

x

p1 p2
pj

Filtered Deviation

(2) Canonical Stripe

L

p1

p2

pj

n

n

Sampling

n

Matting

nEdge profiles, S(pi), in the normal direction ()

S(p1) S(pj)

model edge

Sm S(p2)

(1) Geometry Fitting

L

p1

p2

p2p1

Intensity along the fitted line L

Deviation from Sm

Figure 5.2: Outline of Geometric Deviation Magnification: a parametric shape (e.g., a line
segment) is fitted to the input image (either automatically or with user interaction). The region
near the contour of the shape is sampled and transformed into a canonical stripe representation.
The alpha matte of the stripe is then computed using [49] and then fed into the analysis step.
In this step, deviation from the fitted shape is computed: the edge profiles S(pj) in the vertical
direction are sampled for each location pj along the stripe, and a model edge profile Sm is
estimated; the 1D translation between the edge profiles S(pj) and Sm is estimated to form the
deviation signal. The filtered deviation signal is then magnified by a factor of α and used to
generate a deformation field. The synthesized image is rendered accordingly and reveals the
spatial deviation from the fitted shape. In this case, the periodic ripples of the sand dune ridge
are revealed. (Image courtesy of Jon Cornforth.)

are interested in deviations over space from canonical geometric forms, using only a

single image. Our algorithm serves as a microscope for form deviations and is applicable

regardless of the time history of the changes. For example, we can exaggerate the sag

of a roof line from only a single photo without any prior knowledge on what it looked

like when it was built or how it changed over time. The important information is the

departure from the canonical shape.

Finding the departures from the fitted model is not trivial. They are often very

subtle (less than a pixel in some applications), and can be confused with non-geometric

sources of deviations, such as image texture on the object. Our algorithm addresses

these issues by combining careful sub-pixel sampling, reasoning about spatial aliasing,

and image matting. Matting produces an alpha matte that matches the object’s edge

to sub-pixel accuracy. Therefore, operating on the alpha matte allows us to preserve

the deviation signal while removing texture. The deviation signal is then obtained by

estimating small changes in the alpha matte’s values, perpendicular to the contour of

136 CHAPTER 5. GEOMETRIC DEVIATION MAGNIFICATION

the shape. The resulting framework is generic, and is independent of the number or

type of fitted shape models.

In many cases, the deviation signals are invisible to the naked eye. Thus, to verify

that they are indeed factual, we conducted a comprehensive evaluation using synthetic

data with known ground truth as well as controlled experiments using real world data.

We demonstrate the use of Geometric Deviation Magnification on a wide range of ap-

plications in engineering, geology and astronomy. Examples include revealing invisible

tilting of a tower, nearly invisible ripple marks on a sand dune and distortions in the

rings of Saturn.

� 5.2 Related Work

Viewed very generally, some common processing algorithms can be viewed as deviation

magnification. In unsharp masking, a blurred version of an image is used as a model

and deviations from the model are amplified to produce a sharpened image. Facial

caricatures are another example of this kind of processing, in which the deviations of a

face image from an idealized model, the mean face, are amplified [6].

As discussed in Chapter 2, motion magnification [24, 55, 85, 86, 89] uses the same

paradigm of revealing the deviations from a model. However, there is no need to detect

the model as the direction of time is readily given. In addition, motion magnification

assumes that objects are nearly static i.e. the appearance over time is assumed to be

nearly constant. In contrast, the technique discussed in this chapter amplifies deviations

from a general spatial curve detected in a single image. The type and location of this

curve depends on the application, and the appearance along it may change dramatically

posing new challenges for our new problem.

A recent, related method was presented for revealing and estimating internal non

parametric variations within an image [18]. This method assumes that the image con-

Sec. 5.3. Method 137

tains recurring patterns, and reveals their deviation from perfect recurrence. This is

done by estimating an “ideal” image that has stronger repetitions and a transformation

that brings the input image closer to ideal. In contrast, our method relies on parametric

shapes within the image, and thus can be applied for images that do not have recurring

structures. Our parametric approach allows our algorithm to accurately reveal very

tiny, nearly invisible deviations, which cannot be estimated by Dekel et al. [18].

Our method relies on detecting and localizing edges, a problem for which many

techniques have been proposed (e.g. [22, 26, 62]). One class of techniques uses the

observation that edges occur at locations of steepest intensity and are therefore well-

characterized by the peak of derivative filters of the image (e.g. [10, 31, 59]). More

recently, several authors have applied learning techniques to the problem of edge detec-

tion to better distinguish texture from edges (e.g. [20, 21, 50]). Because the deviations

in the images we seek to process are so small, we obtained good results adopting a flow-

based method, similar to Lucas and Kanade [56]. Since texture variations can influence

the detected edge location, we used image matting [49] to remove them.

� 5.3 Method

Our goal is to reveal and magnify small deviations of objects from their idealized ele-

mentary shapes given a single input image.

� 5.3.1 Overview

There are four main steps in our method, illustrated in Fig. 5.2. The first step of

our algorithm is to detect elementary shapes, i.e., lines, circles, and ellipses, in the

input image. This can be performed completely automatically by applying an off-the-

shelf fitting algorithm (e.g., [62]) to detect all the elementary shapes in the image.

Alternatively, it can be performed with user interaction as discussed in Section 5.3.5.

138 CHAPTER 5. GEOMETRIC DEVIATION MAGNIFICATION

The detected shapes serve as the models from which deviations are computed.

With the estimated models in hand, we opt to perform a generic spatial analysis,

independent of the number and type of fitted shapes. To this end, the local region

around each shape is transformed to a canonical image stripe (Fig. 5.2(3)). In this

representation, the contour of the shape becomes a horizontal line and the local normal

direction is aligned with the vertical axis. To reduce the impact of imperfections that

are caused by image texture and noise, a matting algorithm is applied on each of the

canonical stripes. This step significantly improves the signal-to-noise ratio, and allows

us to deal with real world scenarios, as demonstrated in our experiments.

Each canonical matte is analyzed, and its edge’s deviation from a perfectly horizontal

edge is estimated. This is done by computing 1D translations between vertical slices

in the matted stripe, assuming these slices have the same shape along the stripe. For

each canonical matte, this processing yields a deviation signal that corresponds to the

deviation from the associated model shape in the original image, in the local normal

direction. Depending on the application, the deviation signals may be low-passed or

bandpassed with user-specified cutoffs, allowing us to isolate the deviation of interest.

Lastly, the computed deviation signals are visually revealed by rendering a new

image in which the deviations are magnified. Specifically, a 2D deformation field is

generated based on the 1D computed deviation signals, and is then used to warp the

input image. We next describe these steps in more detail.

� 5.3.2 Deviations from a Parametric Shape

Consider a synthetic image I(x, y), shown in Fig. 5.3(a), which has an edge along

the x-axis as a model of a matted image stripe. This edge appears to be perfectly

horizontal, but actually has a subtle deviation from straight (shown twenty times larger

in Fig. 5.3(b)). Our goal is to estimate this deviation signal f(x), at every location x

Sec. 5.3. Method 139

along the edge.

To do this, we look at vertical slices or edge profiles of the image I, e.g. the intensity

values along the vertical lines A or B in Fig. 5.3(b). We define the edge profile at location

x as

Sx(y) := I(x, y). (5.1)

We assume that with no deviation (i.e., ∀x f(x) = 0), the edge profiles would have been

constant along the edge, i.e., Sx(y) = S(y). The deviation f(x) causes this common

edge profile to translate:

Sx(y) = S(y + f(x)). (5.2)

Now, the question is how to obtain f(x) given the observations Sx(y). First, the

underlying common edge profile, S(y) is computed by aggregating information from

all available edge profiles. We observe that since f(x) is small, the mean of the edge

profiles can be used to compute S(y). Assuming that the image noise is independent

at every pixel, the image I is given by

I(x, y) = S(y + f(x)) + n(x, y) (5.3)

where n(x, y) is the image noise. A first-order Taylor expansion of S(y+ f(x)) leads to

I(x, y) ≈ S(y) + f(x)S′(y) + n(x, y). (5.4)

Thus, the mean over x is given by

1

Nx

∑
x

I(x, y) ≈ S(y) + µfS
′(y) +

1

Nx

∑
x

n(x, y) (5.5)

where the µf is the mean of f(x) over x and Nx is the number of pixels in the x

140 CHAPTER 5. GEOMETRIC DEVIATION MAGNIFICATION

direction. The new noise term is a function only of y and has less variance than the

original noise n(x, y). Because f(x) is small, its mean µf is also small, hence using the

Taylor expansion again yields:

S(y) + µfS
′(y) ≈ S(y + µf). (5.6)

Thus, the average edge profile approximates the common edge profile up to a constant

shift of µf . This shift is insignificant since it only reflects a constant shift in f(x), i.e.,

an overall translation of the object of interest. Moreover, for many applications, such

global translation is filtered out by band-passing the deviation signal. Therefore, for

convenience, we treat this translated edge profile as the original edge profile S(y). In

practice, to be more robust to outliers in the edge profiles, we use the median instead

of the mean.

With S(y) in hand, the deviation signal f(x) is then obtained by estimating the

optimal 1D translation, in terms of least square error, between the S(y) and each of

the observed ones. In the discrete domain, this takes the form of:

arg min
∑
y

(I(x, y)− S(y)− f(x)S′(y))2, (5.7)

which leads to:

f(x) ≈
∑

y(I(x, y)− S(y))S′(y)∑
y S
′(y)2

(5.8)

As can be seen from the equation, pixels for which S′(y) = 0 do not contribute at all

to the solution. Our formulation is similar to the seminal method [56] used for image

registration.

Sec. 5.3. Method 141

(a) Input Image (b) Ground Truth (c) Edge Profiles (d) Our Mag. Result

y-axis

In
te

ns
ity

A

A

B

B

Figure 5.3: Synthetic Example: (a) The input image, a horizontal edge in the middle of the
image carries a 0.1 pixel sinusoidal perturbation, f(x) = 0.1 sin(2πωx). (b) Magnification of
the ground truth perturbation by a factor of 20. (c) Two edge profiles obtained by sampling the
intensity values in (b) along the green (A) and red (B) vertical lines, respectively. The edge
profiles are related by 1D translation. (d), the small perturbation in the input (a) are revealed
by our method.

� 5.3.3 Canonical Stripe Representation

The region in the vicinity of each fitted shape is warped into a canonical stripe. This

representation allows us to treat any type of fitted shape as a horizontal line. For

an arbitrary geometric shape, let {~pi} be points sampled along it. The shape has a

local normal direction at every point, which we denote by ~n(~pi). For each point, the

image is sampled in the positive and negative normal direction ±n(~pi), using bicubic

interpolation to produce the canonical stripe. This sampling is done at a half pixel

resolution to prevent spatial aliasing (which may occur for high frequency diagonally

oriented textures). To prevent image content far from the shape from affecting the

deviation signal, we sample only a few pixels (3-5 pixels) from the shape. In the

resulting stripe, the edge is now a horizontal line and the vertical axis is the local

normal direction ~n(pi).

In many cases, the image may be highly textured near the shape’s contour, which

can invalidate our assumption of a constant edge profile (Eq. 5.2). To address this

problem, we apply the matting algorithm of Levin et al. [49] on the sampled image

stripe. The output alpha matte has the same sub-pixel edge location as the real image,

142 CHAPTER 5. GEOMETRIC DEVIATION MAGNIFICATION

but removes variations due to texture and turns real image stripes into ones that more

closely satisfy the constant edge profile assumption. This can be seen in Fig. 5.2(2),

where the similarity between the matted stripe and the synthetic image shown in Fig. 5.3

is much stronger than between the synthetic image and the canonical stripe.

The input to the matting algorithm is the canonical stripe and an automatically

generated mask, in which pixels on one side of the contour are marked as foreground

and pixels on the other side as background. This mask provides the algorithm with a

lot of information about where the edge is. This essential step substantially increases

the signal to noise ratio and allows us to deal with challenging, real world data as

demonstrated in our experimental evaluation (e.g., see Fig. 5.5(d)).

The deviation signal is computed on the estimated alpha matte (as described in

Sec. 5.3.2), and therefore represents the amount that the actual shape deviates from

the ideal shape in the ideal shape’s local normal direction.

Spatial Anti-Aliasing For some images (e.g. astronomy), spatial aliasing in the input

image can makes its way into the canonical stripe and then the deviation signal mas-

querading as a true signal. We address this problem by applying a dedicated spatial

anti-aliasing post filter to remove these components. An example is shown in Fig. 5.4,

in which we used our method to amplify the deviations from all straight lines in a pic-

ture of Saturn’s rings. Without the anti-aliasing filter, there is a sinusoidal deviation

on all of the processed lines (Fig. 5.4b). Our filter removes this artifactual deviation

(Fig. 5.4c).

