GeoMol: Torsional Geometric Generation of Molecular 3D Conformer Ensembles

Octavian Ganea*, Lagnajit Pattanaik*, Connor W. Coley, William H. Green, Regina Barzilay, Klavs F. Jensen, and Tommi S. Jaakkola

MIT Computer Science & Artificial Intelligence Laboratory

• Recent breakthrough in **Protein folding** (e.g AlphaFold2 and RoseTTAFold)

Fig source: sites.google.com/site/fabiopietrucci/ and https://deepmind.com/

Motivation

DeepMind

• How about molecules ? They naturally lie in the 3D space.

• Important applications, e.g. drug - target interactions depend on the 3D structures of both the protein and the ligand.

Figure 3: The interaction between SCHEMBL16362922 and the MAP kinase-interacting serine/threonine-protein kinase 2. The protein is shown in yellow and the small molecule is shown in green.

• Molecules have potentially thousands of stable conformations.

- Molecules have potentially thousands of stable conformations.
 - Model rigid and flexible parts of the 3D structure.

- Molecules have potentially thousands of stable conformations.
 - Model rigid and flexible parts of the 3D structure.

- Goal: predict (all) low energy conformers of an input molecular graph
 - Energy -> implicitly defined by a given dataset

Goal: predict (all) low energy conformers of an input molecular graph

• Why?

- Faster, computationally efficient and more accurate conformer generation using Message Passing Neural Networks
- Usable in various 3D downstream tasks, e.g.:
 - Protein ligand binding
 - Molecular docking poses
 - Generating conformers inside 3D enzyme pockets
- Intermediate representation for various property predictors (e.g. biological activity); pre-training technique

• Stochastic methods:

- Distance geometry initialization + subsequent optimization
- Popular open-source method: ETKDG/RDKit

• Stochastic methods:

- Distance geometry initialization + subsequent optimization \bullet
- Popular open-source method: ETKDG/RDKit \bullet

Drawbacks:

Computationally expensive \bullet

• Stochastic methods:

- Distance geometry initialization + subsequent optimization lacksquare
- Popular open-source method: ETKDG/RDKit \bullet

• Systematic methods:

- Exhaustive search over torsion angles \bullet
- Using databases of torsion templates (torsion rules) \bullet
- **Commercial software: OMEGA** \bullet

Drawbacks:

Computationally expensive

• Stochastic methods:

- Distance geometry initialization + subsequent optimization \bullet
- Popular open-source method: ETKDG/RDKit \bullet

• Systematic methods:

- Exhaustive search over torsion angles
- Using databases of torsion templates (torsion rules)
- **Commercial software: OMEGA**

Drawbacks:

- Difficult to sample diverse and representative conformers
- Computationally expensive

Drawbacks:

- Computational prohibitive for structures with large number of rotatable bonds
- Poor generalization to unseen structures lacksquare

• Stochastic methods:

- Distance geometry initialization + subsequent optimization
- Popular open-source method: ETKDG/RDKit

• Systematic methods:

- Exhaustive search over torsion angles
- Using databases of torsion templates (torsion rules)
- Commercial software: OMEGA
- Fine-tunning with Force Fields (FF) is often needed
 - Crude approximations of the true energy
 - Experimental quantum mechanics parameters
 - Strong assumptions (simplistic formulas)
 - Other limitations, e.g. ability to accurately capture subtle, weak interactions in biomolecules.

Drawbacks:

- Difficult to sample diverse and representative conformers
- Computationally expensive

Drawbacks:

- Computational prohibitive for structures with large number of rotatable bonds
- Poor generalization to unseen structures

ML Approaches for Conformer generation

- Multi-stage models: generate distance matrix, then predict coordinates, then fine-tune the conformer [2,3] lacksquare
 - Need a FF or extra energy model
 - Not trainable end-to-end \longrightarrow error accumulation
 - No explicit handling of classic molecular geometry: bond angles, torsions angles, chirality, cis/trans conformations, etc.
 - Requires an iterative procedure to sample conformers (e.g. via Langevin dynamics [3])

[1] Simm, Gregor NC, and José Miguel Hernández-Lobato. "A generative model for molecular distance geometry.", ICML 2020 [2] Learning neural generative dynamics for molecular conformer generation. ICLR 2021 [3] Learning Gradient Fields for Molecular Conformation Generation, Shi et al, ICML 2021

Input: molecular graph (+ random noise)

angles.

angle & torsion angle loss

Contributions:

Training loss: 1,2,3-hop distance loss; bond angle & torsion angle loss

Explicit prediction of bond distances, bond angles and torsion angles. \bullet

GeoMol - Overview

Contributions:

- Explicit prediction of bond distances, bond angles and torsion angles. \bullet
- Trainable end-to-end & non-autoregressive: joint prediction of all atom 3D coordinates from the molecular graph lacksquare

