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High-level Motivation.  Understand how the various ways in 
which spaces curve affects the types of graphs that can be 
accurately embedded into them.

In this Work.  We study empirically how two families of 
Riemannian manifolds with novel curvature properties perform 
on the task of embedding graph nodes by matching metrics.

What We Know.  (1) Cycles in graphs match elliptic geometry; 
(2) Trees and complex networks are intimately related to 
hyperbolic geometry;  (3) Cartesian products of constant-
curvature spaces sometimes better suit certain graphs.

On Tractability.  It means being able to efficiently (i) compute 
distances between points on the manifold, and (ii) perform 
Riemannian optimization to adjust their placement.

I.               , the space of square real symmetric positive-definite 
matrices, with non-positive (and non-ct.) sectional curvature.

The latter is used as an alternative way of 
measuring dissimilarity, which is more 
computationally friendly (e.g., see gradients).

II.                , the space of    -dimensional linear subspaces of      
 with non-negative (and non-ct.) sectional curvature.

Points are represented via              matrices with orthonormal 
columns.  There are many possible metrics based on the 
principle angles                obtained via the SVD of           .

    We restrict to the canonical one:

We proposed to use the SPD and Grassmann manifolds for 
learning representations of graphs and showed that they are 
competitive against previously considered constant-curvature 
spaces on the graph reconstruction task, consistently and 
significantly outperforming them in some cases.

➢ For each node     in a weighted graph     , we transductively 
learn an embedding                  such that 
                                           .  We propose to match them 
using Riemannian SNE, which in a sense subsumes the 
disparate loss functions used in prior work:

➢ We quantify the faithfulness of the embeddings via distortion 
metrics as well as a more fine-grained ranking metric, F1@k. 
For an embedding                 , we define the precision and 
recall of a node     in the shortest-path tree rooted at            . 
Then, the F1 scores are defined as usual.  The F1@k metric 
is the mean F1 score for all pairs of nodes at distance   .

➢ We measure the extent to which the curved parts of an 
embedding space are leveraged by the learned embeddings 
via empirical sums of angles in geodesic triangles:

The advantage: the values are bounded and easier to 
interpret than with previously used methods.

Synthetic Graphs. On the 10x10x10 grid and the 1000-nodes 
cycle all manifolds perform well.  This is because every 
Riemannian manifold generalizes Euclidean space and 
Euclidean geometry suffices for grids and cycles (e.g., a cycle 
looks locally like a line).  The more discriminative ones are the 
two other graphs which include trees.  The best performing 
embeddings involve a hyperbolic component while the SPD 
ones rank between those and the non-negatively curved ones.
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SPD Experiments.  First, the (partial) negative curvature of the 
SPD and hyperbolic manifolds is beneficial: they outperform the 
flat Euclidean embeddings in almost all scenarios. This can be 
explained by the apparent scale-free nature of the input graphs. 
Second, we see that especially when using the S-divergence, 
which we attribute to the better-behaved optimization task, the 
SPD embeddings achieve significant improvements on the 
average distortion metric and are competitive and sometimes 
better on the ranking metrics. Finally, the rightmost figure shows 
a remarkably consistent pattern: the better performing 
embeddings yield more negatively-curved triangles.

Grassmann Experiments.  We show here the results on two 
datasets: a road network in Minnesota and a dissimilarity 
dataset based on connectivities in  a cat’s cerebral cortex.  Each 
one  of them takes a column in 
this  table.  We show for each the 
metric that is most discriminative. 
While the results are less 
conclusive than before, we still 
see that the Grassmann 
embeddings achieve comparable 
or slightly better results than the 
other embedding spaces.
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