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1 Problem & Context 3 Methodology

High-level Motivation. Understand how the various ways in
which spaces curve affects the types of graphs that can be
accurately embedded into them.

In this Work. We study empirically how two families of
Riemannian manifolds with novel curvature properties perform
on the task of embedding graph nodes by matching metrics.

What We Know. (1) Cycles in graphs match elliptic geometry;
(2) Trees and complex networks are intimately related to
hyperbolic geometry; (3) Cartesian products of constant-
curvature spaces sometimes better suit certain graphs.

On Tractability. It means being able to efficiently (i) compute
distances between points on the manifold, and (ii) perform
Riemannian optimization to adjust their placement.

2 The Manifolds

. 8™ (n) the space of square real symmetric positive-definite
matrices, with non-positive (and non-ct.) sectional curvature.

d(A, B) = J zn:logz Ai(A-1B) (canonical distance function)
=1

A+ B 1 symmetric “Stein”)
2 )_ 3 log det(4B) (divergence

The latter is used as an alternative way of
measuring dissimilarity, which is more
computationally friendly (e.g., see gradients).

S(A, B) = logdet (

Il. Gr(k,n), the space of k-dimensional linear subspaces of IR"
with non-negative (and non-ct.) sectional curvature.

Points are represented via 72 X k matrices with orthonormal
columns. There are many possible metrics based on the
principle angles {91'},];:1 obtained via the SVD of A" B.

We restrict to the canonical one:

k
d(AL [B)) = || > 62

> For each node u in a weighted graph (G, we transductively
learn an embedding f(u) € M such that
dm(f(u), f(v)) ~ dg(u,v). We propose to match them
using Riemannian SNE, which in a sense subsumes the
disparate loss functions used in prior work:

LrsNe({y1,¥2, -+, Um}) = ZDKL [pi || ],
=1

pi; = p(x; | z;) < exp ( — dg(zs, 25)/T),
aij = q(y; | vi) oc exp ( — d% (5, 95))-

» We quantify the faithfulness of the embeddings via distortion
metrics as well as a more fine-grained ranking metric, F1@k.
For an embedding f : G — M, we define the precision and
recall of a node u in the shortest-path tree rooted at © # w.
Then, the F1 scores are defined as usual. The F1@k metric
is the mean F1 score for all pairs of nodes at distance k.

» We measure the extent to which the curved parts of an
embedding space are leveraged by the learned embeddings
via empirical sums of angles in geodesic triangles:

k@(mu Y, Z) = gsr,y + gw,z + gym
1 <U1, U2>m3

with 6 =Ccos @
e [ ]]zs ][22

and g 2y = log,, (z(1,2})-

The advantage: the values are bounded and easier to
interpret than with previously used methods.

4 Experiments

Synthetic Graphs. On the 10x10x10 grid and the 1000-nodes
cycle all manifolds perform well. This is because every
Riemannian manifold generalizes Euclidean space and
Euclidean geometry suffices for grids and cycles (e.g., a cycle
looks locally like a line). The more discriminative ones are the
two other graphs which include trees. The best performing
embeddings involve a hyperbolic component while the SPD
ones rank between those and the non-negatively curved ones.

SPD Experiments. First, the (partial) negative curvature of the
SPD and hyperbolic manifolds is beneficial: they outperform the
flat Euclidean embeddings in almost all scenarios. This can be
explained by the apparent scale-free nature of the input graphs.
Second, we see that especially when using the S-divergence,
which we attribute to the better-behaved optimization task, the
SPD embeddings achieve significant improvements on the
average distortion metric and are competitive and sometimes
better on the ranking metrics. Finally, the rightmost figure shows
a remarkably consistent pattern: the better performing
embeddings yield more negatively-curved triangles.
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Grassmann Experiments. We show here the results on two
datasets: a road network in Minnesota and a dissimilarity
dataset based on connectivities in a cat’s cerebral cortex. Each
one of them takes a column in

this table. We show for each thé pim Manifola Eral g ANt
i . ) L. ) (road-minnesota) ~ (cat-cortex)
metric that is most discriminative. o =TT T
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While the results are less . 2 R L s
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Gr(2,4) 94.01 0.129

5 Conclusion

We proposed to use the SPD and Grassmann manifolds for
learning representations of graphs and showed that they are
competitive against previously considered constant-curvature
spaces on the graph reconstruction task, consistently and
significantly outperforming them in some cases.
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