GeoMol - Overview

Contributions:

- Explicit prediction of bond distances, bond angles and torsion angles. \bullet
- Trainable end-to-end & non-autoregressive: joint prediction of all atom 3D coordinates from the molecular graph ullet
- 3D coordinates predicted SE(3)-invariantly (to any global rotation/translation)

GeoMol - Overview

Contributions:

- Explicit prediction of bond distances, bond angles and torsion angles. \bullet
- Trainable end-to-end & non-autoregressive: joint prediction of all atom 3D coordinates from the molecular graph \bullet
- 3D coordinates predicted SE(3)-invariantly (to any global rotation/translation)
- Tetrahedral chiral centers are predicted exactly; no iterative optimization necessary as with traditional distance geometry approaches

GeoMol - Overview

Contributions:

- Explicit prediction of bond distances, bond angles and torsion angles. \bullet
- Trainable end-to-end & non-autoregressive: joint prediction of all atom 3D coordinates from the molecular graph \bullet
- 3D coordinates predicted SE(3)-invariantly (to any global rotation/translation) \bullet
- Tetrahedral chiral centers are predicted exactly; no iterative optimization necessary as with traditional distance geometry approaches
- Diversity of generated conformers: achieved using a tailored Wasserstein generative loss

GeoMol - Overview

Contributions:

- Explicit prediction of bond distances, bond angles and torsion angles. \bullet
- Trainable end-to-end & non-autoregressive: joint prediction of all atom 3D coordinates from the molecular graph \bullet
- 3D coordinates predicted SE(3)-invariantly (to any global rotation/translation) \bullet
- Tetrahedral chiral centers are predicted exactly; no iterative optimization necessary as with traditional distance geometry approaches \bullet
- Diversity of generated conformers: achieved using a tailored Wasserstein generative loss
- Conformers generated directly by the neural network, without iterative optimization such as Langevin dynamics

GeoMol - Overview

For each non-terminal atom X, predict the relative 3D coordinates of all its 1-hop neighbors (atom local 3D environment) assuming X is placed in 0: $f(\mathbf{h}_{T_1}, \ldots, \mathbf{h}_{T_n}; \mathbf{h}_X) = (\mathbf{p}_1, \ldots, \mathbf{p}_n) \in \mathbb{R}^{3 \times n}$

Result: bond distances and bond angles.

For each non-terminal atom X, predict the relative 3D coordinates of all its $f(\mathbf{h}_{T_1},\ldots,\mathbf{h}_{T_n};\mathbf{h}_X) = (\mathbf{p}_1,\ldots,\mathbf{p}_n) \in \mathbb{R}^{3 imes n}$

Challenges:

• 1) Equivariant prediction with respect to any permutation of neighbor

ors:
$$f(\mathbf{h}_{T_{\pi(1)}}, \dots, \mathbf{h}_{T_{\pi(n)}}; \mathbf{h}_X) = (\mathbf{p}_{\pi(1)}, \dots, \mathbf{p}_{\pi(n)}), \forall \pi \in \mathcal{I}$$

 $f(\mathbf{h}_{T_1},\ldots,\mathbf{h}_{T_n};\mathbf{h}_X) = (\mathbf{p}_1,\ldots,\mathbf{p}_n) \in \mathbb{R}^{3 \times n}$

Challenges:

- 1) Equivariant prediction with respect to any permutation of neighbor
- 2) Bond distances should match symmetrically,
 - i.e. XT_1 should have the same length predicted from the LS of X or from the LS of T_1

ors:
$$f(\mathbf{h}_{T_{\pi(1)}}, \dots, \mathbf{h}_{T_{\pi(n)}}; \mathbf{h}_X) = (\mathbf{p}_{\pi(1)}, \dots, \mathbf{p}_{\pi(n)}), \forall \pi \in \mathcal{I}$$

 $f(\mathbf{h}_{T_1},\ldots,\mathbf{h}_{T_n};\mathbf{h}_X) = (\mathbf{p}_1,\ldots,\mathbf{p}_n) \in \mathbb{R}^{3 \times n}$

Challenges:

- 1) Equivariant prediction with respect to any permutation of neighbor
- 2) Bond distances should match symmetrically,
 - i.e. XT_1 should have the same length predicted from the LS of X or from the LS of T_1
- **Solution**: a special symmetric transformer that separates distance prediction from direction prediction (see paper)

ors:
$$f(\mathbf{h}_{T_{\pi(1)}}, \dots, \mathbf{h}_{T_{\pi(n)}}; \mathbf{h}_X) = (\mathbf{p}_{\pi(1)}, \dots, \mathbf{p}_{\pi(n)}), \forall \pi \in \mathcal{I}$$