Theoretically, spatial aliasing can occur at any frequency. However, we can compute

it as it depends on the edge’s orientation. Once computed, we filter out only that single

frequency. The full derivation of our anti-aliasing filter is described in Section 5.6 at

the end of this chapter. Note that our anti-aliasing filter may not have a significant

impact on all images since reasonable camera prefilters often prevent aliasing. However,

Sec. 5.3. Method 143

(a) Input Image (b) W/o Anti-aliasing (c) W/ Anti-aliasing

Figure 5.4: Deviations of Saturn’s rings amplified without and with the aliasing post-filter.
Without it, there is a sinusoidal perturbation along the rings (b), but our post-filter reveals that
it is actually just spatial aliasing in the input image (c). (Image courtesy of NASA.)

we apply it as sanity check to lines in all images.

� 5.3.4 Synthesis

Now, that we have a filtered deviation signal for every fitted or user-chosen contour in

the image, we seek to generate a new image, in which the objects carrying the deviations

are warped, but other image content is not. We do this by first computing a 2D warping

field, ~V (x, y) = {u(x, y), v(x, y)} that is constrained to match the amplified deviation

signal at sampled locations along the contours. The flow field at the remaining pixels

is determined by minimizing an objective function that aims to propagate the field to

nearby pixels of similar color, while setting the field to zero far from the contours.

By construction, the deviation signal is oriented in the normal direction to the

contour at each point. At a pixel ~p := (x, y) sampled along the sth contour, we set the

warping field to be equal to

~V (~p) = αfs(~p)~ns(~p) (5.9)

where α is an amplification factor, fs(~p) is the deviation signal of the sth contour at

144 CHAPTER 5. GEOMETRIC DEVIATION MAGNIFICATION

location ~p and ns(~p) is the local normal direction of the sth contour at ~p. Every pixel

that touches a contour will introduce a hard constraint of this form. If a pixel is on two

contours, we average the constraints.

The hard constraints on the warping field imposed by Eq. 5.9 give sparse information

that must be propagated to the rest of the image. We follow the colorization method

of Levin et al. [48], and define the following objective function for the horizontal

component u (the same objective is defined for the vertical component)

arg minu
∑
~p

(u(~p)−D(~p)
∑

~q∈N(~p)

w~p~qu(~q)

2

, (5.10)

where ~p and ~q are coordinates in the image, N(~p) is the eight-pixel neighborhood

around ~p, w~p~q = exp−‖I(~p)−I(~q)‖
2/2σ2

is a weighting function measuring the similarity of

neighboring pixels and D(~p) is a weighting function that measures the distance from the

point ~p to the nearest point on a contour (computed using the distance transform). The

inner sum in the objective function is the average warping field of all pixels of similar

color to ~p in its neighborhood. The term D(~p) shrinks at pixels far from contours. At

pixels far from contours, D(~p) is close to zero and the summand becomes u(~p)2, which

encourages the warping field to go to zero. Since the objective function is a least squares

problem, it can be minimized by solving a sparse linear system.

Once the warping field is estimated, the rendered image is then given by inverse

warping: Îdev = I(x+ u, y + v).

� 5.3.5 User Interaction

While it is possible to perform our processing automatically, we give the user the ability

to control which objects or contours are analyzed, what components of the deviation

signal should be amplified and what parts of the image should be warped.

Sec. 5.3. Method 145

A simple GUI is provided for users that want to pick specific objects to amplify.

Because it is tedious to specify the exact location of a contour in the image, the user

is only required to give a rough scribble of the object. Then, an automatic fitting

algorithm is used to find the location of all elementary shapes in the object and we use

the one that is closest to what the user scribbled [62]. We show an example of a user

selecting a line on top of a bookshelf in the supplementary material.

For a contour specified by points {~pi}, the raw deviation signal f(~pi) can contain

signals that correspond to several different types of deviations. In addition, the DC

component of the signal corresponds to an overall shift of the entire object and we may

want to adjust or remove it. Noise may also be present in the deviation signal. For these

reasons, we apply bandpass filtering to the raw signal f(x). The user can specify the

cutoffs of the filter depending on the application. In the sand dune example (Fig. 5.2),

we removed the very low and high frequencies to remove noise and the overall curvature

of the dune. And in the house example (Fig. 5.1), we only amplified the low frequencies,

setting the DC to make the sure the deviation signal was zero at the endpoints, so they

did not get warped. The user also specifies an amplification factor indicating the amount

by which the deviations should be magnified.

For examples in which the fitted shapes are straight lines, we allow the user to

specify a bounding box around the contour of interest (see Fig. 5.5(b)) to ensure that

everything within the bounding box gets warped according to the deviation signal. The

diagonal of the bounding box is projected onto the fitted line. In the direction parallel

to the line, the deviation signal is extrapolated to the ends of the box using quadratic

extrapolation of the points close to the end. For all other points in the bounding box,

we modify the hard constraints of the above objective function. Specifically, for each

point ~p in the bounding box, we find the nearest point on the contour ~q and set the

warping field at ~p to be the same hard constraint as ~q. This ensures that all objects

146 CHAPTER 5. GEOMETRIC DEVIATION MAGNIFICATION

(e) Amplified x7 (no matting)

(a) Input Image

(c) Signal without matting

(f) Amplified x7 (with matting)

Deviation Signal
(d) Signal with matting

(b) User Interaction

Figure 5.5: Revealing the bending of a weighted steel barbell and a comparison of our method
with and without matting. An image stripe is taken from the input image (a) and the deviation
signal is overlayed on the image stripe without matting (c) and with it (d). The deviations in the
weightlifter’s barbell are amplified without matting (e) and with matting (f). (Image courtesy of
Jay Smidt.)

within the bounding box get warped in the same way.

Sec. 5.4. Results 147

Input Interaction

View 1 View 2

Our Result Input Interaction Our Result

Area around tower

Figure 5.6: Elizabeth Tower (Big Ben) becomes the leaning tower of London. We process the
two images of the tower independently. Parallel vertical lines in the input image are used
to compute the vanishing point of the input images (only crops of which are shown here). In
(b), the user specifies the lines that go through the vanishing point (marked in red) and a region
of interest (marked in semi-transparent yellow). Our method computes the deviation from the
fitted line, and synthesizes a new image, in which the deviation is exaggerated.

� 5.4 Results

The results were generated using non-optimized MATLAB code on a machine with a

quad-core processor with 16 GB of RAM. Our processing times depend on the number

of shapes processed and the image’s resolution. It took twenty seconds to produce our

slowest result, in which 180 lines were processed in a 960× 540px image.

In some examples, we corrected for lens distortion to prevent it from being inter-

preted as deviations from straight lines. This is done using the commercial software

DxO Optics Pro 10 [23], which automatically infers the lens type from the image’s

metadata, and then undoes the distortion using this information.

We present our results on real images, and perform a qualitative and quantitative

evaluation on both synthetic and real data.

Geometric Deviation Magnification in the World We applied our algorithm on natural

images, most of which were taken from the Web. These images are of real world objects,

which have highly textured edges making them challenging to process.

In Fig. 5.1, we reveal the sagging of a house’s roof by amplifying the deviations

from a straight line fitted to the upper part of the roof. To validate our results, we

148 CHAPTER 5. GEOMETRIC DEVIATION MAGNIFICATION

processed two different images of the house in which the roof is at different locations of

the image (Fig. 5.1(a,c)). As can be seen in Fig. 5.1(b,d), the roof’s sagging remains

consistent across the different views. Revealing this subtle sagging of a building’s roof

is a useful indication of when it needs to be repaired. Because the house’s roof spans

such a large part of the image, the effect of lens distortion may not be negligible. To

avoid this problem, we used DxO Optics Pro 10 to correct for lens distortion.

In Fig. 5.2, we reveal the periodic ripple pattern along the side of a sand dune by

amplifying its deviations from a straight line by ten times. Here, even the intensity

variations along the line show the deviations. The raw signal was bandpassed in order

to visualize only the ripple marks and not the overall curvature of the dune. Knowing

what these imperceptible ripple marks look like may have applications in geology [60].

In Fig. 5.5, we reveal the bending in a steel barbell due to the weights placed on

either end by amplifying the low frequencies of the deviation from a straight line. In

addition to specifying the line segment to be analyzed, the user also specifies a region of

interest, marked in green in Fig. 5.5(b), specifying the part of the image to be warped.

In this example, the necessity of matting in our method is demonstrated. Without

matting, the color difference between the darker and lighter parts of the barbell causes

a shift in the raw deviation signal (Fig. 5.5(c)), which causes the barbell to appear

wavy after amplification (Fig. 5.5(e)). With matting, we are able to recover the overall

curvature of the barbell and visualize it (Fig. 5.5(d,f)).

Civil engineers have reported that Elizabeth Tower (Big Ben) is leaning at an angle

of 0.3 degrees from vertical [37]. Our algorithm reveals this visually in two indepen-

dently processed images of the tower from different viewpoints (Fig. 5.6). Here too,

the consistency across views supports our results. In this example, instead of directly

using the edges of the tower as the fitted geometry, we use vertical lines going through

the vanishing point. We find them by using a technique from Hartley and Zisserman

Sec. 5.4. Results 149

In
pu

t
O

ur
 R

es
ul

t

time

(e) Ball Trajectory

0

0

(c) (d)

(f) Raw Deviation Signal

(a) (b)

Figure 5.7: Revealing the distortion and vibrations of a ball when it hits a table. (a-b) two
frames from the input video that correspond to the red and green locations of the ball in (e),
respectively. Our method computes the deviation of the ball from a perfect circle in each of the
frames independently. (c-d), the rendering of (a) and (b), respectively, where the deviation is
x10 larger. (e), the raw deviation signal, counterclockwise along the ball from 0 to π.

[39]. In order to amplify only the tilting of the tower (which corresponds to low fre-

quencies in the deviation signal), while ignoring deviations due to bricks on the tower

(high frequencies), we lowpass the deviation signal. The filtered signal is then extrap-

olated to the entire user-specified bounding box to warp the entire tower. The size of

the deviations for lines on the tower are on average 2-3x larger than the deviations of

lines on other buildings indicating that we are actually detecting the tilt of the tower.

Visualizing the subtle tilt of buildings may give civil engineers a new tool for structural

monitoring. Lens distortion is corrected as a preprocessing step (see the supplementary

video for our results w/o lens distortion).

150 CHAPTER 5. GEOMETRIC DEVIATION MAGNIFICATION

Geometric Deviation Magnification in Videos In the following examples, we tested our

method on several video sequences. Specifically, our method was applied to each of the

frames independently, without using any temporal information. The fitted shapes

in each frame were detected automatically. The temporal coherence of the amplified

structures, processed independently for each frame, validates our results. For some of

the examples, we were also able to compare our results to motion magnification applied

to stabilized versions of the sequences [85]. Our results and comparisons on the entire

sequences are included in the supplementary material.

The video ball is a high speed video (13,000 FPS) of a lacrosse ball hitting a black

table in front of a black background. The trajectory of the ball is illustrated in Fig. 5.7,

and two of the frames that correspond to the red and green locations of the ball are

shown in Fig. 5.7(a,b), respectively. We applied our framework to reveal the distortion

in the shape of the ball, i.e., deviation from a perfect circle, when it hits the ground

and travels upward from impact.

Fig. 5.7(c,d) shows our rendering of the two input frames where the deviation is ten

times larger. Fig. 5.7(f) shows the raw deviation signal for the moment of impact (green

location) as a function of the angle. Because the raw deviation signal appears to have

most of its signal in a low frequency sinusoid, we apply filtering to isolate it to remove

noise. Our results on the entire sequence not only reveals the deformation of the ball

at the moment it hits the ground, but also reveals the ball’s post-impact vibrations.

For comparison, we apply motion magnification with and without stabilizing the input

video. Without stabilization, motion magnification fails because the ball’s displacement

from frame to frame is too large. With stabilization, the results are more reasonable,

but the moment of impact is not as pronounced. This is because the motion signal

has a temporal discontinuity when the ball hits the surface that is not handled well by

motion magnification. In contrast, deviation magnification handles this discontinuity,

Sec. 5.4. Results 151

(a) Input (b) Magnified x20
Figure 5.8: Revealing the vibrations of a bubble from a single frame. An input frame of two
bubbles (a) was used to produce our magnification result (b) in which the low frequency deviations
of each bubble were amplified. The shapes were automatically detected. No temporal information
was used.

as each frame is processed independently.

