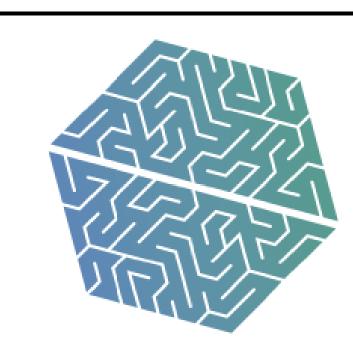


Hyperbolic Neural Networks

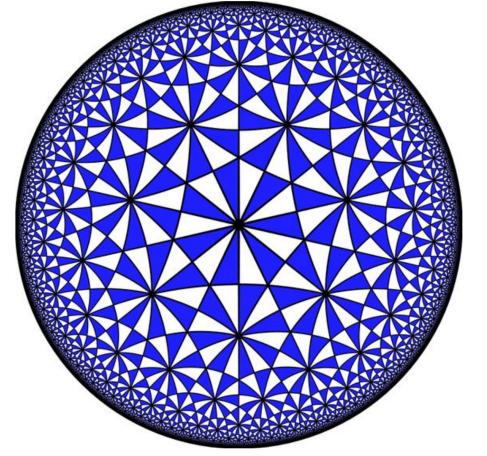
Octavian-Eugen Ganea*, Gary Bécigneul*, Thomas Hofmann

Department of Computer Science, ETH Zürich, Switzerland

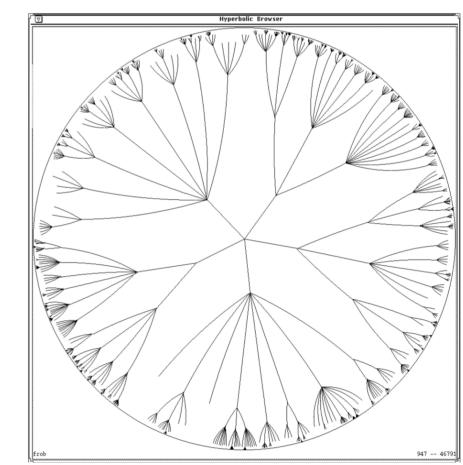


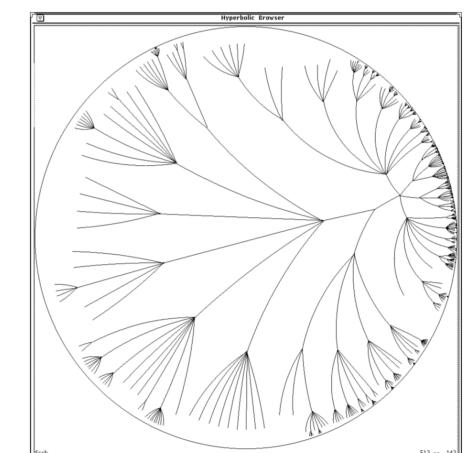
Hyperbolic Geometry

- Hyperbolic space constant negative curvature
- Non-euclidean embeddings
- Exponential volume growth (unlike polynomially in Euclidean space) ⇒
 Exponential capacity increase



- Mathematically, can *isometrically* (preserve distances) embed:
 approximate tree-like structures, or w/ heterogeneous topology
- -scale-free networks node degree distributions follow a power-law





Taken from J. Lamping et al. "A focus+ context technique based on hyperbolic geometry for visualizing large hierarchies." SIGCHI 1995.

Hyperbolic Geometry in Machine Learning

Recently, hyperbolic embeddings in ML - e.g. Nickel & Kiela,2017

→ embed hierarchies: significantly superior **disentanglement behav-**ior than in Euclidean space due to the negative curvature

Difficulties

- HOW TO USE HYPERBOLIC EMBEDDINGS IN DOWNSTREAM TASKS?
- HOW TO FEED HYPERBOLIC EMBEDDINGS TO NEURAL NETS?
- basic Euclidean operations **not defined** in the hyperbolic space! *e.g. vector addition should follow hyperbolic "straight-lines"*, *i.e. geodesics*
 - ddight
 the ates olic)

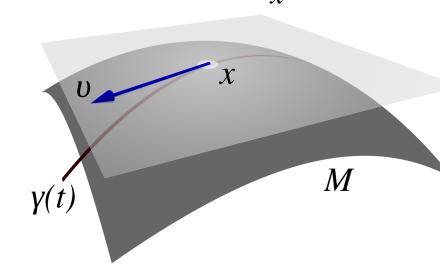
• neural networks should not ignore the hyperbolic geometry (e.g. hidden states of an RNN have to always be hyperbolic)

