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Motivation

• Recent breakthrough in Protein folding (e.g AlphaFold2 and RoseTTAFold)

Fig source: sites.google.com/site/fabiopietrucci/ and https://deepmind.com/

http://sites.google.com/site/fabiopietrucci/


Motivation

• How about molecules ? They naturally lie in the 3D space.




Motivation

• Important applications, e.g. drug - target 
interactions depend on the 3D structures of 
both the protein and the ligand.

Fig source: Interpretable Drug Target Prediction Using Deep Neural Representation , IJCAI’18
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Motivation
• Goal: predict (all) low energy conformers of an input 

molecular graph


• Energy -> implicitly defined by a given dataset

Fig source: WikipediaFig source: Wikipedia



• Goal: predict (all) low energy conformers of an input 
molecular graph


• Why? 

• Faster, computationally efficient and more accurate 
conformer generation using Message Passing Neural 
Networks


• Usable in various 3D downstream tasks, e.g.: 


• Protein - ligand binding


• Molecular docking poses


• Generating conformers inside 3D enzyme pockets


• Intermediate representation for various property 
predictors (e.g. biological activity); pre-training technique


Fig source: Wikipedia

Motivation
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• Stochastic methods: 

• Distance geometry initialization + subsequent optimization


• Popular open-source method: ETKDG/RDKit


• Systematic methods: 

• Exhaustive search over torsion angles


• Using databases of torsion templates (torsion rules)


• Commercial software: OMEGA


• Fine-tunning with Force Fields (FF) is often needed


• Crude approximations of the true energy 


• Experimental quantum mechanics parameters 


• Strong assumptions (simplistic formulas)


• Other limitations, e.g. ability to accurately capture subtle, weak 

interactions in biomolecules.


Traditional Conformer generation
Drawbacks: 

• Difficult to sample diverse and representative conformers


• Computationally expensive 

Drawbacks: 

• Computational prohibitive for structures with large number of rotatable bonds


•  Poor generalization to unseen structures



ML Approaches  for Conformer generation
• Multi-stage models: generate distance matrix, then predict coordinates, then fine-tune the conformer [2,3]


• Need a FF or extra energy model


• Not trainable end-to-end  error accumulation


• No explicit handling of classic molecular geometry: bond angles, torsions angles, chirality, cis/trans conformations , etc.


• Requires an iterative procedure to sample conformers (e.g. via Langevin dynamics [3]) 


⟶

[1] Simm, Gregor NC, and José Miguel Hernández-Lobato. "A generative model for molecular distance geometry.”, ICML 2020

[2] Learning neural generative dynamics for molecular conformer generation. ICLR 2021 

[3] Learning Gradient Fields for Molecular Conformation Generation, Shi et al, ICML 2021

FF optimization Result
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GeoMol - Overview

Input: 

molecular graph

(+ random noise) 

Message 
Passing  

Neural Network

Atom 
embeddings

…

X Y
α

Full conformer 
assembly

Test time (only).

Involves: Deterministic 

ring corrections

Repeat N times to generate N conformers

Predict local structures, 

i.e., 1-hop 3D coordinates.


Result: bond distances and bond 
angles. 

Training loss: 1,2,3-hop distance loss; bond 
angle & torsion angle loss

Assemble neighboring local 
structures.


Result: torsion angles and 3-hop 
distances
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GeoMol - Overview

Contributions: 

• Explicit prediction of bond distances, bond angles and torsion angles.


• Trainable end-to-end & non-autoregressive:  joint prediction of all atom 3D coordinates from the molecular graph


• 3D coordinates predicted SE(3)-invariantly (to any global rotation/translation)


• Tetrahedral chiral centers are predicted exactly ; no iterative optimization necessary as with traditional distance geometry approaches


• Diversity of generated conformers: achieved using a tailored Wasserstein generative loss


• Conformers generated directly by the neural network, without iterative optimization such as Langevin dynamics 



Local Structure (LS) Prediction 

For each non-terminal atom X, predict the relative 3D coordinates of all its 1-hop neighbors (atom local 3D environment) assuming X is placed in : 




Result: bond distances and bond angles.
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Local Structure (LS) Prediction 

For each non-terminal atom X, predict the relative 3D coordinates of all its 1-hop neighbors (atom local 3D environment) assuming X is placed in :  




Challenges:  

• 1) Equivariant prediction with respect to any permutation of neighbors:


• 2) Bond distances should match symmetrically, 

• i.e.  should have the same length predicted from the LS of X or from the LS of 


• Solution: a special symmetric transformer that separates distance prediction from direction prediction (see paper)
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Local Structure (LS) Prediction 