Bubbles is a high speed video (2,000 FPS) of soap bubbles moving to the right

shortly after their generation (Fig. 5.8(a-b)). Surface tension causes the bubbles to

take a spherical shape. However, vibrations of the bubble and gravity can cause the

bubble’s shape to subtly change. In this sequence, we automatically detect the best

fit circles for the two largest bubbles and amplify the deviations corresponding to low

frequencies independently in each frame. This allows us see both the changing dynamics

of the bubble and a consistent change in the bubble’s appearance that may be due to

gravity.

For comparison, we applied motion magnification to a stabilized version of the se-

quence. We used the fitted circles to align the bubbles in time and then applied motion

magnification (similar to [24]). The magnified bubbles were then embedded back in the

input video at their original positions using linear blending at the edges. This careful

processing can also reveals the changing shape of the bubbles, but it does not show the

deviations from circular that do not change in time, such as the effect of gravity on the

bubble.

152 CHAPTER 5. GEOMETRIC DEVIATION MAGNIFICATION

Frame 25 Frame 29
(b) InputFitted Lines

(d) Stabilization + Motions Magnified x8

Frame 21

(c) Deviations Magnified x8

F Ring

(a) Saturn’s F Ring

Figure 5.9: Geometric Deviation Magnification independently applied to each frame of a time-
lapse of Saturn’s moon interacting with its ring. Three frames from the timelapse (b) are pro-
cessed using our new deviation magnification method (c) and using stabilization plus motion
magnification (d). The lines used to do the stabilization and the fitting are shown in (b). The
green arrows denotes the most salient feature after amplification. The full sequence is in the
supplementary material. (Images courtesy of NASA.)

Fig. 5.9(b) presents three frames from a 72 frame timelapse (captured by the Cassini

orbiter), showing Saturn’s moon Prometheus interacting with Saturn’s F ring. The

frames were aligned by NASA such that the vertical axis is the distance from Saturn,

which causes the rings to appear as horizontal lines. For every frame in the video, we

amplified the deviations from the best-fit straight lines (marked in red in Fig. 5.9(b)).

This reveals a nearly invisible, temporally consistent ripple (Fig. 5.9(c)). These kind

of ripples are known to occur when moons of Saturn approach its rings [77]. Applying

our technique on such images may be useful for astronomers studying these complex

interactions, and even might reveal new undiscovered gravitational influences in the

rings.

We also applied motion magnification to a stabilized version of the sequence. As can

be seen in Fig. 5.9(d), even with stabilization, magnifying changes over time produces

a lot of unwanted artifacts due to temporal changes in the scene unrelated to the main

ring. It is the spatial deviations from the model shape that are primarily interesting in

Sec. 5.4. Results 153

(a) Input (b) Mag. x20 (d) Input (c) Warping Field

Candle

-0
.2

 p
x

0.
2

px

(e) Mag. x3

Smoke

Figure 5.10: Revealing the distortions in a background of straight lines caused by heated air
and sinusoidal instabilities of smoke flow in a single image. In candle, the deviation from
every straight line is amplified twenty times. Both the amplified result and the overlayed vertical
warping field are shown. In smoke, a single line is fitted to the input and the result is magnified
three times.

this example rather than the changes in time.

In candle, we use our method to reveal heated air generated by a candle flame from

a single image (Fig. 5.10(b-c)). To do so, we estimate the deviations from every straight

line, automatically fitted to the background. As can be seen in Fig. 5.10(b-c), the twenty

times amplified image, and the warping field reveal the flow of the hot air. Visualizing

such flow has applications in many fields, such as aeronautical engineering and ballistics.

Other methods of recovering such flow such as background-oriented Schlieren [38] and

refractive wiggles [91], analyze changes over time. While these methods are restricted

to a static camera, our method is applied to every frame of the video independently

and is able to reveal the heated air even when the camera freely moves. In addition,

the bumps in the background are revealed as well. Note that spatially stabilizing such

a sequence is prone to errors because the background is one-dimensional, the camera’s

motions are complex and the candle and background are at different depths.

A similar result is shown in Fig. 5.10(d-e) where a column of rising smoke appears

154 CHAPTER 5. GEOMETRIC DEVIATION MAGNIFICATION

Figure 5.11: A frame from our interactive demo showing a bookshelf buckling under weight when
deviations from a straight line are amplified.

to be a straight line. By amplifying the deviations from straight, we reveal sinusoidal

instabilities that occur in the smoke’s flow as it transitions from laminar to turbulent

[79]. Here too, the processing is done on each frame independently.

Interactive Demo We have produced an interactive demo that can process a 200x150

pixel video at 5 frames per second (Fig. 5.11). The user roughly specifies the location

of the line at the first frame, which is then automatically snapped to a contour. Our

demo is interactive because we only process a single shape. A video of this demo to

show the buckling of a bookshelf under weight when the deviations from a straight line

are amplified is provided in the supplementary materials.

� 5.4.1 Synthetic Evaluation

To evaluate the accuracy of our method in estimating the deviation signal, we tested

it on a set of 7500 synthetic images. The images had known subtle geometric devia-

tions, so that we could compare our result with the ground truth. The images were

200×200 pixels with a single edge (see Fig. 5.12(a)). We varied the exact deviation,

the orientation, the sharpness of the edge, the noise level and the texture on either

Sec. 5.4. Results 155

side of the edge (Fig. 5.12(a-b)). Specifically, ten different cubic spline functions with

a maximum magnitude of 1 pixel were used as the deviation shapes. Ten orientations

were sampled uniformly from 0◦to 45◦with an increment of 5◦. The edge profile was set

to be a sigmoid function sigmf(δ,x) = 1/(1 + exp (−δx)) with δ = {0.5, 2, 5}).

We first performed an evaluation on images without texture. We also tested the

effect of sensor noise by adding white Gaussian noise with standard deviation σ =

{0.02, 0.05, 0.1}. In Fig. 5.12(c), we show the error of our algorithm, which grows only

linearly with the noise-level even when it is 25 intensity levels (σ = 0.1).

In Fig. 5.12(d), we present the mean absolute error between the estimated devi-

ation signal and the ground truth as a function of the line orientation, for the three

edge sharpness levels. The average error is very small at 0.03px, 3% of the maximum

magnitude of the ground truth deviation signal (1 px). As expected, smoother edge

profiles lead to smaller error due to less aliasing.

To quantify the effect of texture and the ability of matting to remove it, we tested

our method on textured synthetic images. We used six different textures to perform

experiments in which only one side of the edge was textured (Fig. 5.12(e)). We also

performed experiments in which both sides were textured using all 15 combinations

of the six textures (Fig. 5.12(f)). Fig. 5.12(e-f) show the mean absolute error with

and without matting for one-sided, half-textured images and two-sided, fully-textured

images respectively. Without matting, the average error of our algorithm is about 0.3px

for the half-textured examples and 1.5px for the fully-textured examples. With matting,

the average errors shrink by ten times and are only 0.03px and 0.1px respectively. The

highest errors are on a synthetic image, in which both sides of the image are of similar

color. See the supplementary material for more details.

156 CHAPTER 5. GEOMETRIC DEVIATION MAGNIFICATION

(e) Error: Half-Textured (f) Error: Fully-Textured

(a) Synthetic Image (b) Variations of Synthetic Images

Deviation (x10) SharperOriented Noisy Half-Textured Fully-Textured

(d) Error: Orientation and Sharpness (δ)(c) Error: Noise Level

Orientation (degree)

δ=0.5
δ=2
δ=5

E
rr

or
 (p

x)

0.10

0.05

0.00
0 15 30 45

Noise Level (px)

E
rr

or
 (p

x)

0.10

0.05

0.00
0 0.02 0.05 0.1

FT1 FT15FT5 FT10

With Matting
Without Matting

E
rr

or
 (p

x) 1.0

0.5

0.0

1.5

HT1 HT2 HT3 HT4 HT5 HT6

With Matting
Without Matting

E
rr

or
 (p

x)

0.2

0.1

0.0

0.3

0.4

Sample

Figure 5.12: Quantitative evaluation on synthetic data: (a), an example untextured image and
its amplified version. (b), the data includes images with lines in different orientations, sharpness
levels, noise levels and textures. (c), the error as a function of additive Gaussian noise. (d),
the mean absolute error in the deviation signal computed by our method, as a function of the
orientation, for different sharpness levels. (e), the error w/ and w/o matting for half-textured
images (shown below). (f), the error w/ and w/o matting for fully-textured images.

Sec. 5.5. Discussion and Limitations 157

� 5.4.2 Controlled Experiments

We validated the accuracy of our method on real data by conducting two controlled

experiments. In the first experiment, we physically measured the deviations from a

straight line of a flexible wooden board. The board was affixed on top of two rods on a

table using C-clamps (Fig. 5.13). The base of the table served as the reference straight

line. The distance from the bottom of the table to the top of the board was measured

across a 29 cm stretch of it, in 2 cm increments using digital calipers (the markers in

Fig. 5.13(a)). The deviation signal from a straight line of the image of the wooden

board is very similar to the caliper measurements (Fig. 5.13(b)).

In the second experiment, we affixed a stick onto a table and covered it with a

sheet, with a pattern of ellipses on it (see Fig. 5.14(a)). The stick caused the sheet to

slightly deform, which subtly changed the shape of some of the ellipses. To reveal the

deformation, all the ellipses in the input image were automatically detected, and our

method was applied to magnify the deviations of each ellipse from its fitted shape. A

bandpass filter was applied to the deviation signal to remove overall translation due to

slight errors in fitting and to smooth out noise. As can be seen in Fig. 5.14(d)), only

ellipses on or near the stick deform significantly, which reveals the stick’s unobserved

location.

� 5.5 Discussion and Limitations

We have shown results on lines, circles and ellipses. However, except for the geometry

fitting stage, our algorithm can generalize to arbitrary shapes. If a user can specify the

location of a contour in an image, our algorithm can be applied to it. For higher-order

shapes such as splines, it can be unclear what should be a deviation and what should

be part of the fitted model.

While we are able to reveal a wide variety of phenomena with our method, there are

158 CHAPTER 5. GEOMETRIC DEVIATION MAGNIFICATION

(a) Experimental Setup

(b) Deviation from Straight line

Caliper Ours

Space (x)

Wooden Board Position MarkerCaliper Measurement

30.6mm

31.5mm

32.4mm

98.1px

101.0px

104.0px

Figure 5.13: Deviation from straight lines, controlled experiment. (a) The experimental setup,
which is also the image used as an input to our framework. The measurements from digital
calipers between the two wooden boards at each position marker and the deviation signal from
our method are shown (b).

circumstances in which our algorithm may not perform well. If the colors on both sides

of the shape’s contour are similar, we may not be able to compute its sub-pixel location.

This is an inherent limitation in matting and edge localization. In some cases, changes

in appearance along the contour may look like geometric deviations (e.g. a shadow on

the object that is the color of the background). In this case, the deviation signal may

have a few outliers in it, but otherwise be reliable.

Our method may also not be able to distinguish artifacts caused by a camera’s

rolling shutter from a true geometric deviation in the world. If the camera or object

of interest is moving, the camera’s rolling shutter could cause an artifactual deviation

present in the image, but not in the world. Our method would pick this up and “reveal”

it. Bad imaging conditions such as low-light or fast-moving objects could cause a noisy

image with motion blur, which would be difficult for our system to handle.

(a) Input (b) Source of Deformation

(c) Fitted Ellipses (automatically) (d) Magnification x7

Figure 5.14: Deviation from ellipses, controlled experiment. A sheet with ellipses on it is draped
over a table with a stick on it (a-b). The deviation from every ellipse is automatically fitted (c)
and then amplified by seven times (d) revealing the unobserved location of the stick.

160 CHAPTER 5. GEOMETRIC DEVIATION MAGNIFICATION

� 5.6 Anti-aliasing filter

We describe in more detail our anti-aliasing post-filtering step. To determine which

frequencies correspond to aliasing, we perform the following frequency analysis on a

continuous image of a straight line.

Let I(x, y) be a continuous image of a step edge of orientation θ (Figure 5.15(a)).

If the edge profiles along the formed line L are constant, the 2D Fourier transform of

the image F (ωx, ωy) is a straight line of orientation θ + π/2 in the frequency domain

(Figure 5.15(b)). When the continuous scene radiance is sampled, a periodicity is

induced in F (ωx, ωy). That is, the Fourier transform of the discrete image ID(x, y) is

equal to

F(ID(x, y)) =
∞∑

n=−∞

∞∑
m=−∞

F (ωx − nfs, ωy −mfs) (5.11)

where fs is the spatial sampling rate of the camera. This periodicity creates replicas in

the Fourier transform that may alias into spatial frequencies along the direction of the

edge (Fig. 5.15(d)). Our goal is to derive the specific frequencies at which these replicas

occur.