This work to the rescue:)

Our contributions

Use **Gyro-vector spaces** to *generalize basic operations* and *neural networks* from Euclidean to hyperbolic spaces:

- Gyro-vs: analogue of Euclidean vector spaces
 used in relativity theory (speeds of particles are hyperbolic)
- Vector addition $x + y \iff x \oplus_c y$
- Scalar multiplication $rx \iff r \otimes_c x$
- -Closed form distance $d_c(x, y) = (2/\sqrt{c}) \tanh^{-1}(\sqrt{c}||-x \oplus_c y||)$
- -Closed form geodesics: $\gamma_{x\to y}(t) := x \oplus_c (-x \oplus_c y) \otimes_c t$
- 1) We connect Gyro-vs and Riemannian hyperbolic geometry
- Closed form $\exp_x(v)$, $\log_x(y)$
- Closed form parallel transport (move across tangent spaces)



2) Hyperbolic Feed-forward Neural Networks

• Möbius version of $f: \mathbb{R}^n \to \mathbb{R}^m$ (e.g. pointwise non-linearity):

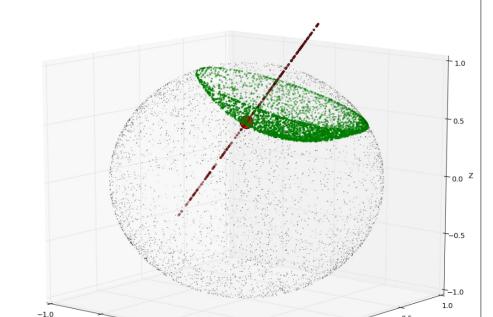
$$f^{\otimes_c}: \mathbb{D}^n_c \to \mathbb{D}^m_c, \quad f^{\otimes_c}(x) := \exp^c_{\mathbf{0}}(f(\log^c_{\mathbf{0}}(x)))$$

Matrix - vector multiplication:

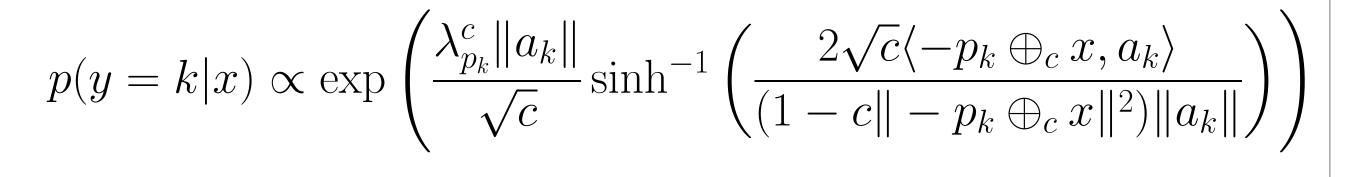
$$M^{\otimes_c}(x) = (1/\sqrt{c}) \tanh\left(\frac{\|Mx\|}{\|x\|} \tanh^{-1}(\sqrt{c}\|x\|)\right) \frac{Mx}{\|Mx\|}$$

- Properties: matrix associativity, scalar-matrix associativity, preserved rotations
- 3) Hyperbolic Softmax layer Multiclass Logistic Regression
- Hyperbolic hyperplane:

$$\tilde{H}_{a,p}^c = \{x \in \mathbb{D}_c^n : \langle -p \oplus_c x, a \rangle = 0\}.$$



- Theorem: closed form of $d_c(x, \tilde{H}_{a,p}^c)$
- Final MLR formula (based on Lebanon and Lafferty, 2004):



Property: All our models recover their Euclidean variants when curvature $c \to 0$.

4) Hyperbolic Recurrent Networks, e.g. hGRU

$$\mathsf{hyp\text{-}GRU} \leftarrow \left\{ \begin{array}{l} r_t = \sigma \log_{\mathbf{0}}^c(W^r \otimes_c h_{t-1} \oplus_c U^r \otimes_c x_t \oplus_c b^r) \\ \tilde{h}_t = \varphi^{\otimes_c}((W \mathrm{diag}(r_t)) \otimes_c h_{t-1} \oplus_c U \otimes_c x_t \oplus b) \\ h_t = h_{t-1} \oplus_c \mathrm{diag}(z_t) \otimes_c (-h_{t-1} \oplus_c \tilde{h}_t) \end{array} \right.$$

