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Motivation

* Recent breakthrough in Protein folding (e.g AlphaFold2 and RoseT TAFold)

Deelend > Blog >  AlphaFold: a solution to a 50-year-old grand challenge in biology

Alphalold: a solution to a
50-year-old grand
challenge in biology

Fig source: sites.google.com/site/fabiopietrucci/ and https://deepmind.com/



http://sites.google.com/site/fabiopietrucci/

Motivation

e How about molecules ? They naturally lie in the 3D space.




Motivation

 Important applications, e.g. drug - target

interactions depend on the 3D structures of

both the protein and the ligand.

Figure 3: The interaction between SCHEMBL16362922 and the
MAP kinase-interacting serine/threonine-protein kinase 2. The pro-
tein 1s shown 1n yellow and the small molecule is shown in green.

Fig source: Interpretable Drug Target Prediction Using Deep Neural Representation , IJCAI’'18
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* Molecules have potentially thousands of stable conformations.
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Motivation

* Molecules have potentially thousands of stable conformations.

* Model rigid and flexible parts of the 3D structure.

 Goal: predict (all) low energy conformers of an input molecular graph.
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Motivation

e Goal: predict (all) low energy conformers of an input

molecular graph

e Why?
* Faster, computationally efficient and more accurate
conformer generation using Message Passing Neural

Networks

 Usable in various 3D downstream tasks, e.g.:
* Protein - ligand binding
* Molecular docking poses

e Generating conformers inside 3D enzyme pockets

e Intermediate representation for various property

predictors (e.g. biological activity); pre-training technique
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e Stochastic methods:

 Distance geometry initialization + subsequent optimization

 Popular open-source method: ETKDG/RDKit
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Traditional Conformer generation

e Stochastic methods:
 Distance geometry initialization + subsequent optimization
 Popular open-source method: ETKDG/RDKit

e Systematic methods:

 Exhaustive search over torsion angles
e Using databases of torsion templates (torsion rules) ﬂ

e Commercial software: OMEGA

Drawbacks:

e Difficult to sample diverse and representative conformers

e Computationally expensive

Drawbacks:

 Computational prohibitive for structures with large number of rotatable bonds

* Poor generalization to unseen structures

* Fine-tunning with Force Fields (FF) is often needed

* Crude approximations of the true energy
* Experimental quantum mechanics parameters

e Strong assumptions (simplistic formulas)

ATAY]

torsion angle

e Other limitations, e.g. ability to accurately capture subtle, weak

interactions in biomolecules. | "\\

A

#” Lennard Jones
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Distance bond length or 3-atom angle




ML Approaches for Conformer generation

 Multi-stage models: generate distance matrix, then predict coordinates, then fine-tune the conformer [2,3]

* Need a FF or extra energy model
e Not trainable end-to-end — error accumulation

* No explicit handling of classic molecular geometry: bond angles, torsions angles, chirality, cis/trans conformations , etc.

* Requires an iterative procedure to sample conformers (e.g. via Langevin dynamics [3])

pe(d|G) p(R|d,G) Ey(R,G)

cIJ’H Predict distances for Search 3D coordinates Further optimize the

HigzCnyy |= the input graph. given the distances. generated structures.
Input Graph l \ l

F,
/\—>,—> 9—>—>p

i : Flow X Gradient
."\" (O, I ) : Dynamics . Descent
dity) CGCF  d(t1) | p(R|d.G) R ETM R

[1] Stimm, Gregor NC, and José Miguel Hernandez-Lobato. "A generative model for molecular distance geometry.”, ICML 2020

2] Learning neural generative dynamics for molecular conformer generation. ICLR 2021

3] Learning Gradient Fields for Molecular Conformation Generation, Shi et al, ICML 2021
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* Trainable end-to-end & non-autoregressive: joint prediction of all atom 3D coordinates from the molecular graph

* 3D coordinates predicted SE(3)-invariantly (to any global rotation/translation)

Repeat N times to generate N conformers

* Tetrahedral chiral centers are predicted exactly ; no iterative optimization necessary as with traditional distance geometry approaches

e Diversity of generated conformers: achieved using a tailored Wasserstein generative loss
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Training loss: 1,2,3-hop distance loss; bond
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* Trainable end-to-end & non-autoregressive: joint prediction of all atom 3D coordinates from the molecular graph