Since the deviation signal is computed for the line L, we are only interested in

aliasing that occurs along it. Thus, we derive the 1D Fourier transform of the inten-

sities on the discrete line LD via the sampled image’s Fourier transform F(ID(x, y)).

Since F (ωx, ωy) is non-zero only along the line perpendicular to L, the discrete Fourier

transform F(ID(x, y)) contains replicas of this line centered at n(fs, 0) + m(0, fs) for

integer n and m (from Eq. 5.11). Using the slice-projection theorem, the 1D Fourier

transform of LD is given by the projection of F(ID(x, y)), i,e, the image’s 2D Fourier

transform, onto a line with orientation θ that passes through the origin. This means

that the replica’s project all of their energy onto a single point on LD at location

nfs cos(θ) +mfs sin(θ), (5.12)

Sec. 5.6. Anti-aliasing filter 161

(c) Discrete Edge

-60

-50

-40

-30

-20

-10

0

10

20

30

Replicas

Aliasing
Frequency

30 dB

 -60 dB

Frequency (ωx)

Fr
eq

ue
nc

y
(ω

y)

fs-fs

-fs

fs

0

0

(a) Continuous Edge (b) Fourier Transform of (a)

LD

-60

-50

-40

-30

-20

-10

0

10

20

30

30 dB

 -60 dB
Frequency (ωx)

Fr
eq

ue
nc

y
(ω

y)

L

C
on

tin
uo

us
D

is
cr

et
e

(d) DFT of (c)

FT

DFT

Figure 5.15: Causes of spatial aliasing and how to find the aliasing frequency. (a), a continuous
edge and its discretization (c); (b,d), the Fourier transforms of (a,c) respectively. (d), replicas
in the Fourier transform cause spatial aliasing along the line L.

which gives us the value of the aliasing frequencies along the image slices. The first and

usually most dominant such frequency occurs when exactly one of n or m is equal to

one and has value

fs min(| cos(θ)|, | sin(θ)|). (5.13)

The exact strength and importance of each aliasing frequency depends on the edge

profile. Since most real images are taken with cameras with optical anti-aliasing pre-

filters, they have softer edges. We found it sufficient to only remove the lowest aliasing

frequency (Eq. 5.13) to mitigate the effects of aliasing. To handle small deviations in

orientation, we remove a range of frequencies near the aliasing frequency (Eq. 5.13).

162 CHAPTER 5. GEOMETRIC DEVIATION MAGNIFICATION

Chapter 6

Conclusion

We have proposed novel techniques for analyzing and visualizing imperceptible devia-

tion signals in images and videos. These methods work by first finding a signal that

corresponds to the imperceptible deviations and then using that signal to create a new

image or video, in which the deviations are larger. This processing is a new type of

microscope that makes subtle deviations from a model larger, making them visible to

the naked eye. We focused on two models in this dissertation: perfect stationarity in

videos and perfect geometries in single images.

Deviations from perfect stationarity are tiny motions. To reveal these tiny motions,

we leveraged the complex steerable pyramid, a localized version of the Fourier transform,

with a notion of local phase and local amplitude. Each frame of the video is converted

to this representation and then the local phase variations are amplified. We have

demonstrated that this phase-based technique improves the state-of-the-art in Eulerian

motion processing both in theory and in practice, provides a fundamentally better way

of handling noise, and produces high quality photo-realistic videos with amplified or

attenuated motions for a variety of applications. We also proposed a new representation

for phase-based video magnification, the Riesz Pyramid. It is capable of producing

motion magnified videos in real-time on a modern laptop.

In addition to proposing new methods of motion magnification, we augmented it

with two new capabilities: a quantitative estimate of how much pixels in the video are

163

164 CHAPTER 6. CONCLUSION

moving and an estimate of the variance of this quantitative estimate. This makes motion

magnification a suitable tool for scientists and engineers that may be interested in both

visualizing tiny motions and doing experiments with quantitative data related to tiny

motions in videos. We also quantified the variance of this motion estimate giving a way

to determine when we are amplifying true signal and when we are amplifying shaped

noise. We also showed the utility of motion magnification and these new capabilities

on two examples from biology and mechanical engineering.

We have also presented a method of exaggerating geometric deviations from ideal

shapes in images. This algorithm involves three steps: model-fitting, deviation analysis,

and visual exaggeration. Since the deviations from the geometric model may be very

small, care is taken to account for pixel sampling and image texture, each of which

can otherwise overwhelm the small signal we seek to reveal. This method successfully

reveals sagging, bending, stretching and flowing that would otherwise be hidden or

barely visible in the input images. We validated the technique using both synthetically

generated and ground-truth physical measurement and we believe that this method can

be useful in many domains such as construction engineering and astronomy.

Impact One technique described in this dissertation, motion magnification, has re-

ceived considerable attention in media outlets, such as The New York Times1, Reuters2

and The Wall Street Journal3. Motion magnification is already making a big impact.

Several academic works have also built on the idea of analyzing tiny motions in videos

using local phase variations. They have been used to characterize material properties

in videos [16], make plausible simulations of perturbed objects [17], remotely analyze

the health of structures [12, 13] and reveal the pulsing of arteries and veins in surgical

videos [1, 57].

1http://bits.blogs.nytimes.com/2013/02/27/scientists-uncover-invisible-motion-in-video/
2http://www.reuters.com/video/2015/01/28/amplifying-tiny-movements-to-visualize-t?

videoId=363022528
3http://www.wsj.com/articles/monitoring-tiny-vibrations-to-avert-big-problems-1431704895

http://bits.blogs.nytimes.com/2013/02/27/scientists-uncover-invisible-motion-in-video/
http://www.reuters.com/video/2015/01/28/amplifying-tiny-movements-to-visualize-t?videoId=363022528
http://www.reuters.com/video/2015/01/28/amplifying-tiny-movements-to-visualize-t?videoId=363022528
http://www.wsj.com/articles/monitoring-tiny-vibrations-to-avert-big-problems-1431704895

165

Magnifying imperceptible deviations in images and videos has many applications

in many different domains. It has already made an impact and it has many potential

future applications such as monitoring and visualizing the vibrations of buildings and

bridges, monitoring vital signs, finding perturbations in planetary rings and assisting

scientists and engineers in the lab looking at cells and material structures with tiny

motions or hidden geometric deviations.

166 CHAPTER 6. CONCLUSION

Appendix A

Filter Taps and Design for Riesz

Pyramids and Pseudocode

In this appendix, we provide the filter taps for the approximate Riesz transform and

the replacement for the Laplacian pyramid used in the Riesz pyramid in Chapter 3. We

also describe our method of computing these taps and the effect of the approximation.

We also provide pseudocode for fast phase-based video magnification with the Riesz

Pyramid.

� A.1 Replacement for Laplacian Pyramid

In this section, we describe our method of designing a new pyramid like the Laplacian

pyramid, but with a better inverse. Our method is inspired by Simoncelli and Freeman

and we review constraints and motivation from their paper [74]. We use their techniques

to design a 1D version of our new pyramid. We then show how it can be converted to a

2D pyramid using the McClellan transform [51], that is more efficient to compute than

Simoncelli and Freeman’s original replacement with non-separable filters.

The Laplacian pyramid decomposes an image into subbands corresponding to dif-

ferent scales [9]. It does this by decomposing an image into the sum of a high frequency

component and a low frequency component. The low frequency component is then

downsampled and the decomposition is recursively applied to the downsampled image.

167

168 APPENDIX A. FILTER TAPS AND DESIGN FOR RIESZ PYRAMIDS AND PSEUDOCODE

The levels of the pyramid form an overcomplete representation of the image, in which

each level corresponds to a different set of spatial frequencies. The pyramid can be

inverted by upsampling the lowest level, adding it to the second lowest level to form a

new lowest level on which the inversion process can then be recursively applied.

While the inversion is exact when the Laplacian pyramid representation of the im-

age is unmodified, it is less than ideal when the pyramid is modified, such as for the

purposes of image compression or phase-based video magnification [19]. If we view the

modifications as noise and the Laplacian pyramid as a linear transform T , then the

mean squared error optimal inverse is the pseudoinverse (T TT)−1T T . When the down-

sampling and upsampling filters are separable Gaussian blurs, the inverse we described

in the previous paragraph is not the pseudoinverse and is therefore suboptimal. In addi-

tion, the pseudoinverse is difficult to compute directly due to the matrix multiplications

and inversions. As a result, we seek to design a new pyramid in which T TT = I, so that

the pseudoinverse is simply the transpose of the transform. We do this by adopting the

construction scheme proposed by [74], in which T is chosen such that T TT = I and

both T and T T can be evaluated using a series of recursively applied convolutions and

subsampling operations.

Specifically, the pyramid we construct is specified by a highpass filter hH [n] and

a lowpass filter hL[n]. The image is highpassed to form the top level of the pyramid.

Then, it is lowpassed and downsampled. The decomposition is recursively applied to the

downsampled image to build the pyramid (Fig. A.1). The transpose of this operation

when viewed as a matrix multiplication is to upsample the downsampled image, lowpass

it again and then add it to a highpassed version of the next level up. To ensure that the

inverse reconstructs the input image perfectly, we require that the frequency responses

Sec. A.1. Replacement for Laplacian Pyramid 169

H

L 2 H

L 2

H

L2

2

H

L
Recursive Subsystem

Building Reconstruction

Figure A.1: A signal processing diagram of our pyramid construction showing how a lowpass
and highpass filter can be recursively used with subsampling to produce a sequence of critically
sampled bandpassed images. The blocks ↓ 2 and ↑ 2 denote downsampling and upsampling by a
factor of 2 in both x and y. L and H denote linear shift invariant lowpass and highpass filters
respectively.

of the lowpass and highpass filters, HL(ω) and HH(ω) satisfy

|HL(ω)|2 + |HH(ω)|2 = 1 (A.1)

In addition, we do not want the downsampled images to be aliased, which imposes the

additional requirement that

|HL(ω)| = 0 for |ω| > π/2. (A.2)

Our construction is different than Simoncelli and Freeman [74] because we first design

a 1D pyramid and then convert it to 2D using the McClellan transform. This will also

allow us to evaluate the filters in an efficient manner, described below.

We follow [74] and [44] and find filters that satisfy these constraints by setting up

an optimization problem in which the deviation from Eq. A.1 and Eq. A.2 is penalized

by the L1 norm. That is the mean of the deviation is penalized. We also include

constraints to ensure that the lowpass filter has energy near the DC component and that

the highpass filter has energy near the Nyquist frequency. We minimize this objective

170 APPENDIX A. FILTER TAPS AND DESIGN FOR RIESZ PYRAMIDS AND PSEUDOCODE

function using Matlab’s fminunc to give the filters hL and hH shown in Table 1(a).

After designing the 1D filters, we convert them to 2D filters using the McClellan

transformation [51], which converts a 1D symmetric FIR filter into a 2D FIR filter,

which is approximately radially symmetric. We briefly review this transformation now.

The frequency response of a one dimensional filter hL[k] with 2N+1 taps can be written

as a trigonometric polynomial:

HL(ω) =
N∑

k=−N
hL[k] cos(kω) =

N∑
n=0

bL[n](cos(ω))n (A.3)

where bL[n] is determined by hL[k] via Chebyshev polynomials [51].

In the McClellan transformation, the cos(ω) is replaced by a 3× 3 two dimensional

filter t[x, y] with frequency response T (ωx, ωy). The result is a 2D filter

HL(ωx, ωy) =

N∑
k=0

bL[k](T (ωx, ωy))
n (A.4)

that has contours lines equal to those of T (ωx, ωy). A good choice for t is the 3×3 filter

specified in Table A.1. In this case, T (ωx, ωy) is approximately circularly symmetric.

