

Hyperbolic Entailment Cones for Learning Hierarchical Embeddings

Octavian-Eugen Ganea, Gary Becigneul, Thomas Hofmann

ETH Zurich, Switzerland

Hyperbolic Geometry for Embedding Hierarchies

513 -- 143

Poincaré Ball: distances dilated towards the border

$$g_x(u,v) = \frac{2}{1 - \|x\|^2} \langle u, v \rangle$$

Problem Definition & Goals

Entailment:

- *v* is a *subconcept* of *u*
- Directed edges in a directed acyclic graph

We want to:

- 1. Geometrically model entailment in the embedding space
- 2. Exploit the power of hyperbolic geometry

Poincaré Embeddings [2]

• Train loss:
$$\mathcal{L}(\theta) = \sum_{(u,v)\in\mathcal{E}} \log \frac{e^{-d(u,v)}}{\sum_{v'\in\mathcal{N}(u)} e^{-d(u,v')}}$$

• Predict entailment at test time via heuristic

$$score(is-a(u,v)) = (1+\alpha(\|u\|-\|v\|)) \cdot d(u,v)$$

Order Embeddings [3]

- Geometric modeling of partial order relations induced by a tree/DAG via simple entailment cones in R^d
- Drawbacks

[3] Vendrov, Ivan, et al. "Order-embeddings of images and language." ICLR 2016

Riemannian Entailment Cones

• Generalize **convex entailment cones** to any Riemannian manifold:

$$(u,v)\in\mathcal{E}\Longleftrightarrow v\in\mathfrak{S}_u$$

• Induce a **partial order** in the embedding space

Riemannian Convex Cones

8

Satisfy four intuitive properties:

1) axial symmetry (depends on aperture angle ψ)

$$S^\psi_x:=\{v: igtriangle (v,x) \leq \psi(x)\}, \quad \mathfrak{S}^\psi_x:= \exp_x(S^\psi_x)\}$$

Satisfy four intuitive properties:

1) axial symmetry (depends on aperture angle ψ)

$$S^\psi_x:=\{v: igtriangle (v,x) \leq \psi(x)\}, \quad \mathfrak{S}^\psi_x:= \exp_x(S^\psi_x)$$

2) continuous cone aperture function ψ

Satisfy four intuitive properties:

1) axial symmetry (depends on aperture angle ψ)

$$S^\psi_x:=\{v: igtriangle (v,x) \leq \psi(x)\}, \quad \mathfrak{S}^\psi_x:= \exp_x(S^\psi_x)\}$$

- 2) continuous cone aperture function ψ
- 3) rotation invariance (only depends on norm of x)

$$\exists ilde{\psi} \quad ext{s.t.} \quad \psi(x) = ilde{\psi}(\|x\|)$$

Satisfy four intuitive properties:

4) (hardest) transitivity of nested angular cones

$$orall x,x'\in \mathbb{D}^n: \quad x'\in \mathfrak{S}^{\psi(x)}_x \implies \mathfrak{S}^{\psi(x')}_{x'}\subseteq \mathfrak{S}^{\psi(x)}_x$$

Four properties \Longrightarrow closed form expression of ψ

$$\mathfrak{S}^{\psi(x)}_x = \left\{ y \in \mathbb{D}^n | \quad \Xi(x,y) \leq rcsin\left(Krac{1-\|x\|^2}{\|x\|}
ight)
ight\}$$

Four properties \Longrightarrow closed form expression of ψ

$$\mathfrak{S}^{\psi(x)}_x = \left\{ y \in \mathbb{D}^n | \quad \Xi(x,y) \leq rcsin\left(Krac{1-\|x\|^2}{\|x\|}
ight)
ight\}$$

where

$$\Xi(x,y) = rccos \left(rac{< x,y > (1+\|x\|^2) - \|x\|^2(1+\|y\|^2)}{\|x\|\cdot\|x-y\|\sqrt{1+\|x\|^2\|y\|^2-2} < x,y >}
ight)$$

Four properties \Longrightarrow closed form expression of ψ

Similar derivation can be done for Euclidean angular cones

Learning with Entailment Cones

- Learning from positive and negative pairs of nodes in a DAG
- loss:

$$\mathcal{L} = \sum_{(u,v)\in P} E(u,v) + \sum_{(u',v')\in N} \max(0,\gamma-E(u',v'))$$

• penalty: $E(u,v) := \max(0, \Xi(u,v) - \psi(u)),$

Riemannian Optimization

• SGD becomes:

$$u \leftarrow \exp_u(-\eta
abla_u^R \mathcal{L}), \quad u \in \mathbb{D}$$

• Riemannian gradient:

$$abla_u^R \mathcal{L} = (1/\lambda_u)^2
abla_u \mathcal{L}, \quad ext{conformal factor } \lambda_u = rac{2}{1-\|u\|^2}$$

Experiments - Qualitative

- Left deck: uniform tree of depth 7 and branching factor 3
- Right deck: WordNet mammal subtree 4230 edges, 1165 nodes
- Each left: Poincare embeddings
- Each right: our hyperbolic cones

Quantitative Experiments - Link Prediction in DAGs

• Transitive closure of WordNet hierarchy: 82K nodes, 660K edges

	EMBEDDING DIMENSION = 5				EMBEDDING DIMENSION = 10			
	PERCENTAGE OF TRANSITIVE CLOSURE EDGES USED DURING TRAINING							
	0%	10%	25%	50%	0%	10%	25%	50%
SIMPLE EUCLIDEAN EMB	26.8%	71.3%	73.8%	72.8%	29.4%	75.4%	78.4%	78.1%
POINCARÉ EMB	29.4%	70.2%	78.2%	83.6%	28.9%	71.4%	82.0%	85.3%
Order Emb	34.4%	70.2%	75.9%	81.7%	43.0%	69.7%	79.4%	84.1%
OUR EUCLIDEAN CONES	28.5%	69.7%	75.0%	77.4%	31.3%	81.5%	84.5%	81.6%
OUR HYPERBOLIC CONES	29.2%	80.1%	86.0%	92.8%	32.2%	85.9%	91.0%	94.4%

Table 1. Test F1 results for various models. Simple Euclidean Emb and Poincaré Emb are the Euclidean and hyperbolic methods proposed by (Nickel & Kiela, 2017), Order Emb is proposed by (Vendrov et al., 2015).

HYPERBOLIC DEEP LEARNING A nascent and promising field

Website: hyperbolicdeeplearning.com

Code: github.com/dalab/hyperbolic cones