
Pseudocode for Riesz Pyramids for Fast Phase-Based Video

Magnification

Neal Wadhwa, Michael Rubinstein, Frédo Durand and William T. Freeman

This document contains pseudocode for the 2014 ICCP paper Riesz Pyramids for Fast Phase-Based Video
Magnification [3], which presents a real-time algorithm to magnify tiny motions in videos using a new image
representation: the Riesz pyramid. The pseudocode uses the quaternion formulation of the Riesz pyramid
described in our technical report [2]. The algorithm amplifies tiny motions in a temporal band of interest
by amplifying variations in the temporally filtered quaternionic phase of every Riesz pyramid coefficient.
Pseudocode for the main function plus some helper functions is included below. Please refer to the technical
report for more mathematical justification [2] and refer to Oppenheim and Schafer for more information on
the temporal filters used in this pseudocode [1].

Notation The notation in this pseudocode is based on MATLAB’s syntax. All variables are either two
dimensional images (possibly of size 1× 1) or cell arrays: lists that can contain arbitrary elements. Indexing
into an image is denoted by [·, ·] and indexing into a cell array is denoted by {·}. A dot (.) preceeding a
operator like multiplication (∗) or exponentiation (ˆ) denotes that the operation is performed element-wise.

In the pseudocode below, we try to use descriptive variable names. However, for variables corresponding to
filtered and unfiltered versions of the quaternionic phase

φ cos(θ), φ sin(θ), (1)

this results in overly long variable names. For brevity, we represent cos(θ) by only the word cos and sin(θ)
by only the word sin. That is, phase cos represents φ cos(θ), not cos(φ).

1 OnlineRieszVideoMagnification(amplification factor, low cutoff, high cutoff, sampling rate)
2

3 %%%
4 % Initializes spatial smoothing kernel and temporal filtering
5 % coefficients.
6

7 % Compute an IIR temporal filter coefficients. Butterworth filter could be replaced
8 % with any IIR temporal filter. Lower temporal filter order is faster
9 % and uses less memory, but is less accurate. See pages 493-532 of

10 % Oppenheim and Schafer 3rd ed for more information
11 nyquist frequency = sampling rate/2;
12 temporal filter order = 1;
13 [B, A] = GetButterworthFilterCoefficients(temporal filter order, ...
14 low cutoff/nyquist frequency, ...
15 high cutoff/nyquist frequency);
16

17 % Computes convolution kernel for spatial blurring kernel used during
18 % quaternionic phase denoising step.
19 gaussian kernel sd = 2; % px
20 gaussian kernel = GetGaussianKernel(gaussian kernel sd);

1

21

22

23

24 %%%
25 % Initialization of variables before main loop.
26 % This initialization is equivalent to assuming the motions are zero
27 % before the video starts.
28 previous frame = GetFirstFrameFromVideo();
29 [previous laplacian pyramid, previous riesz x, previous riesz y] = ...
30 ComputeRieszPyramid(previous frame);
31 number of levels = numel(previous laplacian pyramid) - 1; % Do not include lowpass residual
32 for k = 1:number of levels
33 % Initializes current value of quaternionic phase. Each coefficient
34 % has a two element quaternionic phase that is defined as
35 % phase times (cos(orientation), sin(orientation))
36 % It is initialized at zero
37 phase cos{k} = zeros(size(previous laplacian pyramid{k}));
38 phase sin{k} = zeros(size(previous laplacian pyramid{k}));
39

40

41 % Initializes IIR temporal filter values. These values are used during
42 % temporal filtering. See the function IIRTemporalFilter for more
43 % details. The initialization is a zero motion boundary condition
44 % at the beginning of the video.
45 register0 cos{k} = zeros(size(previous laplacian pyramid{k}));
46 register1 cos{k} = zeros(size(previous laplacian pyramid{k}));
47

48 register0 sin{k} = zeros(size(previous laplacian pyramid{k}));
49 register1 sin{k} = zeros(size(previous laplacian pyramid{k}));
50 end
51

52

53

54 %%%
55 % Main loop. It is executed on new frames from the video and runs until
56 % stopped.
57 while running
58 current frame = GetNextFrameFromVideo();
59 [current laplacian pyramid, current riesz x, current riesz y] = ...
60 ComputeRieszPyramid(current frame);
61

62 % We compute a Laplacian pyramid of the motion magnified frame first and then
63 % collapse it at the end.
64 % The processing in the following loop is processed on each level
65 % of the Riesz pyramid independently
66 for k = 1:number of levels
67

