Variables, Operators,
Statements and User Input

Day 2: June 29

Our first program

Our first example.
Prints friendly greeting.

print 'Hello, WTP'

Our first program

Our first example. €<—
Prints friendly greeting.]

' comments
print 'Hello, WTP' rT

Our first program

!

Our first example.
Prints friendly greeting.

print 'Hello, WTP'

I

print statement

Values (or Literals,

These are the simplest kind of expressions:

23

Types

« Values belong to different types

e The type determines:

— how much space in memory is needed to store the

value

— which operations can be performed on it

>>>type('Oshani’
<type 'str'>
>>> type([:h
<type 'int'>

——— [irng |
—— fintgr |

boolean 6

Variables

o A variable names a location in memory.
e That location can store a value.

variable
title age |25] value

female
« A variable’s value can be retrieved and

altered. age

Variable names

e Must:
— begin with a letter or underscore

— contain no spaces, punctuation, or operators
(but can contain underscores)

— not be a keyword (e.g,, class, if —you can
find a list of Python keywords on page 11 of
the text)

e Are case sensitive!

myvariablename‘ = ‘myVariableName

Assignment Statement

» Avariable can be assigned a value.

name|' Jenny'

e The value of a variable can be assigned to
another variable.

‘name = 'Jenny'

my friend = 'Jenny’
your friend = my friend

Basic types in Python

int (integer)
number without fractional parts (2, 73, -122)
float (floating point number)
number with fractional parts (3.14, -18.0)
bool (boolean)
True or False
str (string)
sequence of characters CWTP’, ‘you are the best”)

Type Conversion

e int to float

a = float(5) |5'0 |
print a

e strtoint

a = int('5")
print type(a)

|<type '"int'> |

e int to str

|<type 'str'> |

a = str(5)
print type(a)

"

HelloWTP, now with
variables

message = 'Hello, WTP'
num_students = 40

print message

1
2
3
4
S5|print num students

What does this code output?

HelloWTP, now with
variables

message = 'Hello, WTP'
print message

message = 'Goodbye, WTP'
print message

1
2
3
4
5

What does this code output?

Arithmetic operators

» Applied to numbers, produce numbers

Operator Operation

+ Addition

- Subtraction

* Multiplication
/ Division

xx Exponentiation

% Remainder

Arithmetic operators

Practice with arithmetic

» Familiar operations: operators
lla = 19

lla =5 2b = 21
2 b 10 3jresult = a + b
S3lc=a+b 4|result = result / 10
4d =a—->b S5|result = result ** 2
5le =a*b 6|print result
6 |f b/ a
7lg=b3%a What does this code fragment output?
8h =Db ** 2

What About 5/2? The modulus operator %

e Python performs floor division.

— If both numbers are integers, the result is
an integer.

— Floor division chops off the fractional part
of the result.

 To get a fractional result:
-5.0/2=2.5
- float(s)/2=2.5

Returns the remainder when the first
argument is divided by the second.

118 R 1
4Y 473 \
4

473/4 07 473%4
4

33

32

1

String operators

» Applied to strings, produce strings

Operator Operation

+ Concatenation
* Repetition
<string>[] Indexing
<strings[:] Slicing

String operators

» Applied to strings, produce strings

1 |strl = 'kit '

2 |str2 = 'kat '

3 |str3 = strl + str2 'kit kat '

4 |str3 = str3 * 2 'kit kat kit kat '

5|c = strl[0] 'k

6 |c = strl[4] IndexError: string index out

of range

serl e [[v [{0
index o0 1 2 3

—

20

The slicing operatorim: n

Returns the part of the string from the “m-th” character
to the “n-th” character, including the first but excluding
the last.

[s[T[r[a[w[B]E[R[R]Y]

fruit

[T T T T 1T T 1T 1T 11
index | 0 1]2 3 4]]s|e 7 8] 9 |10

0 9 8 7 6 5 |-4 -3 -2

1l |strl = fruit[2:5] "RAW'

2 |strl = fruit[:5] 'STRAW'

3 |strl = fruit[5:] 'BERRY'

4 |strl = fruit[6:-1] '"ERR'

21

Practice with string operators

ANV WD

strl = 'I think therefore I am'
str2 = strl[-4:]

str3 = strl[7:-4]

print strl[2:8]*3

result = str2 + str3 + strl[:7]
print result

[l Jelnfsfnfe] fefnfefefefefolee] Jr] Jafn]

01 2 3 456 7 8

-4 -3 -2 -1

What does this code fragment output?

22

Relational operators

» For comparing two variables

» Type of argument depends on the operator, but
always produces a bool

. Somfﬁlﬁs_'/—nof the same as =

==y True if X equals y

y True if x does not equal y

y True if x is greater thany

y True if x is less than y

>=y True if x is greater than or equal to y

X X X X X X

<=y True if x is less than or equal toy
23

Practice with relational

operators
l{temp = 80
2|temp_is_low = (temp < 65)
3|forecast = 'rain'
4|is_raining = (forecast == 'sunny')
5|result = (temp_is_low != is_raining)
6 |print result

What does this code fragment output?

