Optimal Transport Graph Neural Networks

Gary Bécigneul^{*} Octavian-Eugen Ganea^{*} Benson Chen^{*} Regina Barzilay Tommi Jaakkola Computer Science and Artificial Intelligence Lab, MIT

Graph Convolutions and Chemprop Model

Property smoothness & robustness of representations

Property smoothness & robustness of representations

Molecule embedding distance

Property value distance

From atom embeddings to molecule embedding

From atom embeddings to molecule embedding

Green, red and orange sets have the same sum and same average.

From atom embeddings to molecule embedding

Prototypes Inspired From Functional Groups

Our idea:

- learn a dictionary of structural basis functions that serve to highlight key facets of compounds
- express molecules by relating them to abstract molecular prototypes
- prototypes highlight property values associated with different structural features (e.g. solubility)

Prototype 2: Azo-type

Prototypes as GCN Embedding Point Clouds

Our idea:

- learn a dictionary of structural basis functions that serve to highlight key facets of compounds
- express molecules by relating them to abstract molecular prototypes
- prototypes highlight property values associated with different structural features (e.g. solubility)

Prototype 2: Azo-type

Wasserstein Prototypes

Wasserstein Prototypes

Property smoothness: Latent Space for Real Models

Property smoothness: Latent Space for Real Models

Solubility values in the latent space Left: using sum aggregation; Right: using Wasserstein with prototypes

Property smoothness: Latent Space for Real Models

Lipophilicity values in the latent space Left: using sum aggregation; **Right:** using Wasserstein with prototypes

Results on Molecular Property Prediction

	Solubility	Lipophilicity	Inhibitors of human β-secretase 1 (BACE-1)	Blood-brain barrier penetration (permeability)
	ESOL (RMSE) \downarrow	Lipo (RMSE) \downarrow	$ $ BACE (AUC) \uparrow $ $	BBBP (AUC) \uparrow
# graphs / molecules	n = 1128	n = 4199	n = 1512	n = 2039
GNN/Chemprop	$.635 \pm .027$	$.646 \pm .041$	$.865 \pm .013$	$.915\pm.010$
ProtoS-L2	$.611 \pm .034$	$\textbf{.580} \pm \textbf{.016}$	$.865 \pm .010$	$.918 \pm .009$
ProtoW-Dot (no reg.)	$.608 \pm .029$	$.637 \pm .018$	$.867 \pm .014$	$.919 \pm .009$
ProtoW-Dot	$\textbf{.594} \pm \textbf{.031}$	$.629 \pm .015$	$.871 \pm .014$	$.919 \pm .009$
ProtoW-L2 (no reg.)	$.616 \pm .028$	$.615 \pm .025$	$.870 \pm .012$	$.920 \pm .010$
ProtoW-L2	$.605 \pm .029$	$.604 \pm .014$	$\textbf{.873} \pm \textbf{.015}$	$.920 \pm .010$