 $f(\mathbf{h}_{T_1},\ldots,\mathbf{h}_{T_n};\mathbf{h}_X) = (\mathbf{p}_1,\ldots,\mathbf{p}_n) \in \mathbb{R}^{3 \times n}$

Challenges:

- 1) Equivariant prediction with respect to any permutation of neighbor
- 2) Bond distances should match symmetrically,
 - i.e. XT_1 should have the same length predicted from the LS of X or from the LS of T_1
- 3) Should explicitly address *chirality*

ors:
$$f(\mathbf{h}_{T_{\pi(1)}}, \dots, \mathbf{h}_{T_{\pi(n)}}; \mathbf{h}_X) = (\mathbf{p}_{\pi(1)}, \dots, \mathbf{p}_{\pi(n)}), \forall \pi \in \mathcal{I}$$

Tackling Chirality

- Chiral information:
 - Bond annotations to describe different molecules with same molecular graph, but different 3D structures (and, thus, different chemical behavior)
 - Differentiates mirroring structures
- Bond annotations are not fixed, i.e. multiple equivalent annotations

Tackling Chirality

- MPNNs cannot distinguish chirality ...
 - ... unless order of graph neighbors is explicitly used

Tackling Chirality Exactly

• Given a chiral center (or any center with 4 neighbors), we can compute the oriented volume.

$$OV(\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3, \mathbf{p}_4) \stackrel{\text{def}}{=} sign \left(\begin{vmatrix} 1 & 1 & 1 & 1 \\ x_1 & x_2 & x_3 & x_4 \\ y_1 & y_2 & y_3 & y_4 \\ z_1 & z_2 & z_3 & z_4 \end{vmatrix} \right)$$

- The sign of the oriented volume changes depending on chirality.
- If we get the incorrect sign, we simply reflect the structure by flipping against the z-axis.
- No iterative optimization is needed.

 $OV(C_{S}) = -1$

Assemble every two local neighboring structures.

Assemble every two local neighboring structures.

Challenges:

- 1) Parameterize a single canonical torsion angle per rotatable bond (no over-parameterization)
 - All dihedral angles $\angle(XYT_i, XYZ_i)$ are coupled via a single canonical torsion

Assemble every two local neighboring structures.

Challenges:

- 1) Parameterize a single canonical torsion angle per rotatable bond (no over-parameterization)
 - All dihedral angles $\angle(XYT_i, XYZ_i)$ are coupled via a single canonical torsion
- 2) Torsion angles should be predicted in a rotation-translation invariant manner, plus **permutation invariant** to T_i 's or Z_i 's.

Assemble every two local neighboring structures.

Challenges:

- 1) Parameterize a single canonical torsion angle per rotatable bond (no over-parameterization)
 - All dihedral angles $\angle(XYT_i, XYZ_i)$ are coupled via a single canonical torsion
- 2) Torsion angles should be predicted in a rotation-translation invariant manner, plus **permutation invariant** to T_i 's or Z_i 's.
- **Solution** novel Torsion Angle Neural Network see our paper

Optimal Transport Loss

- First setting: one predicted conformer C and one ground truth conformer C^* : loss $\mathscr{L}(C, C^*)$
 - Matches 1,2,3-hop distances, bond and torsion angles.

Optimal Transport Loss

- First setting: one predicted conformer C and one ground truth conformer C^* : loss $\mathscr{L}(C, C^*)$
 - Matches 1,2,3-hop distances, bond and torsion angles.
- - How to leverage the single conformer loss $\mathscr{L}(C, C^*)$?
 - How to avoid adversarial training (impractical, hard to train, expensive)?
 - How to generate diverse conformers (to cover all modes of the true distribution)?

```
• Hard case: Multiple (variable sized) ground truth conformers \{C_1^*, ..., C_n^*\} and predicted \{C_1, ..., C_m\}
```

Optimal Transport Loss

- First setting: one predicted conformer C and one ground truth conformer C^* : loss $\mathscr{L}(C, C^*)$
 - Matches 1,2,3-hop distances, bond and torsion angles.
- - How to leverage the single conformer loss $\mathscr{L}(C, C^*)$?
 - How to avoid adversarial training (impractical, hard to train, expensive)?
 - How to generate diverse conformers (to cover all modes of the true distribution)?