24

Boolean (logical) operators

Practice with boolean

operators
» Applied to booleans, produce booleans 1la = False
2b = True
e Three types: 3|c = False
— and : True only if both arguments are true 4|result = not (b and c)
— or: True if one or both arguments are true 5result = result or a
— not : True only if the argument is false 6 |print result
1 |a = True
2 |b = False
3jc =aandb What does this code fragment output?
4|/d =aorb
5|e = not a
25 26
Precedence. D -
~ ebugging
order of opgratlons « Programming is complicated! We all
» What order do these operations get evaluated

in?

[result = 5 * 9 — 42 + 17 / 3 ** 2]

e Rules of precedence:

- **takes precedence over * and /, which precedes +
and -

— not takes precedence over and, which precedes or
— with equal precedence, evaluate left-to-right

[result = (5 * 9) - ((42 + 17) / (3 ** 2))]

» Override rules of precedence using parentheses.

27

make mistakes. P\

— These errors are called bugs.
— Finding and removing bugs is called
debugging.
e Three main types of bugs:

— Syntax errors
— Run-time errors
— Logic (semantic) errors

28

Syntax errors

Because programming languages are formal,
they require perfect syntax.

Incorrect syntax results in a syntax error.
o SyntaxError: invalid syntax

o SyntaxError: invalid token

Common syntax errors

o Keyword or invalid symbols in variable names
o Mismatched quotation marks in strings

» Unclosed opening operator, e.qg. (or [.

« Incorrect indentation

 IDLE will report syntax errors when you run
your code! 2

Run-time errors

e Occur when the program has no syntax
errors, but something goes wrong while
it is running.

 IDLE will report run-time errors when
you run your program.

o Example

IndexError: string index out of range

30

Other run-time errors

Variable errors:
- Slightly different variable names

n_students = 15
print num students

NameError: name 'num_students' is not defined

Run-time errors:
— Operator doesn’t apply to variable types.

b= "a'

i=Db+ 2

TypeError: cannot concatenate 'str' and 'int' objects

31

Logic errors

o Occur when the program runs successfully, but
produces the wrong output.

o The computer always does exactly what you
tell it! Wrong output means you did not write
the program you wanted to write.

e Also called semantic errors.

e IDLE cannot catch these!

32

Logic errors

e Mixingup = and ==

Sets b2 to bl, rather

bl = True
b2 = False /'rhan comparing them!
b3 = b2 = bl

» Order of operations different than
expected. When in doubt, use
parentheses!

33

Coding style

 Your code should always be:

— readable
— consistent
— commented or documented

» This applies to spacing (indentation),
parentheses, name choices, etc...

o Code that is easy to read and understand is far
more likely to be correct!

34

Style: variable names

 Should indicate purpose.

‘a =3 # what the heck is a?? ‘

‘num_apples = 3 # oh, the number of apples! ‘

« Should follow naming conventions.
— start variables with a lower-case letter

— start each “new word” in the name with
underscore

my_variable = 7
my_variable_with_a very long name = 6.177

35

Style: operators

o Use spacing and parentheses to improve
readability.

‘ answer=num2*7+numl/6-27*num2 ‘

‘answer = (num2 * 7) + (numl / 6) - (27 * numZ)‘

» Order of operations is easy to forget. Use
parentheses!

36

Output

» We already know how to print output to the
screen.
‘print 'Hello, WTP' ‘

console

num = 42
greeting = 'Hi!'
print num

print greeting

/

Python program

output

37

Input

» We would also like to get input from the user.

console

num = 42
greeting = 'Hi!'
print num

print greeting

[f input

Python program

output

input device ™ i

38

Userlnput

e raw_input prints a prompt to the user
and assigns the input to a variable as a
string

‘name = raw_input('What is your name?')

e input can be used when we expect the
input to be a number

age = input('How old are you?')

39

An input example

==pname = raw_input('What is your name?')
prompt = 'How old are you, ' + name + '?'
age = input(prompt)

print 'I want to be', age, 'years old too!'

40

An input example

name = raw_input('What is your name?')
prompt = 'How old are you, ' + name + '?'
age = input(prompt)

print 'I want to be', age, 'years old too!'

What is your name?

4

An input example

name = raw_input('What is your name?')
prompt = 'How old are you, ' + name + '?'
age = input(prompt)

print 'I want to be', age, 'years old too!'

What is your name?
Harry

42

An input example

name = raw_input('What is your name?')
prompt = 'How old are you, + name +
age = input(prompt)

print 'I want to be', age,

1ot

'years old too!'

What is your name?
Harry

43

An input example

name = raw_input('What is your name?')
prompt = 'How old are you, + name +
age = input (prompt)

print 'I want to be', age,

1ot

'years old too!'

What is your name?
Harry

How old are you,
18

Harry?

44

An input example

name = raw_input('What is your name?')
prompt = 'How old are you, + name +
age = input(prompt)

print 'I want to be', age,

1ot

'years old too!'

What is your name?
Harry

How old are you,
18

I want to be 18 years old too!

Harry?

45

Today’s exercises

« Naming and using variables

« Identifying type

o String Operators

« Boolean operators and order of operations
e User Input

e Readings for tomorrow: Sections 5.4-7, 7, 8.3, 8.5-7,
10.1-5

46