68 % Compute quaternionic phase difference between current Riesz pyramid
69 % coefficients and previous Riesz pyramid coefficients.
70 [phase difference cos, phase difference sin, amplitude] = ...
71 ComputePhaseDifferenceAndAmplitude(current laplacian pyramid{k}, ...
72 current riesz x{k}, ...
73 current riesz y{k}, ...
74 previous laplacian pyramid{k}, ...
75 previous riesz x{k}, ...
76 previous riesz y{k});
77

78

79 % Adds the quaternionic phase difference to the current value of the quaternionic
80 % phase.
81 % Computing the current value of the phase in this way is
82 % equivalent to phase unwrapping.
83 phase cos{k} = phase cos{k} + phase difference cos;
84 phase sin{k} = phase sin{k} + phase difference sin;
85

86

87 % Temporally filter the quaternionic phase using current value and stored
88 % information

2

89 [phase filtered cos, register0 cos{k}, register1 cos{k}] = ...
90 IIRTemporalFilter(B, A, phase cos{k}, register0 cos{k}, register1 cos{k});
91 [phase filtered sin, register0 sin{k}, register1 sin{k}] = ...
92 IIRTemporalFilter(B, A, phase sin{k}, register0 sin{k}, register1 sin{k});
93

94

95 % Spatial blur the temporally filtered quaternionic phase signals.
96 % This is not an optional step. In addition to denoising,
97 % it smooths out errors made during the various approximations.
98 phase filtered cos = ...
99 AmplitudeWeightedBlur(phase filtered cos, amplitude, gaussian kernel);

100 phase filtered sin = ...
101 AmplitudeWeightedBlur(phase filtered sin, amplitude, gaussian kernel);
102

103

104 % The motion magnified pyramid is computed by phase shifting
105 % the input pyramid by the spatio-temporally filtered quaternionic phase and
106 % taking the real part.
107 phase magnified filtered cos = amplification factor * phase filtered cos;
108 phase magnified filtered sin = amplification factor * phase filtered sin;
109

110 motion magnified laplacian pyramid{k} = ...
111 PhaseShiftCoefficientRealPart(current laplacian pyramid{k}, ...
112 current riesz x{k}, ...
113 current riesz y{k}, ...
114 phase magnified filtered cos, ...
115 phase magnified filtered sin);
116 end
117

118

119 % Take lowpass residual from current frame's lowpass residual
120 % and collapse pyramid.
121 motion magnified laplacian pyramid{number of levels+1} = ...
122 current laplacian pyramid{number of levels+1};
123 motion magnified frame = CollapseLaplacianPyramid(motion magnified laplacian pyramid);
124

125

126 % Write or display the motion magnified frame.
127 WriteMagnifiedFrame(motion magnified frame);
128 % DisplayMagnifiedFrame(motion magnified frame);
129

130

131 % Prepare for next iteration of loop
132 previous laplacian pyramid = current laplacian pyramid;
133 previous riesz x = current riesz x;
134 previous riesz y = current riesz y;
135 end

Helper Functions Pseudocode for helper functions are provide below. They include information on how
to build a Riesz pyramid, compute quaternionic phase, phase shift Riesz pyramid coefficients, temporally
filtering phase and spatially blurring phase. Pseudocode for functions that compute and collapse Laplacian
pyramids, read and write to videos and display images on a screen is not included.

1 ComputeRieszPyramid(grayscale frame)
2 % Compute Riesz pyramid of two dimensional frame. This is done by first
3 % computing the laplacian pyramid of the frame and then computing the
4 % approximate Riesz transform of each level that is not the lowpass
5 % residual. The result is stored as an array of grayscale frames.
6 % Corresponding locations in the result correspond to the real,
7 % i and j components of Riesz pyramid coefficients.
8 laplacian pyramid = ComputeLaplacianPyramid(grayscale frame);
9 number of levels = numel(laplacian pyramid)-1;

10

3

11

12 % The approximate Riesz transform of each level that is not the
13 % low pass residual is computed. For more details on the approximation,
14 % see supplemental material.
15 kernel x = [0.0 0.0 0.0;
16 0.5 0.0 -0.5;
17 0.0 0.0 0.0];
18 kernel y = [0.0 0.5 0.0;
19 0.0 0.0 0.0;
20 0.0 -0.5 0.0];
21 for k = 1:number of levels
22 riesz x{k} = Convolve(laplacian pyramid{k}, kernel x);
23 riesz y{k} = Convolve(laplacian pyramid{k}, kernel y);
24 end
25 return {laplacian pyramid, riesz x, riesz y}

1 ComputePhaseDifferenceAndAmplitude(current real, current x, current y, ...
2 previous real, previous x, previous y)
3 % Computes quaternionic phase difference between current frame and previous
4 % frame. This is done by dividing the coefficients of the current frame
5 % and the previous frame and then taking imaginary part of the quaternionic
6 % logarithm. We assume the orientation at a point is roughly constant to
7 % simplify the calcuation.
8