Solution: Wasserstein loss: $\mathscr{L} = \mathscr{W}_{\mathscr{L}(\cdot,\cdot)}(\{C_j\}_j,$

```
• Hard case: Multiple (variable sized) ground truth conformers \{C_1^*, ..., C_n^*\} and predicted \{C_1, ..., C_m\}
```

$$\{C_{i}^{*}\}_{i} = \inf_{\substack{\mathbf{T} \in \mathbb{R}^{m \times n} \\ \mathbf{T} \text{ doubly stochastic}}} \sum_{i=1}^{n} \sum_{j=1}^{m} T_{ij} \mathscr{L}(C_{j}, C_{i}^{*})$$

Dealing with Symmetry

• A & B are identical and symmetric in the molecular graph, but not in 3D (since $d(A, C) \neq d(B, C)$)

Dealing with Symmetry

- A & B are identical and symmetric in the molecular graph, but not in 3D (since $d(A, C) \neq d(B, C)$)
- We use a loss that tries all permutations of such symmetric groups of terminal atoms:

$$\mathscr{L}^{perm}(C, C^*) := \min\left(\mathscr{L}(C_{A,B}, C^*_{A,B}), \mathscr{L}(C_{B,A}, C^*_{A,B})\right)$$

Assemble Full Conformer at Test Time

- We can assemble any tree-like molecule using predicted local structures and torsion angles.
- We correct rings by averaging over all spanning trees and using Kabsch superimposition algorithm.

ground truth

model without ring correction

model with ring correction

Datasets

Datasets: \bullet

- GEOM-QM9 conformers: small molecules \bullet
- GEOM-DRUGS (AG, 2020): larger drug-like molecules \bullet
 - Conformers generated with semi-empirical tight-binding DFT (GFN2-xTB) generated with the CREST software

Evaluation Metrics

- Comparison metric of two conformers: **RMSD** (Root-mean-square deviation of atomic positions):
- Comparison of two conformer distributions:
 - **Coverage** \uparrow : percentage of "correctly" generated conformers from ground truth set. ullet

COV - R (Recall)
$$\stackrel{\text{def}}{=} \frac{1}{L} |\{l \in [1..L] : \exists k \in [1...L] \}$$

• Average Minimum RMSD \downarrow : for each generated conformer, compute RMSD to the closest ground truth. Average over all.

AMR - R (Recall)
$$\stackrel{\text{def}}{=} \frac{1}{L} \sum_{l \in [1..L]} \min_{k \in [1..K]} RMSL$$

• COV - P (Precision) and AMR - P (Precision) defined similarly

 $[K], RMSD(\mathcal{C}_k, \mathcal{C}_l^*) < \delta\}$

 $D(\mathcal{C}_k, \mathcal{C}_l^*)$

Results (no FF fine-tuning)

- For each molecule, we ask models to generate 2x as many conformers as in the ground truth
- Test set: 1000 molecules

	$ $ COV - R (%) \uparrow		AMR - R (Å) ↓		$\ \text{COV} - P(\%) \uparrow$		$\ $ AMR - P (Å) \downarrow	
Models	Mean	Median	Mean	Median	Mean	Median	Mean	Median
GraphDG (ML)	10.37	0.00	1.950	1.933	3.98	0.00	2.420	2.420
CGCF (ML)	54.35	56.74	1.248	1.224	24.48	15.00	1.837	1.829
RDKit/ETKDG	68.78	76.04	1.042	0.982	71.06	88.24	1.036	0.943
OMEGA (C)	81.64	97.25	0.851	0.771	77.18	96.15	0.951	0.854
GeoMol ($s = 9.5$)	86.07	98.06	0.846	0.820	71.78	83.77	1.039	0.982
Geomol ($s = 5$)	82.43	95.10	0.862	0.837	78.52	94.40	0.933	0.856

Table 1: Results on the **GEOM-DRUGS** dataset.

Table 2: Results on the **GEOM-QM9** dataset.

	$ $ COV - R (%) \uparrow		$ $ AMR - R (Å) \downarrow $ $		$ $ COV - P (%) \uparrow $ $		AMR - P (Å)↓	
Models	Mean	Median	Mean	Median	Mean	Median	Mean	Median
GraphDG (ML)	74.66	100.00	0.373	0.337	63.03	77.60	0.450	0.404
$\mathrm{CGCF}\left(ML\right)$	69.47	96.15	0.425	0.374	38.20	33.33	0.711	0.695
RDKit/ETKDG	85.13	100.00	0.235	0.199	86.80	100.00	0.232	0.205
OMEGA (C)	85.51	100.00	0.177	0.126	82.86	100.00	0.224	0.186
Geomol ($s = 5$)	91.52	100.00	0.225	0.193	86.71	100.00	0.270	0.241

GraphDG: Simm, Gregor NC, and José Miguel Hernández-Lobato. "A generative model for molecular distance geometry.", ICML 2020

CGCF: Learning neural generative dynamics for molecular conformer generation. ICLR 2021

Num of rotatable bonds vs coverage

Conformer Generation Time

- Weakness in capturing some long-range interactions especially of structures that are scarce in the train set (e.g. macrocycles)
- Steric clashes
- Large rings

Current Limitations

Reference GeoMol

Thank you!