
Variables, Operators,
Statements and User Input

Day !: June !"

1

Our first program

2

Our first example.
Prints friendly greeting.

print 'Hello, WTP'

Our first program

3

Our first example.
Prints friendly greeting.

print 'Hello, WTP'
comments

Our first program

4

Our first example.
Prints friendly greeting.

print 'Hello, WTP'
!

print statement

Values (or Literals)
These are the simplest kind of expressions:

5

‘Oshani’

25

True

Types
• Values belong to di#erent types
• The type determines:

$ how much space in memory is needed to store the
value

$ which operations can be performed on it

6

>>>type()
<type 'str'>
>>> type()
<type 'int'>
>>>type()
<type 'bool'>

string

integer

boolean

'Oshani'

25

True

Variables
• A variable names a location in memory%
• That location can store a value%

• A variable&s value can be retrieved and
altered%

7

name
age

female

age

variable
title value

'Oshani'

25

True

25 26

Variable names
• Must:
$ begin with a letter or underscore
$ contain no spaces' punctuation' or operators
(but can contain underscores)

$ not be a keyword (e%g%' class' if $ you can
*nd a list of Python keywords on page ++ of
the text)

• Are case sensitive!

8

myvariablename myVariableName≠

Assignment Statement
• A variable can be assigned a value%

• The value of a variable can be assigned to
another variable%

9

name = 'Jenny'

my_friend = 'Jenny'
your_friend = my_friend

name 'Jenny'

Basic types in Python
int (integer)
, number without fractional parts (!' -.' /+!!)
0oat (0oating point number)
, number with fractional parts (.%+1' /+2%3)
bool (boolean)
, True or False
str (string)
, sequence of characters (4WTP&' 4you are the best&)

10

Type Conversion
• int to 0oat

• str to int

• int to str

11

a = float(5)
print a

a = int('5')
print type(a)

a = str(5)
print type(a)

5.0

<type 'int'>

<type 'str'>

HelloWTP, now with
variables

12

message = 'Hello, WTP'
num_students = 40

print message
print num_students
!

What does this code output?

1
2
3
4
5

HelloWTP, now with
variables

13

message = 'Hello, WTP'
print message

message = 'Goodbye, WTP'
print message

1
2
3
4
5

What does this code output?

Arithmetic operators
• Applied to numbers' produce numbers

14

Operator Operation
+ Addition
- Subtraction
* Multiplication
/ Division
** Exponentiation
% Remainder

Arithmetic operators
• Familiar operations:

15

a = 5
b = 10
c = a + b
d = a – b
e = a * b
f = b / a
g = b % a
h = b ** 2

1
2
3
4
5
6
7
8

Practice with arithmetic
operators

16

a = 19
b = 21
result = a + b
result = result / 10
result = result ** 2
print result

What does this code fragment output?

1
2
3
4
5
6

What About 5/2?

• Python performs 0oor division%
$ If both numbers are integers' the result is

an integer%
$ Floor division chops o# the fractional part

of the result%
• To get a fractional result:
$ 5%36! 7 2.5
$ 0oat(5)6! 7 2.5

17

The modulus operator %
Returns the remainder when the *rst

argument is divided by the second%

18

 118 R 1
4 473
 4
 07
 4
 33
 32
 1

473/4
473%4

String operators
• Applied to strings' produce strings

19

Operator Operation
+ Concatenation
* Repetition
<string>[] Indexing
<string>[:] Slicing

String operators
• Applied to strings' produce strings

20

str1 = 'kit '
str2 = 'kat '
str3 = str1 + str2
str3 = str3 * 2
c = str1[0]
c = str1[4]

1
2
3
4
5
6

'kit kat '
'kit kat kit kat '

'k'
 IndexError: string index out

of range

k i t
0 1 2 3

str1

index

Returns the part of the string from the 8m/th9 character
to the 8n/th9 character' including the *rst but excluding
the last%

0 1 2 3 4 5 6 7 8 9 10

The slicing operator [m : n]

21

fruit S T R A W B E R R Y

index

str1 = fruit[2:5]
str1 = fruit[:5]
str1 = fruit[5:]
str1 = fruit[6:-1]

1
2
3
4

'RAW'
'STRAW'
'BERRY'

'ERR'

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1

Practice with string operators

I t h i n k t h e r e f o r e I a m

22

str1 = 'I think therefore I am'
str2 = str1[-4:]
str3 = str1[7:-4]
print str1[2:8]*3
result = str2 + str3 + str1[:7]
print result

What does this code fragment output?

1
2
3
4
5
6

0 1 2 3 4 5 6 7 8 . . . -4 -3 -2 -1

Relational operators
• For comparing two variables
• Type of argument depends on the operator' but

always produces a bool
• Some types:

23

x == y True if x equals y
x != y True if x does not equal y
x > y True if x is greater than y
x < y True if x is less than y
x >= y True if x is greater than or equal to y
x <= y True if x is less than or equal to y

not the same as =

Practice with relational
operators

24

temp = 80
temp_is_low = (temp < 65)
forecast = 'rain'
is_raining = (forecast == 'sunny')
result = (temp_is_low != is_raining)
print result

What does this code fragment output?