For each non-terminal atom X, predict the relative 3D coordinates of all its 1-hop neighbors (atom local 3D environment) assuming X is placed in :  




Challenges:  

• 1) Equivariant prediction with respect to any permutation of neighbors:


• 2) Bond distances should match symmetrically, 

• i.e.  should have the same length predicted from the LS of X or from the LS of 


• 3) Should explicitly address chirality
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Tackling Chirality

• Bond annotations are not fixed, i.e. multiple equivalent annotations

• Chiral information: 


• Bond annotations to describe different molecules with same 

molecular graph, but different 3D structures (and, thus, 

different chemical behavior) 


• Differentiates mirroring structures

Fig source: “Message Passing Networks for Molecules with Tetrahedral Chirality”, L Pattanaik, OE Ganea et al, 2020



Tackling Chirality
• MPNNs cannot distinguish chirality …


• … unless order of graph neighbors is explicitly used



Tackling Chirality Exactly

• The sign of the oriented volume changes depending on chirality. 


• If we get the incorrect sign, we simply reflect the structure by flipping against the z-axis. 


• No iterative optimization is needed. 

• Given a chiral center (or any center with 4 neighbors), we can compute the oriented 

volume.
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Assembling Two Neighboring LS via Torsion Angle Prediction
Assemble every two local neighboring structures.


Challenges:

• 1) Parameterize a single canonical torsion angle per rotatable bond (no over-parameterization)


• All dihedral angles  are coupled via a single canonical torsion


• 2) Torsion angles should be predicted in a rotation-translation invariant manner, plus 
permutation invariant to ’s or ’s .


• Solution - novel Torsion Angle Neural Network - see our paper


∠(XYTi, XYZj)

Ti Zj
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Optimal Transport Loss
• First setting: one predicted conformer  and one ground truth conformer :  loss                     


• Matches 1,2,3-hop distances, bond and torsion angles.                 


• Hard case: Multiple (variable sized) ground truth conformers  and predicted 


• How to leverage the single conformer loss  ?


• How to avoid adversarial training (impractical, hard to train, expensive) ?


• How to generate diverse conformers (to cover all modes of the true distribution) ?


•
Solution: Wasserstein loss: 

C C* ℒ(C, C*)

{C*1 , …, C*n } {C1, …, Cm}

ℒ(C, C*)

ℒ = 𝒲ℒ(⋅,⋅)({Cj}j, {C*i }i) = inf
T ∈ ℝm×n

T doubly stochastic

n

∑
i=1

m

∑
j=1

Tijℒ(Cj, C*i )



Dealing with Symmetry
• A & B are identical and symmetric in the molecular graph, but not in 3D (since  )
d(A, C) ≠ d(B, C)



Dealing with Symmetry
• A & B are identical and symmetric in the molecular graph, but not in 3D (since  )


• We use a loss that tries all permutations of such symmetric groups of terminal atoms:

d(A, C) ≠ d(B, C)

ℒperm(C, C*) := min (ℒ(CA,B, C*A,B), ℒ(CB,A, C*A,B))



Assemble Full Conformer at Test Time

• We can assemble any tree-like molecule using predicted 

local structures and torsion angles.


• We correct rings by averaging over all spanning trees and 

using Kabsch superimposition algorithm.




Datasets
• Datasets: 

• GEOM-QM9 conformers: small molecules


• GEOM-DRUGS (AG, 2020): larger drug-like molecules


• Conformers generated with semi-empirical tight-binding DFT (GFN2-xTB) generated with the CREST software



Evaluation Metrics
• Comparison metric of two conformers: RMSD (Root-mean-square deviation of atomic positions):


• Comparison of two conformer distributions:


• Coverage : percentage of “correctly” generated conformers from ground truth set.


           


• Average Minimum RMSD : for each generated conformer, compute RMSD to the closest ground truth. Average over all.


           


• COV - P (Precision) and AMR - P (Precision) defined similarly


↑

↓



Results (no FF fine-tuning)
• For each molecule, we ask models to generate 2x as many conformers as in the ground truth


• Test set: 1000 molecules

GraphDG:  Simm, Gregor NC, and José Miguel Hernández-Lobato. "A generative model for molecular distance geometry.”, ICML 2020

CGCF: Learning neural generative dynamics for molecular conformer generation. ICLR 2021 



Num of rotatable bonds vs coverage 







Conformer Generation Time



Current Limitations

• Weakness in capturing some long-range 
interactions especially of structures that are 
scarce in the train set (e.g. macrocycles)


• Steric clashes


• Large rings



Thank you!