Hyperbolic hidden states

Theorem: update-gate mechanism derived from time-warping

invariance principle (via gyro-derivative and gyro-chain-rule)

Experiments

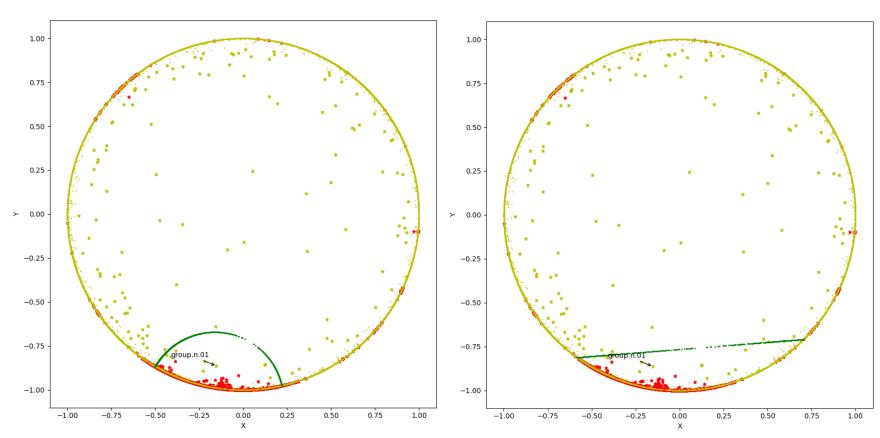
1) Textual Entailment tasks (semantic + syntactic).

TEST ACCURACY	SNLI	PREFIX-10%	PREFIX-30%	PREFIX-50%
FULLY EUCLIDEAN RNN	79.34 %	89.62 %	81.71 %	72.10 %
HYP RNN+FFNN, EUCL MLR	79.18 %	96.36 %	87.83 %	76.50 %
FULLY HYPERBOLIC RNN	78.21 %	96.91 %	87.25 %	62.94 %
FULLY EUCLIDEAN GRU	81.52 %	95.96 %	86.47 %	75.04 %
HYP GRU+FFNN, EUCL MLR	79.76 %	97.36 %	88.47 %	76.87 %
FULLY HYPERBOLIC GRU	81.19 %	97.14 %	88.26 %	76.44 %

2) MLR experiments.

Test F1 classification scores (%) for 4 subtrees of WordNet tree.

WORDNET SUBTREE	MODEL	D = 2	D = 3	D = 5	D = 10
ANIMAL.N.01 3218 / 798	Нүр	47.43 ± 1.07	91.92 ± 0.61	98.07 ± 0.55	99.26 ± 0.59
	EUCL	41.69 ± 0.19	68.43 ± 3.90	95.59 ± 1.18	99.36 ± 0.18
	\log_{0}	38.89 ± 0.01	62.57 ± 0.61	89.21 ± 1.34	98.27 ± 0.70
GROUP.N.01 6649 / 1727	Нүр	81.72 ± 0.17	89.87 ± 2.73	87.89 ± 0.80	91.91 ± 3.07
	EUCL	61.13 ± 0.42	63.56 ± 1.22	67.82 ± 0.81	91.38 ± 1.19
	\log_{0}	60.75 ± 0.24	61.98 ± 0.57	67.92 ± 0.74	91.41 ± 0.18
WORKER.N.01 861 / 254	Нүр	12.68 ± 0.82	24.09 ± 1.49	55.46 ± 5.49	66.83 ± 11.38
	EUCL	10.86 ± 0.01	22.39 ± 0.04	35.23 ± 3.16	47.29 ± 3.93
	\log_{0}	9.04 ± 0.06	22.57 ± 0.20	26.47 ± 0.78	36.66 ± 2.74
MAMMAL.N.01 953 / 228	Нүр	$\boldsymbol{32.01 \pm 17.14}$	87.54 ± 4.55	88.73 ± 3.22	91.37 ± 6.09
	EUCL	15.58 ± 0.04	44.68 ± 1.87	59.35 ± 1.31	77.76 ± 5.08
	\log_{0}	13.10 ± 0.13	44.89 ± 1.18	52.51 ± 0.85	56.11 ± 2.21



Hyperbolic (left) vs Direct Euclidean (right) binary MLR used to classify nodes as being part in the GROUP.N.01 subtree of the Word-Net noun hierarchy solely based on their Poincaré embeddings.