Eq. A.4 suggests an efficient way to jointly lowpass and highpass an image. Specif-

ically, the input image i[x, y] is repeatedly convolved with t, N times to yield the

quantities:

i, t ∗ i, . . . , t ∗ . . . ∗ t︸ ︷︷ ︸
N times

∗i (A.5)

or in the frequency domain

I(ωx, ωy), T (ωx, ωy)I(ωx, ωy), . . . , T (ωx, ωy)
NI(ωx, ωy) (A.6)

From this and Eq. 4, it becomes clear that we can take a linear combination of Eq. 5 to

Sec. A.1. Replacement for Laplacian Pyramid 171

Lowpass: -0.0209 -0.0219 0.0900 0.2723 0.3611 0.2723 0.0900 -0.0219 -0.0209

Highpass: 0.0099 0.0492 0.1230 0.2020 -0.7633 0.2020 0.1230 0.0492 0.0099

(a) One dimensional filter taps (hL[k] and hH [k]

0.125 0.250 0.125

0.250 -0.500 0.250

0.125 0.250 0.125

Lowpass: 0.1393 0.6760 0.6944 -0.1752 -0.3344

Highpass: -0.9895 0.1088 0.3336 0.3936 0.1584

(b) t[x, y] (McClellan Transform) (c) bL[k] and bH [k]

-0.0001 -0.0007 -0.0023 -0.0046 -0.0057 -0.0046 -0.0023 -0.0007 -0.0001

-0.0007 -0.0030 -0.0047 -0.0025 -0.0003 -0.0025 -0.0047 -0.0030 -0.0007

-0.0023 -0.0047 0.0054 0.0272 0.0387 0.0272 0.0054 -0.0047 -0.0023

-0.0046 -0.0025 0.0272 0.0706 0.0910 0.0706 0.0272 -0.0025 -0.0046

-0.0057 -0.0003 0.0387 0.0910 0.1138 0.0910 0.0387 -0.0003 -0.0057

-0.0046 -0.0025 0.0272 0.0706 0.0910 0.0706 0.0272 -0.0025 -0.0046

-0.0023 -0.0047 0.0054 0.0272 0.0387 0.0272 0.0054 -0.0047 -0.0023

-0.0007 -0.0030 -0.0047 -0.0025 -0.0003 -0.0025 -0.0047 -0.0030 -0.0007

-0.0001 -0.0007 -0.0023 -0.0046 -0.0057 -0.0046 -0.0023 -0.0007 -0.0001

(d) Taps for direct form of lowpass filter

0.0000 0.0003 0.0011 0.0022 0.0027 0.0022 0.0011 0.0003 0.0000

0.0003 0.0020 0.0059 0.0103 0.0123 0.0103 0.0059 0.0020 0.0003

0.0011 0.0059 0.0151 0.0249 0.0292 0.0249 0.0151 0.0059 0.0011

0.0022 0.0103 0.0249 0.0402 0.0469 0.0402 0.0249 0.0103 0.0022

0.0027 0.0123 0.0292 0.0469 -0.9455 0.0469 0.0292 0.0123 0.0027

0.0022 0.0103 0.0249 0.0402 0.0469 0.0402 0.0249 0.0103 0.0022

0.0011 0.0059 0.0151 0.0249 0.0292 0.0249 0.0151 0.0059 0.0011

0.0003 0.0020 0.0059 0.0103 0.0123 0.0103 0.0059 0.0020 0.0003

0.0000 0.0003 0.0011 0.0022 0.0027 0.0022 0.0011 0.0003 0.0000

(e) Taps for direct form of highpass filter

Table A.1: The filter taps for our pyramid filters specified one dimension (a), in terms of the
McClellan transformation (b-c) and direct form (d-e).

get the lowpass and highpass filter responses. The linear combination coefficients are

bL[k] for the lowpass filter and bH [k] for the highpass filter. bL, bH and the full 9 × 9

filter taps are shown in Table 1(c-e).

In addition to being invertible, our new pyramid has wider filters, which allows for

larger amplification factors in phase based motion magnification as described in Fig. 3.6

of Chapter 3.

172 APPENDIX A. FILTER TAPS AND DESIGN FOR RIESZ PYRAMIDS AND PSEUDOCODE

−0.50
0.00
0.50

−0.03
−0.48
0.00
0.48
0.03

−0.12 −0.37 −0.12
0.00 0.00 0.00
0.12 0.37 0.12

(a) 3× 1 (b) 5× 1 (c) 3× 3

Table A.2: Riesz transform taps for a few sizes. Only one of the Riesz transform filters is
shown. The other is given by the transpose.

� A.2 Approximating the Riesz Transform

In this section, we show how we can replace the expensive Fourier domain implementa-

tion of the Riesz transform with an approximate Riesz transform that is implemented

with simple primal domain filters. We also briefly go over the cost of this approximation

and how spatial smoothing of the phase signal alleviates this cost.

The Riesz transform can be computed in the Fourier domain by using the transfer

function

− i (ωx, ωy)√
ω2
x + ω2

y

. (A.7)

In Chapter 3, we demonstrated that the finite difference filter [−0.5, 0, 0.5] and [−0.5, 0, 0.5]T

were good approximations to the Riesz transform when the input is a subband. Here,

we further motivate this approximation and provide a method to design spatial domain

filters that approximate the Riesz transform of image subbands.

We present an optimization procedure, inspired by Simoncelli [71], to find the taps

of spatial domain filters for the Riesz pyramid. The method works by finding taps

that minimize the weighted mean squared error between the DTFT of the filter and

the Riesz transform transfer function
ωy√
ω2
x+ω2

y

. We choose the weights W (ωx, ωy) to be

the transfer function of a subband filter times the expected power spectrum of images

(1
ω2
x+ω2

y
) [82]. The Riesz transform filters are 90 degrees symmetric, so we only need

to design one of the filters. In addition, each filter is anti-symmetric in one direction

Sec. A.2. Approximating the Riesz Transform 173

and symmetric in the other. This greatly reduces the number of filter taps we need to

specify. We will design the filter that is anti-symmetric in y. The objective function

then becomes

∫ ∫
W (ωx, ωy)

Da(ωx, ωy)−
ωy√

ω2
x + ω2

y

2

dωxdωy (A.8)

where Da is the DTFT of the 2N + 1× 2M + 1 filter a, given by

N∑
n=−N

M∑
m=−M

an,me
−i(nωy+mωx). (A.9)

Note that the first index corresponds to the rows of a (the y-direction), while the second

index corresponds to the columns (the x-direction). The symmetries of a imply that

an,m = −a−n,m, an,m = an,−m and that a0,m = 0, which reduces Eq. A.9 to

N∑
n=1

2an,0 sin(nωy) +
N∑
n=1

M∑
m=1

4an,m cos(mωx) sin(nωy). (A.10)

This is a weighted linear least squares problem and can be solved using standard

techniques. The solution for 3× 1, 5× 1 and 3× 3 filters are given in Table A.2. Note

that filters of this form are often used to approximate gradients or derivatives. This

makes sense for images, which have most of their spectral content at low frequencies.

Image subbands have much of their spectral content at mid-range frequencies, which is

why these filters are better approximations of the Riesz transform.

Limitations Unlike the exact Riesz transform, the approximate Riesz transform does

not necessarily preserve the amplitude of a signal. For example, the signal cos(ωx) may

get mapped to ((1 + ε) sin(ωx), 0). As a result, the phase signal may not be exactly

ωx, but ωx + O(ε)f(x). This means that different parts of the sinusoid get magnified

differently. This is illustrated in the second and third rows of Fig. A.2. We use spatial

(a) Frame 1 (b) Frame 2 (Shifted 0.05px) (c) Ground Truth (300x)

(d) Phase (3× 1) (e) Phase (5× 1) (f) Phase (3× 3)

(g) 300x (3× 1) (h) 300x (5× 1) (i) 300x (3× 3)

(j) Smooth Phase (3× 1) (k) Smooth Phase (5× 1) (l) Smooth Phase (3× 3)

(m) Smooth x300 (3× 1) (n) Smooth x300 (5× 1) (o) Smooth x300 (3× 3)

Figure A.2: A comparison of several approximate Riesz transform for phase-based motion mag-
nification with and without spatial smoothing. A sinusoid (a) and a shifted copy (b) are motion
magnified 300 times. In the second and third rows, we show the phase signal obtained with three
different Riesz transforms and the resulting motion magnified frames. In the fourth and fifth
rows, we show the spatially smoothed phase signals and the resulting motion magnified frames.

Sec. A.3. Pseudocode 175

smoothing to smooth these errors to properly motion magnify the input sequence. As

a result, the difference between the three tap Riesz transform filter and the larger

filter is negligible (Fig. A.2(n)), which justifies our use of the three tap filter as an

approximation.

� A.3 Pseudocode

Pseudocode to magnify tiny motions using the Riesz pyramid is included below. Please

refer to Oppenheim and Schafer for more information on the temporal filters used in

this pseudocode [61].

Notation The notation in this pseudocode is based on MATLAB’s syntax. All variables

are either two dimensional images (possibly of size 1 × 1) or cell arrays: lists that can

contain arbitrary elements. Indexing into an image is denoted by [·, ·] and indexing into

a cell array is denoted by {·}. A dot (.) preceding a operator like multiplication (∗) or

exponentiation (ˆ) denotes that the operation is performed element-wise.

In the pseudocode below, we try to use descriptive variable names. However, for

variables corresponding to filtered and unfiltered versions of the quaternionic phase

φ cos(θ), φ sin(θ), (A.11)

this results in overly long variable names. For brevity, we represent cos(θ) by only the

word cos and sin(θ) by only the word sin. That is, phase cos represents φ cos(θ), not

cos(φ).

1 OnlineRieszVideoMagnification(amplification, low cutoff, ...

2 high cutoff, sampling rate)

3

4 %%%

176 APPENDIX A. FILTER TAPS AND DESIGN FOR RIESZ PYRAMIDS AND PSEUDOCODE

5 % Initializes spatial smoothing kernel and temporal filtering

6 % coefficients.

7

8 % Compute an IIR temporal filter coefficients. Butterworth could be replaced

9 % with any IIR temporal filter. Lower temporal filter order is faster

10 % and uses less memory, but is less accurate. See pages 493-532 of

11 % Oppenheim and Schafer 3rd ed for more information

12 nyquist frequency = sampling rate/2;

13 temporal filter order = 1;

14 [B, A] = GetButterworthFilterCoefficients(temporal filter order, ...

15 low cutoff/nyquist frequency, ...

16 high cutoff/nyquist frequency);

17

18 % Computes convolution kernel for spatial blurring kernel used during

19 % quaternionic phase denoising step.

20 gaussian kernel sd = 2; % px

21 gaussian kernel = GetGaussianKernel(gaussian kernel sd);

22

23

24

25 %%%

26 % Initialization of variables before main loop.

27 % This initialization is equivalent to assuming the motions are zero

28 % before the video starts.

29 previous frame = GetFirstFrameFromVideo();

30 [previous laplacian pyramid, previous riesz x, previous riesz y] = ...

31 ComputeRieszPyramid(previous frame);

32 % Do not include lowpass residual

33 number of levels = numel(previous laplacian pyramid) - 1;

34 for k = 1:number of levels

35 % Initializes current value of quaternionic phase. Each coefficient

36 % has a two element quaternionic phase that is defined as

37 % phase times (cos(orientation), sin(orientation))

38 % It is initialized at zero

39 phase cos{k} = zeros(size(previous laplacian pyramid{k}));

40 phase sin{k} = zeros(size(previous laplacian pyramid{k}));

41

Sec. A.3. Pseudocode 177

42

43 % Initializes IIR temporal filter values. These values are used during

44 % temporal filtering. See the function IIRTemporalFilter for more

45 % details. The initialization is a zero motion boundary condition

46 % at the beginning of the video.

47 register0 cos{k} = zeros(size(previous laplacian pyramid{k}));

48 register1 cos{k} = zeros(size(previous laplacian pyramid{k}));

49

50 register0 sin{k} = zeros(size(previous laplacian pyramid{k}));

51 register1 sin{k} = zeros(size(previous laplacian pyramid{k}));

52 end

53

54

55

56 %%%

57 % Main loop. It is executed on new frames from the video and runs until

58 % stopped.

59 while running

60 current frame = GetNextFrameFromVideo();

61 [current laplacian pyramid, current riesz x, current riesz y] = ...

62 ComputeRieszPyramid(current frame);

63

64 % We compute a Laplacian pyramid of the motion magnified frame first

65 % and then collapse it at the end.

66 % The processing in the following loop is processed on each level

67 % of the Riesz pyramid independently

68 for k = 1:number of levels

69

70 % Compute quaternionic phase difference between current Riesz pyramid

71 % coefficients and previous Riesz pyramid coefficients.

72 [phase difference cos, phase difference sin, amplitude] = ...

73 ComputePhaseDifferenceAndAmplitude(

74 current laplacian pyramid{k}, ...

75 current riesz x{k}, ...

76 current riesz y{k}, ...

77 previous laplacian pyramid{k}, ...

78 previous riesz x{k}, ...

178 APPENDIX A. FILTER TAPS AND DESIGN FOR RIESZ PYRAMIDS AND PSEUDOCODE

79 previous riesz y{k});

80

81

82 % Adds the quaternionic phase difference to the current value of

83 % the quaternionic phase.

84 % Computing the current value of the phase in this way is

85 % equivalent to phase unwrapping.

86 phase cos{k} = phase cos{k} + phase difference cos;

87 phase sin{k} = phase sin{k} + phase difference sin;

88

89

90 % Temporally filter the quaternionic phase using current value

91 % and stored information

92 [phase filtered cos, register0 cos{k}, register1 cos{k}] = ...

