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[1] J. Lamping et al. "A focus+ context technique based on hyperbolic geometry for visualizing large hierarchies." SIGCHI 1995.



Poincaré Ball: distances dilated towards the border
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Problem Definition & Goals

Entailment:

e Vis a subconceptof u
e Directed edges in a directed acyclic graph

We want to:

1. Geometrically model entailment in the embedding space
2. Exploit the power of hyperbolic geometry



Poincaré Embeddings [2]

—d(u,v)

e [rain loss: L(Q) — Z(lll Egl Z ’e(; 6’ —d(u.v)

e Predict entailment at test time via heuristic

score(is —a(u,v)) = (1+a(||ul| —||v])) - d(u, v)

[2] Nickel, Maximillian, and Douwe Kiela. "Poincaré embeddings for learning hierarchical representations." NIPS 2017.
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Order Embeddings [3]
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e Geometric modeling of partial order relations induced by a tree/DAG via

simple entailment cones in R’
e Drawbacks

[3] Vendrov, Ivan, et al. "Order-embeddings of images and language." ICLR 2016



Riemannian Entailment Cones

e Generalize convex entailment cones to any Riemannian manifold:
(u,v) € & <= v € G,

e Induce a partial order in the embedding space



Riemannian Convex Cones
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Angular Entailment Cones in the Poincaré Ball

Satisfy four intuitive properties:

1) axial symmetry (depends on aperture angle ) Q

S;:p = {’U : A(v,m) = ”‘p(m)}’ 6% c= expx(S;f) "

~—a



Angular Entailment Cones in the Poincaré Ball

Satisfy four intuitive properties:

1) axial symmetry (depends on aperture angle v) Q

S;:p = {’U : L(U’m) = ‘p(m)}’ 6% c= expx(S;f) "

‘ ~—a

2) continuous cone aperture function v
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Angular Entailment Cones in the Poincaré Ball

Satisfy four intuitive properties:

1) axial symmetry (depends on aperture angle v) Q

S;:p = {’U : L(U’m) = ‘p(m)}’ 6% c= expx(S;f) "

‘ ~—a

2) continuous cone aperture function

3) rotation invariance (only depends on norm of x)

Fp st P(z) =9(|=z|)
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Angular Entailment Cones in the Poincaré Ball
Satisfy four intuitive properties:

4) (hardest) transitivity of nested angular cones

Ve, €D 2’ € 6Y® — &%) ¢ g¥
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Angular Entailment Cones in the Poincarée Ball

Four properties —> closed form expression of v

1 — 2
GYE) = {y e D" E(z,y) < arcsin (K || ) }

|||

13



Angular Entailment Cones in the Poincarée Ball

Four properties = closed form expression of v

1 2
Gz)(x) _ {y c Dn| E(:v,y) < arcsin (K ” Hﬁ”” ) }
T

where

=(a,y) = axc ( <,y > (L4 [2]?) — o2+ 9]?) )
el Iz — o1+ 2Pl 2 < 2,9 >
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Angular Entailment Cones in the Poincaré Ball

Four properties = closed form expression of 1
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Similar derivation can be done for Euclidean angular cones
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Learning with Entailment Cones

e |earning from positive and negative pairs of nodes in a DAG

e |oss:

L= Z E(u,v) + Z max(0,y — E(u/,v"))

(u,v)eP (u'v')eN

e penalty: E(u,v) := max(0, Z(u,v) — ¥(u)),
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Riemannian Optimization

e SGD becomes:
u < exp,(—nVEL), ueD

e Riemannian gradient:

2

VEL = (1/M)*V.L, conformal factor A, = TP
— ||



Experiments - Qualitative
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Left deck: uniform tree of depth 7 and branching factor 3
Right deck: WordNet mammal subtree - 4230 edges, 1165 nodes
Each left: Poincare embeddings

Each right: our hyperbolic cones
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Quantitative Experiments - Link
Prediction in DAGs

e Transitive closure of WordNet hierarchy: 82K nodes, 660K edges

EMBEDDING DIMENSION = 5 || EMBEDDING DIMENSION = 10
PERCENTAGE OF TRANSITIVE CLOSURE EDGES USED DURING TRAINING
0% | 10% | 25% | 50% H 0% \ 10% | 25% | 50%

SIMPLE EUCLIDEAN EMB 26.8% | 71.3% | 73.8% | 72.8% 294% | 75.4% | 78.4% | 78.1%
POINCARE EMB 29.4% | 70.2% | 78.2% | 83.6% || 289% | 71.4% | 82.0% | 85.3%
ORDER EMB 344% | 70.2% | 75.9% | 81.7% || 43.0% | 69.7% | 79.4% | 84.1%

OUR EUCLIDEAN CONES 28.5% | 69.7% | 75.0% | 77.4% || 31.3% | 81.5% | 84.5% | 81.6%
OUR HYPERBOLIC CONES || 29.2% | 80.1% | 86.0% | 92.8% || 32.2% | 85.9% | 91.0% | 94.4%

Table 1. Test F1 results for various models. Simple Euclidean Emb and Poincaré Emb are the Euclidean and hyperbolic methods proposed
by (Nickel & Kiela, 2017), Order Emb is proposed by (Vendrov et al., 2015).



|| || D HYPERBOLIC DEEP LEARNING
A nascent and promising field

Website: hyperbolicdeeplearning.com

Code: github.com/dalab/hyperbolic cones
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http://www.hyperbolicdeeplearning.com
https://github.com/dalab/hyperbolic_cones

