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Graph Convolutions and Chemprop Model
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Property smoothness & robustness of representations
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Property smoothness & robustness of representations



From atom embeddings to molecule embedding
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Green, red and orange sets have the same sum and same average.
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From atom embeddings to molecule embedding
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From atom embeddings to molecule embedding



Prototypes Inspired From Functional Groups 

Prototype 1: Aromatic Nitro
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Prototype 2: Azo-type
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Our idea:  
• learn a dictionary of structural basis functions that serve to highlight key facets of compounds 
• express molecules by relating them to abstract molecular prototypes 
• prototypes highlight property values associated with different structural features (e.g. solubility)



Prototypes as GCN Embedding Point Clouds

Prototype 1: Aromatic Nitro

Prototype 3: Nitroso

Prototype 2: Azo-type

Prototype 3: Aromatic Amine
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Our idea:  
• learn a dictionary of structural basis functions that serve to highlight key facets of compounds 
• express molecules by relating them to abstract molecular prototypes 
• prototypes highlight property values associated with different structural features (e.g. solubility)



Wasserstein Prototypes
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Wasserstein Prototypes
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Wasserstein distances between 
sets of embeddings
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Property smoothness: Latent Space for Real Models

Graph Convolution w/ 
sum aggregation


Spearman ⍴ = .424±.029 

Pearson r = .393±.049 

Wasserstein Prototypes

Spearman ⍴ = .815±.026 

Pearson r = .828±.020 

Molecule embedding in 2D vs property 
value

Molecule embedding distance vs 
property value distance
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Property smoothness: Latent Space for Real Models
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Property smoothness: Latent Space for Real Models



Results on Molecular Property Prediction
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