93 IIRTemporalFilter(B, A, phase cos{k}, register0 cos{k}, ...

94 register1 cos{k});

95 [phase filtered sin, register0 sin{k}, register1 sin{k}] = ...

96 IIRTemporalFilter(B, A, phase sin{k}, register0 sin{k}, ...

97 register1 sin{k});

98

99

100 % Spatial blur the temporally filtered quaternionic phase signals.

101 % This is not an optional step. In addition to denoising,

102 % it smooths out errors made during the various approximations.

103 phase filtered cos = ...

104 AmplitudeWeightedBlur(phase filtered cos, amplitude, ...

105 gaussian kernel);

106 phase filtered sin = ...

107 AmplitudeWeightedBlur(phase filtered sin, amplitude, ...

108 gaussian kernel);

109

110

111 % The motion magnified pyramid is computed by phase shifting

112 % the input pyramid by the spatio-temporally filtered quaternionic

113 % phase and taking the real part.

114 phase magnified filtered cos = amplification * phase filtered cos;

115 phase magnified filtered sin = amplification * phase filtered sin;

Sec. A.3. Pseudocode 179

116

117 motion magnified laplacian pyramid{k} = ...

118 PhaseShiftCoefficientRealPart(current laplacian pyramid{k}, ...

119 current riesz x{k}, ...

120 current riesz y{k}, ...

121 phase magnified filtered cos, ...

122 phase magnified filtered sin);

123 end

124

125

126 % Take lowpass residual from current frame's lowpass residual

127 % and collapse pyramid.

128 motion magnified laplacian pyramid{number of levels+1} = ...

129 current laplacian pyramid{number of levels+1};

130 motion magnified frame = ...

131 CollapseLaplacianPyramid(motion magnified laplacian pyramid);

132

133

134 % Write or display the motion magnified frame.

135 WriteMagnifiedFrame(motion magnified frame);

136 % DisplayMagnifiedFrame(motion magnified frame);

137

138

139 % Prepare for next iteration of loop

140 previous laplacian pyramid = current laplacian pyramid;

141 previous riesz x = current riesz x;

142 previous riesz y = current riesz y;

143 end

Helper Functions Pseudocode for helper functions is provided below. The helper func-

tions describe how to build a Riesz pyramid, compute quaternionic phase, phase shift

Riesz pyramid coefficients, temporally filter phase and spatially blur phase. Pseudocode

for functions that compute and collapse Laplacian pyramids, read and write to videos

and display images on a screen is not included.

180 APPENDIX A. FILTER TAPS AND DESIGN FOR RIESZ PYRAMIDS AND PSEUDOCODE

1 ComputeRieszPyramid(grayscale frame)

2 % Compute Riesz pyramid of two dimensional frame. This is done by first

3 % computing the laplacian pyramid of the frame and then computing the

4 % approximate Riesz transform of each level that is not the lowpass

5 % residual. The result is stored as an array of grayscale frames.

6 % Corresponding locations in the result correspond to the real,

7 % i and j components of Riesz pyramid coefficients.

8 laplacian pyramid = ComputeLaplacianPyramid(grayscale frame);

9 number of levels = numel(laplacian pyramid)-1;

10

11

12 % The approximate Riesz transform of each level that is not the

13 % low pass residual is computed. For more details on the approximation,

14 % see supplemental material.

15 kernel x = [0.0 0.0 0.0;

16 0.5 0.0 -0.5;

17 0.0 0.0 0.0];

18 kernel y = [0.0 0.5 0.0;

19 0.0 0.0 0.0;

20 0.0 -0.5 0.0];

21 for k = 1:number of levels

22 riesz x{k} = Convolve(laplacian pyramid{k}, kernel x);

23 riesz y{k} = Convolve(laplacian pyramid{k}, kernel y);

24 end

25 return {laplacian pyramid, riesz x, riesz y}

1 ComputePhaseDifferenceAndAmplitude(current real, current x, current y, ...

2 previous real, previous x, previous y)

3 % Computes quaternionic phase difference between current frame and previous

4 % frame. This is done by dividing the coefficients of the current frame

5 % and the previous frame and then taking imaginary part of the quaternionic

6 % logarithm. We assume the orientation at a point is roughly constant to

7 % simplify the calcuation.

8

9 % q current = current real + i * current x + j * current y

Sec. A.3. Pseudocode 181

10 % q previous = previous real + i * previous x + j * previous y

11 % We want to compute the phase difference, which is the phase of

12 % q current/q previous

13 % This is equal to (Eq. 3.12)

14 % q current * conjugate(q previous)/ | |q previous | |ˆ2

15 % Phase is invariant to scalar multiples, so we want the phase of

16 % q current * conjugate(q previous)

17 % which we compute now (Eq. 3.9). If the image doesn't change

18 % much, we can assume orientation is constant and therefore that

19 % the fourth component of the product is zero.

20 q conj prod real = current real.*previous real + ...

21 current x.*previous x + ...

22 current y.*previous y;

23 q conj prod x = -current real.*previous x + previous real.*current x;

24 q conj prod y = -current real.*previous y + previous real.*current y;

25

26 % Now we take the quaternion logarithm of this (Eq. 3.15)

27 % Only the imaginary part corresponds to quaternionic phase.

28 q conj prod amplitude = sqrt(q conj prod real.ˆ2 + ...

29 q conj prod x.ˆ2 + q conj prod y.ˆ2);

30 phase difference = acos(q conj prod real./q conj prod amplitude);

31 cos orientation = q conj prod x ./(q conj prod x.ˆ2+q conj prod y.ˆ2);

32 sin orientation = q conj prod y ./(q conj prod x.ˆ2+q conj prod y.ˆ2);

33

34 % This is the quaternionic phase (Eq. 3.7)

35 phase difference cos = phase difference * cos orientation;

36 phase difference sin = phase difference * sin orientation;

37

38 % Under the assumption that changes are small between frames, we can

39 % assume that the amplitude of both coefficients is the same. So,

40 % to compute the amplitude of one coefficient, we just take the square root

41 % of their conjugate product

42 amplitude = sqrt(q conj prod amplitude);

43

44 return {phase difference cos, phase difference sin, amplitude)

182 APPENDIX A. FILTER TAPS AND DESIGN FOR RIESZ PYRAMIDS AND PSEUDOCODE

1 IIRTemporalFilter(B, A, phase, register0, register1)

2 % Temporally filters phase with IIR filter with coefficients B, A.

3 % Given current phase value and value of previously computed registers,

4 % comptues current temporally filtered phase value and updates registers.

5 % Assumes filter given by B, A is first order IIR filter, so that

6 % B and A have 3 coefficients each. Also, assumes A(1) = 1. Computation

7 % is Direct Form Type II (See pages 388-390 of Oppenheim and Schafer 3rd Ed.)

8 temporally filtered phase = B(1) * phase + register0;

9 register0 = B(2) * phase + register1 - A(2) * temporally filtered phase;

10 register1 = B(3) * phase - A(3) * temporally filtered phase;

11 return {temporally filtered phase, register0, register1}

1 AmplitudeWeightedBlur(temporally filtered phase, amplitude, blur kernel)

2 % Spatially blurs phase, weighted by amplitude. One half of Eq. 3.26.

3 denominator = Convolve(amplitude, blur kernel);

4 numerator = Convolve(temporally filtered phase.*amplitude, blur kernel);

5 spatially smooth temporally filtered phase = numerator./denominator;

6 return spatially smooth temporally filtered phase;

1 PhaseShiftCoefficientRealPart(riesz real, riesz x, riesz y, phase cos, phase sin)

2 % Phase shifts a Riesz pyramid coefficient and returns the real part of the

3 % resulting coefficient. The input coefficient is a three

4 % element quaternion. The phase is two element imaginary quaternion.

5 % The phase is exponentiated and then the result is mutiplied by the first

6 % coefficient. All operations are defined on quaternions.

7

8 % Quaternion Exponentiation

9 phase magnitude = sqrt(phase cos.ˆ2+phase sin.ˆ2); % \ |v\ | in Eq. 3.13.

10 exp phase real = cos(phase magnitude);

11 exp phase x = phase cos./phase magnitude.*sin(phase magnitude);

12 exp phase y = phase sin./phase magnitude.*sin(phase magnitude);

13

14 % Quaternion Multiplication (just real part)

Sec. A.3. Pseudocode 183

15 result = exp phase real.*riesz real ...

16 - exp phase x.*riesz x ...

17 - exp phase y.*riesz y;

18 return result;

184 APPENDIX A. FILTER TAPS AND DESIGN FOR RIESZ PYRAMIDS AND PSEUDOCODE

Appendix B

Analytic Derivation of Motion

Covariance

We analytically derive the covariance matrix of our motion estimate in this section. To

simplify the derivation, we assume a model of additive constant variance Gaussian noise

rather than signal-dependent noise. That is the observed video I(x, y, t) is contaminated

with IID noise n(x, y, t) of variance σ2:

I(x, y, t) = I0(x, y, t) + n(x, y, t) (B.1)

where I0(x, y, t) is the underlying noiseless video.

To recap, our phase-based motion estimation algorithm works by transforming the

image into a complex steerable pyramid representation, computing the local phase of

the resulting coefficients and then solving a weighted least squares problem to convert

local phase changes into motion vectors at every pixel (Sec. 4.3.1). We investigate

the propagation of noise through the stages of this algorithm. First, we compute the

noise variance and covariances of the complex steerable pyramid coefficients. Then,

we use that to characterize the probability distributions of the local phases. Finally,

we describe how to compute the motion’s covariance matrix from the variances and

covariances of the local phase’s probability distributions.

185

186 APPENDIX B. ANALYTIC DERIVATION OF MOTION COVARIANCE

� B.1 Noise on Complex Steerable Pyramid Coefficients

Each frame of the video I(x, y, t) is transformed to the complex steerable pyramid

representation by being spatially bandpassed by a bank of quadrature pairs of filters

Gi and Hi, where i spans the levels of the pyramid across different spatial scales ri and

orientations θi. For one such filter pair, the result is

Gi ∗ I0 +Gi ∗ n and Hi ∗ I0 +Hi ∗ n (B.2)

where ∗ denote convolution in space. The first term in each expression is the noiseless

filter reponse, which we denote Si,0 = Gi ∗ I0 for the real part and Ti,0 = Hi ∗ I0 for

the imaginary part. The second term in each expression is filtered noise, which we

denote as si and ti. Since n is a zero-mean Gaussian and si and ti are linear functions

of n, their probability distribution is characterized entirely by their covariance matrix.

We represent this covariance matrix as four functions Ci,k,RR, Ci,k,RJ , Ci,k,JR, Ci,k,JJ

indexed by pyramid level (i, k) and real (R) and imaginary (J) part. Because n has

a shift-invariant probability distribution and convolution is a shift-invariant operator,

these functions can be computed via the following auto-correlation and cross-correlation

functions

Ci,k,RR(x0, y0, x1, y1) := σ2
n(Gi ∗Gk)[x1 − x0, y1 − y0] (B.3)

Ci,k,RJ(x0, y0, x1, y1) := σ2
n(Gi ∗Hk)[x1 − x0, y1 − y0] (B.4)

Ci,k,JR(x0, y0, x1, y1) := σ2
n(Hi ∗Gk)[x1 − x0, y1 − y0] (B.5)

Ci,k,JJ(x0, y0, x1, y1) := σ2
n(Hi ∗Hk)[x1 − x0, y1 − y0] (B.6)

where σ2
n is the variance of n(x, y, t) [61]. In the steerable pyramid we use [64], each

coefficient’s real and imaginary parts are uncorrelated and have equal variance, i.e.

Sec. B.2. Variance and Covariance of Local Phase 187

(a) Input frame (b) Real Part (c) Imaginary Part

0 0.1

−0.05

0

Real Part

Im
a

g
in

a
ry

 P
a

rt

(d) Coefficient Point Cloud

−1 −0.5 0 0.5
0

Phase

P
D

F

(e) PDF of Phases

Figure B.1: Noise model on phases. We take a frame from a synthetic video (a) and build
a single level of a complex steerable pyramid (b-c). For three coefficients (red, green and blue
dots) with different amplitudes, we show a point cloud of noisy coefficient values (d) and the
corresponding histogram of phases (e).

Ci,i,RR = Ci,i,JJ and Ci,i,RJ = Ci,i,JR = 0. These functions characterize the variances

and covariances of the noise term in the complex steerable pyramid coefficients.

� B.2 Variance and Covariance of Local Phase

Now, we turn to the problem of using these covariance matrices to determine the prob-

ability distribution of the local phases. We first demonstrate that if the noiseless am-

plitude of a coefficient is sufficiently high, its local phase distribution is approximately

Gaussian (Fig. B.1). Therefore, as long as we restrict ourselves to points where the

amplitude is several times larger than the image noise level, we can characterize the

local phase distribution entirely by its second moments (variance and covariance).