* 3D coordinates predicted SE(3)-invariantly (to any global rotation/translation)

Repeat N times to generate N conformers

* Tetrahedral chiral centers are predicted exactly ; no iterative optimization necessary as with traditional distance geometry approaches

e Diversity of generated conformers: achieved using a tailored Wasserstein generative loss

 (Conformers generated directly by the neural network, without iterative optimization such as Langevin dynamics



Local Structure (LS) Prediction
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Result: bond distances and bond angles.
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Local Structure (LS) Prediction
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For each non-terminal atom X, predict the relative 3D coordinates of all its 1-hop neighbors (atom local 3D environment) assuming X is placed in 0:

f(thy..-,th;hX) — (p17'--7pn) €R3Xn

Challenges:
1) Equivariant prediction with respect to any permutation of neighbors: f(hTﬁ(l) I hTﬁ(n) : hX) — (pw(l)a vy pw(n))a V€ Sn

« 2) Bond distances should match symmetrically,
« i.e. X1 should have the same length predicted from the LS of X or from the LS of 7}

e Solution: a special symmetric transformer that separates distance prediction from direction prediction (see paper)



Local Structure (LS) Prediction
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For each non-terminal atom X, predict the relative 3D coordinates of all its 1-hop neighbors (atom local 3D environment) assuming X is placed in 0:

f(thy..-,th;hx) — (p17...7pn) €R3Xn

Challenges:
1) Equivariant prediction with respect to any permutation of neighbors: f(hTﬁ(l) I hTﬁ(n) : hX) — (pw(l)a vy pw(n))a V€ Sn

« 2) Bond distances should match symmetrically,
« i.e. X1 should have the same length predicted from the LS of X or from the LS of 7}

« 3) Should explicitly address chirality



Tackling Chirality

e (Chiral information:

e Bond annotations to describe different molecules with same

|
s
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&

molecular graph, but different 3D structures (and, thus,
different chemical behavior)

e Differentiates mirroring structures

* Bond annotations are not fixed, i.e. multiple equivalent annotations

|
-
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Fig source: “Message Passing Networks for Molecules with Tetrahedral Chirality”, L Pattanaik, OE Ganea et al, 2020



Tackling Chirality

* MPNNSs cannot distinguish chirality ...

e ... unless order of graph neighbors is explicitly used




Tackling Chirality Exactly

e Given a chiral center (or any center with 4 neighbors), we can compute the oriented

volume.

/1 1 1 1

oV def _. 1 T2 T3 T4
(p17 P2, P3, p4) stgn Y1 Y2 Y3 Ya

\21 22 B3 R4

The sign of the oriented volume changes depending on chirality.

If we get the incorrect sign, we simply reflect the structure by flipping against the z-axis.

* No iterative optimization is needed.
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permutation invariant to 7’s or Z’s .




Assembling Two Neighboring LS via Torsion Angle Prediction

Assemble every two local neighboring structures.

Challenges:
* 1) Parameterize a single canonical torsion angle per rotatable bond (no over-parameterization) hX hy hmol
o All dihedral angles £(XYT;, XY Zj) are coupled via a single canonical torsion Torsion angle (e0e) (e00) (e00)

Neural Net

» 2) Torsion angles should be predicted in a rotation-translation invariant manner, plus
permutation invariant to 7’s or Z’s .

« Solution - novel Torsion Angle Neural Network - see our paper
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Optimal Transport Loss

First setting: one predicted conformer C and one ground truth conformer C*: loss £ (C, C*)

* Matches 1,2,3-hop distances, bond and torsion angles.

Hard case: Multiple (variable sized) ground truth conformers {C*, ..., C*} and predicted {C}, ..., C, }

e How to leverage the single conformer loss Z(C, C*) ?

* How to avoid adversarial training (impractical, hard to train, expensive) ?

* How to generate diverse conformers (to cover all modes of the true distribution) ?