9 % q current = current real + i * current x + j * current y
10 % q previous = previous real + i * previous x + j * previous y
11 % We want to compute the phase difference, which is the phase of
12 % q current/q previous
13 % This is equal to (Eq. 10 of tech. report)
14 % q current * conjugate(q previous)/ | |q previous | |ˆ2
15 % Phase is invariant to scalar multiples, so we want the phase of
16 % q current * conjugate(q previous)
17 % which we compute now (Eq. 7 of tech. report). Under the constant orientation assumption,
18 % we can assume the fourth component of the product is zero.
19 q conj prod real = current real.*previous real + ...
20 current x.*previous x + ...
21 current y.*previous y;
22 q conj prod x = -current real.*previous x + previous real.*current x;
23 q conj prod y = -current real.*previous y + previous real.*current y;
24

25 % Now we take the quaternion logarithm of this (Eq. 12 in tech. report)
26 % Only the imaginary part corresponds to quaternionic phase.
27 q conj prod amplitude = sqrt(q conj prod real.ˆ2 + q conj prod x.ˆ2 + q conj prod y.ˆ2);
28 phase difference = acos(q conj prod real./q conj prod amplitude);
29 cos orientation = q conj prod x ./ sqrt(q conj prod x.ˆ2+q conj prod y.ˆ2);
30 sin orientation = q conj prod y ./ sqrt(q conj prod x.ˆ2+q conj prod y.ˆ2);
31

32 % This is the quaternionic phase (Eq. 2 in tech. report)
33 phase difference cos = phase difference .* cos orientation;
34 phase difference sin = phase difference .* sin orientation;
35

36 % Under the assumption that changes are small between frames, we can
37 % assume that the amplitude of both coefficients is the same. So,
38 % to compute the amplitude of one coefficient, we just take the square root
39 % of their conjugate product
40 amplitude = sqrt(q conj prod amplitude);
41

42 return {phase difference cos, phase difference sin, amplitude)

1 IIRTemporalFilter(B, A, phase, register0, register1)
2 % Temporally filters phase with IIR filter with coefficients B, A.
3 % Given current phase value and value of previously computed registers,
4 % comptues current temporally filtered phase value and updates registers.
5 % Assumes filter given by B, A is first order IIR filter, so that

4

6 % B and A have 3 coefficients each. Also, assumes A(1) = 1. Computation
7 % is Direct Form Type II (See pages 388-390 of Oppenheim and Schafer 3rd Ed.)
8 temporally filtered phase = B(1) * phase + register0;
9 register0 = B(2) * phase + register1 - A(2) * temporally filtered phase;

10 register1 = B(3) * phase - A(3) * temporally filtered phase;
11 return {temporally filtered phase, register0, register1}

1 AmplitudeWeightedBlur(temporally filtered phase, amplitude, blur kernel)
2 % Spatially blurs phase, weighted by amplitude. One half of Eq. 23 in tech. report.
3 denominator = Convolve(amplitude, blur kernel);
4 numerator = Convolve(temporally filtered phase.*amplitude, blur kernel);
5 spatially smooth temporally filtered phase = numerator./denominator;
6 return spatially smooth temporally filtered phase;

1 PhaseShiftCoefficientRealPart(riesz real, riesz x, riesz y, phase cos, phase sin)
2 % Phase shifts a Riesz pyramid coefficient and returns the real part of the
3 % resulting coefficient. The input coefficient is a three
4 % element quaternion. The phase is two element imaginary quaternion.
5 % The phase is exponentiated and then the result is mutiplied by the first
6 % coefficient. All operations are defined on quaternions.
7

8 % Quaternion Exponentiation
9 phase magnitude = sqrt(phase cos.ˆ2+phase sin.ˆ2); % \ |v\ | in Eq. 11 in tech. report.

10 exp phase real = cos(phase magnitude);
11 exp phase x = phase cos./phase magnitude.*sin(phase magnitude);
12 exp phase y = phase sin./phase magnitude.*sin(phase magnitude);
13

14 % Quaternion Multiplication (just real part)
15 result = exp phase real.*riesz real ...
16 - exp phase x.*riesz x ...
17 - exp phase y.*riesz y;
18 return result;

References

[1] Oppenheim, A. V., and Schafer, R. W. Discrete-Time Signal Processing. Prentice Hall Press, 2009.

[2] Wadhwa, N., Rubinstein, M., Durand, F., and Freeman, W. T. Quaternionic representation of
the riesz pyramid for video magnification.

[3] Wadhwa, N., Rubinstein, M., Durand, F., and Freeman, W. T. Riesz pyramids for fast phase-
based video magnification. In Computational Photography (ICCP), 2014 IEEE International Conference
on (2014), IEEE, pp. 1–10.

5