Consider a complex steerable pyramid coefficient with noiseless value Fi,0 := Si,0 +

jTi,0 with noise term si + jti. If its noiseless amplitude Ai,0 =
√
S2
i,0 + T 2

i,0 is close to

zero, then its phase is given by

tan−1

(
ti
si

)
. (B.7)

188 APPENDIX B. ANALYTIC DERIVATION OF MOTION COVARIANCE

ti and si are typically uncorrelated (i.e. Ci,i,RJ = 0) and have equal variance (i.e.

Ci,i,RR = Ci,i,JJ), which means that the phase is uniformly random. The phase at such

points contains no information and intuitively corresponds to places where there is no

image content in a given pyramid level (Fig. B.1, red point).

Now, lets consider coefficients with higher amplitude. The noiseless phase of the

coefficient is given by

tan−1(Ti,0/Si,0) (B.8)

while the noisy phase is given by

tan−1((Ti,0 + ti)/(Si,0 + si)). (B.9)

Their difference can be linearized around (Si,0, Ti,0) to yield

tan−1

(
Ti,0 + ti
Si,0 + si

)
− tan−1

(
Ti,0
Si,0

)
=
sSi,0 − tTi,0

A2
i,0

+O

(
s2, st, t2

A4
i,0

)
. (B.10)

The higher order terms are negligible if the noise terms s and t are small compared

to the amplitude Ai,0. Ignoring these terms, we see that the phase is approximately

a linear combination of Gaussian random variables and is therefore Gaussian. This is

illustrated empirically by local phase histograms of the green and blue points in Fig. B.1.

Therefore, as long as we ignore coefficients with low amplitude, we can characterize

the phase distribution by its covariance matrix Cφi,k(x0, y0, x1, y1), which tells us the

correlation between the phase at the point (x0, y0) in level i and (x1, y1) in level k. Let

the complex steerable pyramid coefficients at these two points be Fi,0 = Si,0 + iTi,0 and

Fk,1 = Sk,1 + iTk,1. Cφi,j(x0, y0, x1, y1) is the expectation of the quantity

(
tan−1

(
Ti,0 + ti,0
Si,0 + si,0

)
− tan−1

(
Ti,0
Si,0

))(
tan−1

(
Tk,1 + tk,1
Sk,1 + sk,1

)
− tan−1

(
Tk,1
Sk,1

))
.

(B.11)

Sec. B.3. Covariance Matrix of Estimated Motions 189

We can use the first-order Taylor approximation (Eq. B.10) and the coefficient covari-

ance matrices (Eq. B.6) to simplify this to

Cφi,k(x0, y0, x1, y1) =
Ci,k,JJSi,0Sk,1 − Ci,k,RJTi,0Sk,1 − Ci,k,JRSi,0Tk,1 + Ci,k,RRTi,0Tk,1

A2
i,0A

2
k,1

(B.12)

where the covariance terms on the right side are evaluted at (x0, y0, x1, y1) and Ai,0 is

the amplitude of Fi,0 and Ak,1 is the amplitude of Fk,1. In the special case of i = k,

x0 = x1 and y0 = y1, we compute the variance of the local phase

Cφi,i(x0, y0, x0, y0) =
Ci,i,RR
A2
i,0

, (B.13)

which follows from the fact that Ci,i,RR = Ci,i,JJ and Ci,i,RJ = 0. This gives us the

approximate variance and covariance on the phase at points at which the amplitude

is of sufficient magnitude. While the coefficient covariance matrix was independent of

location and defined fully by auto and cross-correlation function, the phase covariance

matrix depends on location because it depends on local image content.

� B.3 Covariance Matrix of Estimated Motions

In the previous section, we characterized the covariance of the local phases in a single

image. Our analysis was independent of the algorithm used to convert local phase

changes to motion vectors. To compute the covariance matrix ΣV of the estimated

motions, we must take into account how we compute the motions. In Sec. 4.3.2, we did

this by solving a weighted least squares problem, in which the estimated motion V =

[u, v]T is given by a matrix multiply of the nonstochastic matrix B = (XTWX)−1XTW

by the stochastic vector Y of local phase changes:

V = BY. (B.14)

190 APPENDIX B. ANALYTIC DERIVATION OF MOTION COVARIANCE

We assume that Y is a multivariate Gaussian with mean Y0 and covariance matrix Σ.

The elements of Σ describe the variance and correlations of the local phase changes used

to estimate V . They can be filled in using the phase covariance matrix we computed in

the previous section (Eq. B.12). The conversion of local phase changes to motion is a

linear transform (a matrix multiply by B), which means we can compute ΣV using the

formula

ΣV = BΣBT . (B.15)

Computing this covariance matrix analytically can be computationally costly, which is

why we opt for a Monte Carlo simulation. In addition, our analysis uses a constant vari-

ance noise model. Analytically computing the covariance matrix for a signal-dependent

noise model is possible, but doing so would incur an even higher computational cost.

Bibliography

[1] Amir-Khalili, A., Peyrat, J.-M., Abinahed, J., Al-Alao, O., Al-Ansari,
A., Hamarneh, G., and Abugharbieh, R. Auto localization and segmenta-
tion of occluded vessels in robot-assisted partial nephrectomy. In Medical Image
Computing and Computer-Assisted Intervention–MICCAI 2014. Springer, 2014,
pp. 407–414.

[2] Bai, J., Agarwala, A., Agrawala, M., and Ramamoorthi, R. Selectively
de-animating video. ACM Transactions on Graphics (2012).

[3] Baker, S., Scharstein, D., Lewis, J., Roth, S., Black, M. J., and
Szeliski, R. A database and evaluation methodology for optical flow. Inter-
national Journal of Computer Vision 92, 1 (2011), 1–31.

[4] Belaid, A., Boukerroui, D., Maingourd, Y., and Lerallut, J.-F. Phase-
based level set segmentation of ultrasound images. IEEE Trans. Inf. Technol.
Biomed. 15, 1 (2011), 138–147.

[5] Blaber, J., Adair, B., and Antoniou, A. Ncorr: Open-source 2d digital image
correlation matlab software. Experimental Mechanics (2015), 1–18.

[6] Blanz, V., and Vetter, T. A morphable model for the synthesis of 3d faces.
In Proceedings of the 26th annual conference on Computer graphics and interactive
techniques (1999), ACM Press/Addison-Wesley Publishing Co., pp. 187–194.

[7] Bojanic, S., Simpson, T., and Bolger, C. Ocular microtremor: a tool for
measuring depth of anaesthesia? British Journal of Anaesthesia 86, 4 (2001),
519–522.

[8] Buades, A., Coll, B., and Morel, J.-M. Nonlocal image and movie denoising.
International Journal of Computer Vision 76 (2008), 123–139.

[9] Burt, P., and Adelson, E. The laplacian pyramid as a compact image code.
IEEE Trans. Comm. 31, 4 (1983), 532–540.

[10] Canny, J. A computational approach to edge detection. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 6 (1986), 679–698.

191

192 BIBLIOGRAPHY

[11] Chen, J., Wadhwa, N., Cha, Y.-J., Durand, F., Freeman, W. T., and
Buyukozturk, O. Structural modal identification through high speed camera
video: Motion magnification. Proceedings of the 32nd International Modal Analysis
Conference (to appear) (2014).

[12] Chen, J. G., Wadhwa, N., Cha, Y.-J., Durand, F., Freeman, W. T., and
Buyukozturk, O. Modal identification of simple structures with high-speed video
using motion magnification. Journal of Sound and Vibration 345 (2015), 58–71.

[13] Chen, J. G., Wadhwa, N., Durand, F., Freeman, W. T., and Buyukoz-
turk, O. Developments with motion magnification for structural modal identifi-
cation through camera video. In Dynamics of Civil Structures, Volume 2. Springer,
2015, pp. 49–57.

[14] Dabov, K., Foi, A., and Egiazarian, K. Video denoising by sparse 3d
transform-domain collaborative filtering. In Proc. 15th European Signal Processing
Conference (2007), vol. 1, p. 7.

[15] Dabov, K., Foi, A., Katkovnik, V., and Egiazarian, K. Image denoising by
sparse 3-d transform-domain collaborative filtering. IEEE Trans. Image Process.
16, 8 (aug. 2007), 2080 –2095.

[16] Davis, A., Bouman, K. L., Chen, J. G., Rubinstein, M., Durand, F., and
Freeman, W. T. Visual vibrometry: Estimating material properties from small
motions in video. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (2015), pp. 5335–5343.

[17] Davis, A., Chen, G, J., and Durand, F. Image-space modal bases for plausible
manipulation of objects in video. 80.

[18] Dekel, T., Michaeli, T., Irani, M., and Freeman, W. T. Revealing and
modifying non local variations in a single image. ACM Transactions on Graphics
(TOG) special issue. Proc. SIGGRAPH Asia (2015).

[19] Do, M. N., and Vetterli, M. Frame reconstruction of the laplacian pyramid.
In Acoustics, Speech, and Signal Processing, 2001. Proceedings.(ICASSP’01). 2001
IEEE International Conference on (2001), vol. 6, IEEE, pp. 3641–3644.

[20] Dollar, P., Tu, Z., and Belongie, S. Supervised learning of edges and object
boundaries. In Computer Vision and Pattern Recognition, 2006 IEEE Computer
Society Conference on (2006), vol. 2, IEEE, pp. 1964–1971.

[21] Dollár, P., and Zitnick, C. L. Structured forests for fast edge detection. In
Computer Vision (ICCV), 2013 IEEE International Conference on (2013), IEEE,
pp. 1841–1848.

BIBLIOGRAPHY 193

[22] Duda, R. O., and Hart, P. E. Use of the hough transformation to detect lines
and curves in pictures. Communications of the ACM 15, 1 (1972), 11–15.

[23] DxO OpticsPro 10. http://www.dxo.com/us/photography/photo-software/dxo-
opticspro.

[24] Elgharib, M., Hefeeda, M., Durand, F., and Freeman, W. T. Video
magnification in presence of large motions. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (2015), pp. 4119–4127.

[25] Felsberg, M., and Sommer, G. The monogenic signal. IEEE Trans. Signal
Process. 49, 12 (2001), 3136–3144.

[26] Fischler, M. A., and Bolles, R. C. Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated cartography.
Communications of the ACM 24, 6 (1981), 381–395.

[27] Fleet, D., and Weiss, Y. Optical flow estimation. In Handbook of Mathematical
Models in Computer Vision. Springer, 2006, pp. 237–257.

[28] Fleet, D. J. Measurement of image velocity, vol. 169. Springer Science & Business
Media, 2012.

[29] Fleet, D. J., and Jepson, A. D. Computation of component image veloc-
ity from local phase information. International Journal of Computer Vision 5, 1
(1990), 77–104.

[30] Fleet, D. J., and Jepson, A. D. Stability of phase information. Pattern
Analysis and Machine Intelligence, IEEE Transactions on 15, 12 (1993), 1253–
1268.

[31] Freeman, W. T., and Adelson, E. H. The design and use of steerable filters.
IEEE Transactions on Pattern analysis and machine intelligence 13, 9 (1991),
891–906.

[32] Freeman, W. T., Adelson, E. H., and Heeger, D. J. Motion without move-
ment. SIGGRAPH Comput. Graph. 25 (Jul 1991), 27–30.

[33] Fuchs, M., Chen, T., Wang, O., Raskar, R., Seidel, H.-P., and Lensch,
H. P. Real-time temporal shaping of high-speed video streams. Computers &
Graphics 34, 5 (2010), 575–584.

[34] Gautama, T., and Van Hulle, M. A phase-based approach to the estimation of
the optical flow field using spatial filtering. Neural Networks, IEEE Transactions
on 13, 5 (sep 2002), 1127 – 1136.

194 BIBLIOGRAPHY

[35] Gautama, T., and Van Hulle, M. M. A phase-based approach to the es-
timation of the optical flow field using spatial filtering. Neural Networks, IEEE
Transactions on 13, 5 (2002), 1127–1136.

[36] Ghaffari, R., Aranyosi, A. J., and Freeman, D. M. Longitudinally propa-
gating traveling waves of the mammalian tectorial membrane. Proceedings of the
National Academy of Sciences 104, 42 (2007), 16510–16515.

[37] Grossman, W. M. Time shift: Is london’s big ben falling down? Scientific
American (2012).

[38] Hargather, M. J., and Settles, G. S. Natural-background-oriented schlieren
imaging. Experiments in fluids 48, 1 (2010), 59–68.