Solution: Wasserstein loss: &£ = W 5. \({C;};, {C*})) = . énH{an Z Z I,2(C;, CF)

T doubly stochastic i=1 =1



Dealing with Symmetry

e A & B are identical and symmetric in the molecular graph, but not in 3D (since d(A, C) # d(B, C))
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Dealing with Symmetry

e A & B are identical and symmetric in the molecular graph, but not in 3D (since d(A, C) # d(B, C))

* We use a loss that tries all permutations of such symmetric groups of terminal atoms:

Frm(C, €% i= min ( L(Cy . Ch . L(Cy o)

with permutation-
dependent loss:

without permutation-
dependent loss:




Assemble Full Conformer at Test Time

* We can assemble any tree-like molecule using predicted

local structures and torsion angles.

* We correct rings by averaging over all spanning trees and

using Kabsch superimposition algorithm.

model without model with
ring correction ring correction

ground truth



Molecule count

Datasets

e Datasets:
e GEOM-QM9 conformers: small molecules

e GEOM-DRUGS (AG, 2020): larger drug-like molecules
 (Conformers generated with semi-empirical tight-binding DFT (GFN2-xTB) generated with the CREST software

Heavy atom count Conformer count per molecule Rotatable bonds count

10° dataset dataset dataset
QM9 QM9 QM9

10° DRUGS DRUGS DRUGS

10°

10°

10!

10°

20 40 60 80 0 1000 2000 3000 4000 5000 6000 7000 0 S 10 15 20 25 30 35

Total heavy atoms Total unique conformers Total rotatable bonds



Evaluation Metrics

e Comparison metric of two conformers: RMSD (Root-mean-square deviation of atomic positions):

e Comparison of two conformer distributions:

 Coverage 1: percentage of “correctly” generated conformers from ground truth set.

of 1
COV - R (Recall) = - |{t € [1.L] : 3k € [1.K], RMSD(Ck, Cf) < 6}

e Average Minimum RMSD |: for each generated conformer, compute RMSD to the closest ground truth. Average over all.

AMR - R (Recall) ¥ % > kéﬁinm RMSD(Cx,Cy)
1€[1..L] h

e COV - P (Precision) and AMR - P (Precision) defined similarly



Results (no FF fine-tuning)

* For each molecule, we ask models to generate 2x as many conformers as in the ground truth

e Test set: 1000 molecules

Table 1: Results on the GEOM-DRUGS dataset.

COV-R(%)1 || AMR-R(A)] || COV-P(%) 1 || AMR-P(A)]
Models Mean | Median || Mean | Median || Mean | Median || Mean | Median
GraphDG (ML) 10.37 0.00 1.950 1.933 3.98 0.00 2.420 2.420
CGCF (ML) 54.35 56.74 1.248 1.224 24 .48 15.00 1.837 1.829
RDKit /ETKDG 68.78 76.04 1.042 0.982 71.06 88.24 1.036 0.943
OMEGA (C) 81.64 97.25 0.851 0.771 77.18 96.15 0.951 0.854
GEOMOL (s = 9.5) || 86.07 98.06 0.846 0.820 71.78 83.77 1.039 0.982
GEOMOL (s = D) 82.43 95.10 0.862 0.837 78.52 94 .40 0.933 0.856
Table 2: Results on the GEOM-QM?9 dataset.
COV-R(%)T || AMR-RA)] || COV-P(%)1 || AMR-P (A)]
Models Mean | Median || Mean | Median || Mean | Median || Mean | Median
GraphDG (ML) 74.66 | 100.00 0.373 0.337 63.03 77.60 0.450 0.404
CGCF (ML) 69.47 96.15 0.425 0.374 38.20 33.33 0.711 0.695
RDKit/ETKDG 85.13 | 100.00 0.235 0.199 86.80 | 100.00 0.232 0.205
OMEGA (C) 85.51 | 100.00 0.177 0.126 82.86 | 100.00 0.224 0.186
GEOMOL (s =5) || 91.52 | 100.00 0.225 0.193 86.71 | 100.00 0.270 0.241

GraphDG: Simm, Gregor NC, and José Miguel Hernandez-Lobato. "A generative model for molecular distance geometry.”, ICML 2020

CGCF: Learnine neural generative dvnamics for molecular conformer egeneration. ICLLR 2021




Num of rotatable bonds vs coverage

Recall coverage (%)
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Current Limitations

Reference GeoMol

* WWeakness in capturing some long-range
interactions especially of structures that are
scarce in the train set (e.g. macrocycles)

o Steric clashes

» Large rings




Thank you!