1
2
3
4
5
6

Boolean (logical) operators
• Applied to booleans' produce booleans

• Three types:
$ and : True only if both arguments are true
$ or : True if one or both arguments are true
$ not : True only if the argument is false

25

a = True
b = False
c = a and b
d = a or b
e = not a

1
2
3
4
5

Practice with boolean
operators

26

a = False
b = True
c = False
result = not (b and c)
result = result or a
print result

What does this code fragment output?

1
2
3
4
5
6

Precedence:
order of operations

• What order do these operations get evaluated
in?

• Rules of precedence:
$ ** takes precedence over * and 6' which precedes :

and /
$ not takes precedence over and' which precedes or
$ with equal precedence' evaluate le;/to/right

• Override rules of precedence using parentheses%
27

result = 5 * 9 – 42 + 17 / 3 ** 2

result = (5 * 9) - ((42 + 17) / (3 ** 2))

Debugging
• Programming is complicated! We all

make mistakes%
$ These errors are called bugs%
$ Finding and removing bugs is called

debugging%

• Three main types of bugs:
$ Syntax errors
$ Run/time errors
$ Logic (semantic) errors

28

Syntax errors
• Because programming languages are formal'

they require perfect syntax%

• Incorrect syntax results in a syntax error%
• SyntaxError: invalid syntax
• SyntaxError: invalid token

• Common syntax errors
• Keyword or invalid symbols in variable names
• Mismatched quotation marks in strings
• Unclosed opening operator' e%g% (or <%
• Incorrect indentation

• IDLE will report syntax errors when you run
your code! 29

Run-time errors
• Occur when the program has no syntax

errors' but something goes wrong while
it is running%

• IDLE will report run/time errors when
you run your program%

• Example
 IndexError: string index out of range

30

Other run-time errors
Variable errors:
$ Slightly di#erent variable names

Run/time errors:
$ Operator doesn&t apply to variable types%

31

n_students = 15
print num_students

NameError: name 'num_students' is not defined

b = 'a'
i = b + 2

TypeError: cannot concatenate 'str' and 'int' objects

Logic errors

• Occur when the program runs successfully' but
produces the wrong output%

• The computer always does exactly what you
tell it! Wrong output means you did not write
the program you wanted to write%

• Also called semantic errors%

• IDLE cannot catch these!

32

Logic errors

• Mixing up 7 and 77

• Order of operations di#erent than
expected% When in doubt' use
parentheses!

33

b1 = True
b2 = False
b3 = b2 = b1

Sets b2 to b1, rather
than comparing them!

Coding style
• Your code should always be:

$ readable
$ consistent
$ commented or documented

• This applies to spacing (indentation)'
parentheses' name choices' etc…

• Code that is easy to read and understand is far
more likely to be correct!

34

Style: variable names
• Should indicate purpose%

• Should follow naming conventions%
$ start variables with a lower/case letter
$ start each 8new word9 in the name with

underscore

35

a = 3 # what the heck is a??

my_variable = 7
my_variable_with_a_very_long_name = 6.177

num_apples = 3 # oh, the number of apples!

Style: operators

• Use spacing and parentheses to improve
readability%

• Order of operations is easy to forget% Use
parentheses!

36

answer=num2*7+num1/6-27*num2

answer = (num2 * 7) + (num1 / 6) - (27 * num2)

37

Output
• We already know how to print output to the

screen%
print 'Hello, WTP' console

num = 42
greeting = 'Hi!'
print num
print greeting
...

42
Hi!

Python program

output

38

Input
• We would also like to get input from the user%

42
Hi!

console

output

input device

input

num = 42
greeting = 'Hi!'
print num
print greeting
...

Python program

39

User Input
• raw_input prints a prompt to the user

and assigns the input to a variable as a
string

• input can be used when we expect the
input to be a number

name = raw_input('What is your name?')

age = input('How old are you?')

40

An input example
name = raw_input('What is your name?')
prompt = 'How old are you, ' + name + '?'
age = input(prompt)
print 'I want to be', age, 'years old too!'

41

An input example
name = raw_input('What is your name?')
prompt = 'How old are you, ' + name + '?'
age = input(prompt)
print 'I want to be', age, 'years old too!'

What is your name?

42

An input example
name = raw_input('What is your name?')
prompt = 'How old are you, ' + name + '?'
age = input(prompt)
print 'I want to be', age, 'years old too!'

What is your name?
Harry

43

An input example
name = raw_input('What is your name?')
prompt = 'How old are you, ' + name + '?'
age = input(prompt)
print 'I want to be', age, 'years old too!'

What is your name?
Harry

44

An input example
name = raw_input('What is your name?')
prompt = 'How old are you, ' + name + '?'
age = input(prompt)
print 'I want to be', age, 'years old too!'

What is your name?
Harry
How old are you, Harry?
18

45

An input example
name = raw_input('What is your name?')
prompt = 'How old are you, ' + name + '?'
age = input(prompt)
print 'I want to be', age, 'years old too!'

What is your name?
Harry
How old are you, Harry?
18
I want to be 18 years old too!

Today’s exercises
• Naming and using variables

• Identifying type

• String Operators

• Boolean operators and order of operations

• User Input

• Readings for tomorrow: Sections 5%1/-' -' 2%.' 2%5/-'
+3%+/5

46