[39] Hartley, R., and Zisserman, A. Multiple view geometry in computer vision.
Cambridge university press, 2003.

[40] Hasinoff, S. W., Durand, F., and Freeman, W. T. Noise-optimal capture
for high dynamic range photography. In Computer Vision and Pattern Recognition
(CVPR), 2010 IEEE Conference on (2010), IEEE, pp. 553–560.

[41] Healey, G. E., and Kondepudy, R. Radiometric ccd camera calibration and
noise estimation. Pattern Analysis and Machine Intelligence, IEEE Transactions
on 16, 3 (1994), 267–276.

[42] Horn, B., and Schunck, B. Determining optical flow. Artificial intelligence 17,
1-3 (1981), 185–203.

[43] Jolliffe, I. Principal component analysis. Wiley Online Library, 2002.

[44] Karasaridis, A., and Simoncelli, E. A filter design technique for steerable
pyramid image transforms. In Acoustics, Speech, and Signal Processing, 1996.
ICASSP-96. Conference Proceedings., 1996 IEEE International Conference on
(1996), vol. 4, IEEE, pp. 2387–2390.

[45] Kariya, T., and Kurata, H. Generalized least squares. John Wiley & Sons,
2004.

[46] Larkin, K. G., Bone, D. J., and Oldfield, M. A. Natural demodulation of
two-dimensional fringe patterns. i. general background of the spiral phase quadra-
ture transform. JOSA A 18, 8 (2001), 1862–1870.

[47] Lee, J., and Shin, S. Y. General construction of time-domain filters for ori-
entation data. Visualization and Computer Graphics, IEEE Transactions on 8, 2
(2002), 119–128.

[48] Levin, A., Lischinski, D., and Weiss, Y. Colorization using optimization.
689–694.

BIBLIOGRAPHY 195

[49] Levin, A., Lischinski, D., and Weiss, Y. A closed-form solution to natural
image matting. Pattern Analysis and Machine Intelligence, IEEE Transactions on
30, 2 (2008), 228–242.

[50] Lim, J. J., Zitnick, C. L., and Dollár, P. Sketch tokens: A learned mid-level
representation for contour and object detection. In Computer Vision and Pattern
Recognition (CVPR), 2013 IEEE Conference on (2013), IEEE, pp. 3158–3165.

[51] Lim, J. S. Two-dimensional signal and image processing. Prentice Hall, Inc., 1990.

[52] Liu, C., and Freeman, W. A high-quality video denoising algorithm based
on reliable motion estimation. In Computer Vision ECCV 2010, K. Daniilidis,
P. Maragos, and N. Paragios, Eds., vol. 6313 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2010, pp. 706–719.

[53] Liu, C., Freeman, W. T., Szeliski, R., and Kang, S. B. Noise estimation
from a single image. In Computer Vision and Pattern Recognition, 2006 IEEE
Computer Society Conference on (2006), vol. 1, IEEE, pp. 901–908.

[54] Liu, C., Torralba, A., Freeman, W. T., Durand, F., and Adelson, E. H.
Motion magnification. ACM Trans. Graph. 24 (Jul 2005), 519–526.

[55] Liu, C., Torralba, A., Freeman, W. T., Durand, F., and Adelson, E. H.
Motion magnification. In ACM Transactions on Graphics (TOG) (2005), vol. 24,
ACM, pp. 519–526.

[56] Lucas, B. D., and Kanade, T. An iterative image registration technique with
an application to stereo vision. In IJCAI (1981), vol. 81, pp. 674–679.

[57] McLeod, A. J., Baxter, J. S., de Ribaupierre, S., and Peters, T. M.
Motion magnification for endoscopic surgery. In SPIE Medical Imaging (2014),
International Society for Optics and Photonics, pp. 90360C–90360C.

[58] Nakamura, J. Image sensors and signal processing for digital still cameras. CRC
Press, 2005.

[59] Nalwa, V. S., and Binford, T. O. On detecting edges. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 6 (1986), 699–714.

[60] Nichols, G. Sedimentology and stratigraphy. John Wiley & Sons, 2009.

[61] Oppenheim, A. V., and Schafer, R. W. Discrete-time signal processing. Pren-
tice Hall, New York (2010).

[62] Pătrăucean, V., Gurdjos, P., and Von Gioi, R. G. A parameterless line
segment and elliptical arc detector with enhanced ellipse fitting. In Computer
Vision–ECCV 2012. Springer, 2012, pp. 572–585.

196 BIBLIOGRAPHY

[63] Poh, M.-Z., McDuff, D. J., and Picard, R. W. Non-contact, automated car-
diac pulse measurements using video imaging and blind source separation. Optics
express 18, 10 (2010), 10762–10774.

[64] Portilla, J., and Simoncelli, E. P. A parametric texture model based on
joint statistics of complex wavelet coefficients. Int. J. Comput. Vision 40, 1 (Oct.
2000), 49–70.

[65] Roggemann, M. C., Welsh, B. M., and Hunt, B. R. Imaging through tur-
bulence. CRC press, 1996.

[66] Rolfs, M. Microsaccades: Small steps on a long way. Vision Research 49, 20
(2009), 2415 – 2441.

[67] Rubinstein, M. Analysis and Visualization of Temporal Variations in Video.
PhD thesis, Massachusetts Institute of Technology, Feb 2014.

[68] Rubinstein, M., Liu, C., Sand, P., Durand, F., and Freeman, W. T.
Motion denoising with application to time-lapse photography. IEEE Computer
Vision and Pattern Recognition (CVPR) (June 2011), 313–320.

[69] Sellon, J. B., Farrahi, S., Ghaffari, R., and Freeman, D. M. Longitudi-
nal spread of mechanical excitation through tectorial membrane traveling waves.
Proceedings of the National Academy of Sciences 112, 42 (2015), 12968–12973.

[70] Settles, G. S. Schlieren and shadowgraph techniques: visualizing phenomena in
transparent media. Springer Science & Business Media, 2012.

[71] Simoncelli, E. P. Design of multi-dimensional derivative filters. In Image
Processing, 1994. Proceedings. ICIP-94., IEEE International Conference (1994),
vol. 1, IEEE, pp. 790–794.

[72] Simoncelli, E. P., Adelson, E. H., and Heeger, D. J. Probability distribu-
tions of optical flow. In Computer Vision and Pattern Recognition, 1991. Proceed-
ings CVPR’91., IEEE Computer Society Conference on (1991), IEEE, pp. 310–315.

[73] Simoncelli, E. P., and Freeman, W. T. The steerable pyramid: a flexible
architecture for multi-scale derivative computation. In Proceedings of the 1995 In-
ternational Conference on Image Processing (Vol. 3)-Volume 3 - Volume 3 (Wash-
ington, DC, USA, 1995), ICIP ’95, IEEE Computer Society, pp. 3444–.

[74] Simoncelli, E. P., and Freeman, W. T. The steerable pyramid: A flexible
architecture for multi-scale derivative computation. In Image Processing, 1995.
Proceedings., International Conference on (1995), vol. 3, IEEE, pp. 444–447.

[75] Simoncelli, E. P., Freeman, W. T., Adelson, E. H., and Heeger, D. J.
Shiftable multi-scale transforms. IEEE Trans. Info. Theory 2, 38 (1992), 587–607.

BIBLIOGRAPHY 197

[76] Sun, D., Roth, S., and Black, M. J. A quantitative analysis of current prac-
tices in optical flow estimation and the principles behind them. International
Journal of Computer Vision 106, 2 (2014), 115–137.

[77] Sutton, P. J., and Kusmartsev, F. V. Gravitational vortices and clump
formation in saturn’s f ring during an encounter with prometheus. Scientific reports
3 (2013).

[78] Tritton, D. J. Physical fluid dynamics. Oxford, Clarendon Press, 1988, 536 p.
1 (1988).

[79] Tritton, D. J. Physical fluid dynamics. Oxford, Clarendon Press, 1988, 536 p.
1 (1988).

[80] Unser, M. Splines: A perfect fit for signal and image processing. Signal Processing
Magazine, IEEE 16, 6 (1999), 22–38.

[81] Unser, M., Sage, D., and Van De Ville, D. Multiresolution monogenic
signal analysis using the riesz–laplace wavelet transform. Image Processing, IEEE
Transactions on 18, 11 (2009), 2402–2418.

[82] van der Schaaf, v. A., and van Hateren, J. v. Modelling the power spectra
of natural images: statistics and information. Vision research 36, 17 (1996), 2759–
2770.

[83] Wachel, J., Morton, S. J., and Atkins, K. E. Piping vibration analysis.

[84] Wadhwa, N., Dekel, T., Wei, D., Durand, F., and Freeman, W. T. Devia-
tion magnification: revealing departures from ideal geometries. ACM Transactions
on Graphics (TOG) 34, 6 (2015), 226.

[85] Wadhwa, N., Rubinstein, M., Durand, F., and Freeman, W. T. Phase-
based video motion processing. ACM Transactions on Graphics (TOG) 32, 4
(2013), 80.

[86] Wadhwa, N., Rubinstein, M., Durand, F., and Freeman, W. T. Riesz
pyramid for fast phase-based video magnification. In Computational Photography
(ICCP), 2014 IEEE International Conference on. IEEE (2014).

[87] Wang, P., Casadei, F., Shan, S., Weaver, J. C., and Bertoldi, K. Har-
nessing buckling to design tunable locally resonant acoustic metamaterials. Phys-
ical review letters 113, 1 (2014), 014301.

[88] Wiener, N. Extrapolation, interpolation, and smoothing of stationary time series,
vol. 2. MIT press Cambridge, MA, 1949.

198 BIBLIOGRAPHY

[89] Wu, H.-Y., Rubinstein, M., Shih, E., Guttag, J. V., Durand, F., and
Freeman, W. T. Eulerian video magnification for revealing subtle changes in the
world. ACM Trans. Graph. 31, 4 (2012), 65.

[90] Xu, J., Moussawi, A., Gras, R., and Lubineau, G. Using image gradients
to improve robustness of digital image correlation to non-uniform illumination:
Effects of weighting and normalization choices. Experimental Mechanics 55, 5
(2015), 963–979.

[91] Xue, T., Rubinstein, M., Wadhwa, N., Levin, A., Durand, F., and Free-
man, W. T. Refraction wiggles for measuring fluid depth and velocity from video.
In Computer Vision–ECCV 2014. Springer, 2014, pp. 767–782.

[92] Zoran, D., and Weiss, Y. Scale invariance and noise in natural images. In
Computer Vision, 2009 IEEE 12th International Conference on (2009), IEEE,
pp. 2209–2216.

	Abstract
	List of Figures
	Introduction
	Phase-Based Motion Magnification
	Introduction
	Linear Eulerian Video Magnification
	Phase-Based Motion Processing
	Simplified global case
	Complex Steerable Pyramid
	Local Phase Shift is Local Translation
	Our Method
	Bounds
	Sub-octave Bandwidth Pyramids

	Amplifying the Right Signal
	Results
	A Big World of Small Motions
	Comparison with Linear Eulerian Video Magnification
	Controlled Experiments
	Motion Attenuation

	Discussion and Limitations

	Riesz Pyramids for Fast Phase-Based Motion Magnification
	Introduction
	Background
	Local Phase and Quadrature Pairs
	Riesz Transform
	Quaternion Representation of the Riesz Transform

	Riesz Pyramids
	Approximate Riesz Transform
	Spatial Decomposition

	Motion Magnification with the Riesz Pyramid
	Temporal Filtering of Quaternionic Phase
	Spatial Smoothing
	Amplification

	Results
	Discussion and Limitations

	Noise Analysis and Applications in Science and Engineering
	Introduction
	Related Work
	Method
	Phase-Based Motion Estimation
	Noise Analysis
	Sensor Noise Estimation

	Suppressing Magnification of Noise

	Results
	Validation of Motion Estimation
	Validation of Noise Analysis
	Phase-Based Motion Magnification vs. Advecting Color Values
	Mammalian Tectorial Membrane
	Metamaterials

	Discussion and Limitations

	Geometric Deviation Magnification
	Introduction
	Related Work
	Method
	Overview
	Deviations from a Parametric Shape
	Canonical Stripe Representation
	Synthesis
	User Interaction

	Results
	Synthetic Evaluation
	Controlled Experiments

	Discussion and Limitations
	Anti-aliasing filter

	Conclusion
	Filter Taps and Design for Riesz Pyramids and Pseudocode
	Replacement for Laplacian Pyramid
	Approximating the Riesz Transform
	Pseudocode

	Analytic Derivation of Motion Covariance
	Noise on Complex Steerable Pyramid Coefficients
	Variance and Covariance of Local Phase
	Covariance Matrix of Estimated Motions

	Bibliography

