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Hyperbolic Geometry
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e Hyperbolic space - constant negative
curvature
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e Non-cuclidean embeddings
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e Exponential volume growth (unlike
polynomially in Euclidean space) =
Exponential capacity increase

ks
aivrd e\
‘-"a'.:' ’d\

)
AV}
--.‘::(‘\ :

- =N
N A
e nl_’,“.r_{.)}'i ‘‘‘‘‘‘‘‘‘‘‘

e Mathematically, can isometrically (preserve distances) embed:

—approximate tree-like structures, or w/ heterogeneous topology

—scale-free networks - node degree distributions follow a power-law
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Taken from J. Lamping et al. A focus+ context technique based on hyperbolic geometry for visualizing large hierarchies.” SIGCHI 1995.

Hyperbolic Geometry in Machine Learning

Recently, hyperbolic embeddings in ML - e.g. Nickel & Kiela,2017

— embed hierarchies: significantly superior disentanglement behav-
ior than in Euclidean space due to the negative curvature

Difficulties

- HOW TO USE HYPERBOLIC EMBEDDINGS IN DOWNSTREAM
TASKS ?
- HOW TO FEED HYPERBOLIC EMBEDDINGS TO NEURAL NETS ?

e basic Euclidean operations not defined
in the hyperbolic space! e.g. vector addi-
tion should follow hyperbolic ”straight-
lines”, i.e. geodesics

e neural networks should not ignore the
hyperbolic geometry (e.g. hidden states
of an RNN have to always be hyperbolic)

This work to the rescue :)

Our contributions

Use Gyro-vector spaces to generalize basic operations and neural
networks from Euclidean to hyperbolic spaces:

e Gyro-vs: - analogue of Euclidean vector spaces
- used 1n relativity theory (speeds of particles are hyperbolic)

e Vector addition r + vy < = P,y

e Scalar multiplication rr <— r ®.x
—Closed form distance d.(z,vy) = (2/+/c) tanh™" (V|| — = ®. yl|)

—Closed form geodesics: v,,(t) =2 B (—x B, yY) R, 1

1) We connect Gyro-vs and Riemannian hyperbolic geometry
TxM

e Closed form expx(v), 1Og1‘(y)

e Closed form parallel transport (move
across tangent spaces)

2) Hyperbolic Feed-forward Neural Networks

e Mobius version of f . R" — R (e.g. pointwise non-linearity):

(@) = expi( f(logg(x)))

e Matrix - vector multiplication:

M*®(z) = (1/+/c) tanh (

e D =D

M x
| Mz|

| M|

||

tanh%ﬁnxn))

— Properties: matrix associativity, scalar-matrix associativity, pre-
served rotations

3) Hyperbolic Softmax layer - Multiclass Logistic Regression

e Hyperbolic hyperplane:

H,,={r €D : (—p®.w,a)=0}.

¢ Theorem: closed form of d,.(x, H o)

e Final MLR formula (based on Lebanon
and Lafterty,2004):

Sil’lh_l ( 2\/E<_p/~c @c £z, ak> >
(1 = ¢l = pr @ z|?) || ax|]

Property: All our models recover their Euclidean variants
when curvature ¢ — (.

4) Hyperbolic Recurrent Networks, e.g. hGRU

re = 0 logg(W" @ hy_1 ®: U ®, 2 B, b')

hyp-GRU <

he = ©%(Wdiag(ry)) @ hy—1 ®. U Q. 1 B b)

hy = hi—1 B, diag(z) ¢ (—hi—1 B ]Nlt)

e Hyperbolic hidden states

Theorem: update-gate mechanism derived from time-warping
invariance principle (via gyro-derivative and gyro-chain-rule)

Experiments

1) Textual Entailment tasks (semantic + syntactic).

TEST ACCURACY

SNLI

PREFIX-10%

PREFIX-30% PREFIX-50%

FULLY EUCLIDEAN RNN

79.34 %

89.62 %

81.71 %

72.10 %

Hyr RNN+FFNN, EucL MLR |79.18 %

96.36 %

87.83 %

76.50 %

FUuLLY HYPERBOLIC RNN

78.21 %

96.91 %

87.25 %

62.94 %

FuLLY EUCLIDEAN GRU

81.52 %

95.96 %

86.47 %

75.04 %

Hyp GRU+FFNN, EucL MLR | 79.76 %

97.36 %

88.47 %

76.87 %

FuLLy HYPERBOLIC GRU

81.19 %

97.14 %

88.26 %

76.44 %

2) MLR experiments.
Test F1 classification scores (o) for 4 subtrees of WordNet tree.

WORDNET
SUBTREE

MODEL

D=2

D=3

D=35

D=10

ANIMAL.N.O1
3218 /798

Hyp
EucCL

10g0

47.43 +1.07
41.69 = 0.19
38.89 = 0.01

91.92 +£0.61
68.43 = 3.90
62.57 4 0.61

98.07 £ 0.55
95.09 = 1.18
89.21 £ 1.34

99.26 = 0.59
99.36 = 0.18
98.27 £ 0.70

GROUP.N.O1
6649 / 1727

HyP
EucL

10g0

81.72 1+ 0.17
61.13 = 0.42
60.75 = 0.24

89.87 = 2.73
63.06 = 1.22
61.98 = 0.57

87.89 = 0.80
67.82 & 0.81
67.92 = 0.74

91.91 = 3.07
91.38 =1.19
91.41 =0.18

WORKER.N.O1
861 /254

HyP
EucCL

logg

12.68 &= 0.82
10.86 == 0.01
9.04 &= 0.06

24.09 =1.49
22.39 = 0.04
22.57 £ 0.20

55.46 = 5.49
30.23 &= 3.16
26.47 £ 0.78

66.83 =11.38
47.29 £ 3.93
36.66 = 2.74

MAMMAL.N.O1
053 /228

Hyp
EucCL

logg

32.01 +17.14
15.58 - 0.04
13.10 = 0.13

87.54 +4.55
44.68 = 1.87
44.89 £ 1.18

88.73 + 3.22
59.35 = 1.31
52.51 £ 0.85

91.37 +6.09
77.76 == 5.08
56.11 = 2.21
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Hyperbolic (left) vs Direct Euclidean (right) binary MLR used to
classify nodes as being part in the GROUP.N.O1 subtree of the Word-
Net noun hierarchy solely based on their Poincaré embeddings.
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